Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709860

RESUMO

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Assuntos
Proteínas do Capsídeo , RNA Mensageiro , Vírus do Mosaico do Tabaco , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Vírus do Mosaico do Tabaco/genética , Proteínas do Capsídeo/genética , Bromovirus/genética , Nanopartículas/química , Humanos , Feminino , Vacinas contra COVID-19/administração & dosagem , Vírion/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Lipossomos
2.
J Virol ; 97(3): e0128422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36786601

RESUMO

The three genomic and a single subgenomic RNA of Cowpea chlorotic mottle virus (CCMV), which is pathogenic to plants, is packaged into three morphologically indistinguishable icosahedral virions with T=3 symmetry. The two virion types, C1V and C2V, package genomic RNAs 1 (C1) and 2 (C2), respectively. The third virion type, C3+4V, copackages genomic RNA3 and its subgenomic RNA (RNA4). In this study, we sought to evaluate how the alteration of native capsid dynamics by the host and viral replicase modulate the general biology of the virus. The application of a series of biochemical, molecular, and biological assays revealed the following. (i) Proteolytic analysis of the three virion types of CCMV assembled individually in planta revealed that, while retaining the structural integrity, C1V and C2V virions released peptide regions encompassing the N-terminal arginine-rich RNA binding motif. In contrast, a minor population of the C3+4V virion type was sensitive to trypsin-releasing peptides encompassing the entire capsid protein region. (ii) The wild-type CCMV virions purified from cowpea are highly susceptible to trypsin digestion, while those from Nicotiana benthamiana remained resistant, and (iii) finally, the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis evaluated the relative dynamics of C3+4V and B3+4V virions assembled under the control of the homologous versus heterologous replicase. The role of viral replicase in modulating the capsid dynamics was evident by the differential sensitivity to protease exhibited by B3+4V and C3+4V virions assembled under the homologous versus heterologous replicase. Our results collectively conclude that constant modulation of capsid dynamics by the host and viral replicase is obligatory for successful infection. IMPORTANCE Infectious virus particles or virions are considered static structures and undergo various conformational transitions to replicate and infect many eukaryotic cells. In viruses, conformational changes are essential for establishing infection and evolution. Although viral capsid fluctuations, referred to as dynamics or breathing, have been well studied in RNA viruses pathogenic to animals, such information is limited among plant viruses. The primary focus of this study is to address how capsid dynamics of plant-pathogenic RNA viruses, namely, Cowpea chlorotic mottle (CCMV) and Brome mosaic virus (BMV), are modulated by the host and viral replicase. The results presented have improved and transformed our understanding of the functional relationship between capsid dynamics and the general biology of the virus. They are likely to provide stimulus to extend similar studies to viruses pathogenic to eukaryotic organisms.


Assuntos
Bromovirus , Capsídeo , Interações entre Hospedeiro e Microrganismos , Plantas , Proteínas do Complexo da Replicase Viral , Bromovirus/enzimologia , Bromovirus/genética , Capsídeo/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Plantas/virologia , RNA Viral/genética , RNA Viral/metabolismo , Tripsina/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , RNA Subgenômico
3.
Bioconjug Chem ; 32(5): 958-963, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33861931

RESUMO

Protein cages hold much promise as carrier systems in nanomedicine, due to their well-defined size, cargo-loading capacity, and inherent biodegradability. In order to make them suitable for drug delivery, they have to be stable under physiological conditions. In addition, often surface modifications are required, for example, to improve cell targeting or reduce the particle immunogenicity by PEGylation. For this purpose, we investigated the functionalization capacity of the capsid of cowpea chlorotic mottle virus (CCMV), modified at the interior with a stabilizing elastin-like polypeptide (ELP) tag, by employing a combination of protein engineering and bio-orthogonal chemistry. We first demonstrated the accessibility of the native cysteine residue in ELP-CCMV as a site-selective surface-exposed functional handle, which was not available in the native CCMV capsid. An additional bio-orthogonal functional handle was introduced by incorporation of the noncanonical amino acid, azido-phenylalanine (AzF), using the amber suppression mechanism. Dual site-selective presentation of both a cell-penetrating TAT peptide and a fluorophore to track the particles was demonstrated successfully in HeLa cell uptake studies.


Assuntos
Bromovirus/genética , Capsídeo/metabolismo , Engenharia de Proteínas , Capsídeo/química , Células HeLa , Humanos
4.
BMC Plant Biol ; 18(1): 123, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914379

RESUMO

BACKGROUND: Although the draft genome of sorghum is available, the understanding of gene function is limited due to the lack of extensive mutant resources. Virus-induced gene silencing (VIGS) is an alternative to mutant resources to study gene function. This study reports an improved and efficient method for Brome mosaic virus (BMV)-based VIGS in sorghum. METHODS: Sorghum plants were rub-inoculated with sap prepared by grinding 2 g of infected Nicotiana benthamiana leaf in 1 ml 10 mM potassium phosphate buffer (pH 6.8) and 100 mg of carborundum abrasive. The sap was rubbed on two to three top leaves of sorghum. Inoculated plants were covered with a dome to maintain high humidity and kept in the dark for two days at 18 °C. Inoculated plants were then transferred to 18 °C growth chamber with 12 h/12 h light/dark cycle. RESULTS: This study shows that BMV infection rate can be significantly increased in sorghum by incubating plants at 18 °C. A substantial variation in BMV infection rate in sorghum genotypes/varieties was observed and BTx623 was the most susceptible. Ubiquitin (Ubiq) silencing is a better visual marker for VIGS in sorghum compared to other markers such as Magnesium Chelatase subunit H (ChlH) and Phytoene desaturase (PDS). The use of antisense strand of a gene in BMV was found to significantly increase the efficiency and extent of VIGS in sorghum. In situ hybridization experiments showed that the non-uniform silencing in sorghum is due to the uneven spread of the virus. This study further demonstrates that genes could also be silenced in the inflorescence of sorghum. CONCLUSION: In general, sorghum plants are difficult to infect with BMV and therefore recalcitrant to VIGS studies. However, by using BMV as a vector, a BMV susceptible sorghum variety, 18 °C for incubating plants, and antisense strand of the target gene fragment, efficient VIGS can still be achieved in sorghum.


Assuntos
Bromovirus , Inativação Gênica , Sorghum/genética , Bromovirus/genética , DNA Antissenso/genética , Flores/virologia , Folhas de Planta/virologia , Sorghum/metabolismo , Sorghum/virologia , Temperatura , Ubiquitina/metabolismo
5.
Virus Res ; 252: 82-90, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29753892

RESUMO

Although RNA viruses evolved the mechanisms of specific encapsidation, miss-packaging of cellular RNAs has been reported in such RNA virus systems as flock house virus or cucumber necrosis virus. To find out if brome mosaic virus (BMV), a tripartite RNA virus, can package cellular RNAs, BMV was propagated in barley and in Nicotiana benthamiana hosts, purified by cesium chloride (CsCl) gradient ultracentrifugation followed by nuclease treatment to remove any contaminating cellular (host) RNAs. The extracted virion RNA was then sequenced by using next-generation sequencing (NGS RNA-Seq) with the Illumina protocol. Bioinformatic analysis revealed the content of host RNAs ranging from 0.07% for BMV extracted from barley to 0.10% for the virus extracted from N. benthamiana. The viruses from two sources appeared to co-encapsidate different patterns of host-RNAs, including ribosomal RNAs (rRNAs), messenger RNAs (mRNAs) but also mitochondrial and plastid RNAs and, interestingly, transposable elements, both transposons and retrotransposons. Our data reveal that BMV virions can carry host RNAs, having a potential to mediate horizontal gene transfer (HGT) in plants.


Assuntos
Bromovirus/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral/genética , Montagem de Vírus/genética , Proteínas do Capsídeo/genética , Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal , Hordeum/virologia , Interações Hospedeiro-Patógeno/genética , RNA Mensageiro/genética , Nicotiana/virologia , Vírion/genética
6.
Plant Physiol ; 176(1): 496-510, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29127260

RESUMO

Virus-induced gene silencing (VIGS) is used extensively for gene function studies in plants. VIGS is inexpensive and rapid compared with silencing conducted through stable transformation, but many virus-silencing vectors, especially in grasses, induce only transient silencing phenotypes. A major reason for transient phenotypes is the instability of the foreign gene fragment (insert) in the vector during VIGS. Here, we report the development of a Brome mosaic virus (BMV)-based vector that better maintains inserts through modification of the original BMV vector RNA sequence. Modification of the BMV RNA3 sequence yielded a vector, BMVCP5, that better maintained phytoene desaturase and heat shock protein70-1 (HSP70-1) inserts in Nicotiana benthamiana and maize (Zea mays). Longer maintenance of inserts was correlated with greater target gene silencing and more extensive visible silencing phenotypes displaying greater tissue penetration and involving more leaves. The modified vector accumulated similarly to the original vector in N. benthamiana after agroinfiltration, thus maintaining a high titer of virus in this intermediate host used to produce virus inoculum for grass hosts. For HSP70, silencing one family member led to a large increase in the expression of another family member, an increase likely related to the target gene knockdown and not a general effect of virus infection. The cause of the increased insert stability in the modified vector is discussed in relationship to its recombination and accumulation potential. The modified vector will improve functional genomic studies in grasses, and the conceptual methods used to improve the vector may be applied to other VIGS vectors.


Assuntos
Bromovirus/genética , Inativação Gênica , Zea mays/virologia , Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Vetores Genéticos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Fenótipo , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Nicotiana/virologia , Zea mays/genética
7.
J Chem Phys ; 146(13): 134902, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390351

RESUMO

Molecular dynamics simulations are carried out on a coarse-grained model to describe the polyion driven co-assembly of elastic capsomers as viral-like aggregates. The kinetics and structural properties of the complexes are examined using cationic capsomers, an anionic polyion, both modelled using beads connected by springs, and counterions neutralizing separately the two charged species. Polyion overcharging the capsid is encapsulated owing to combined effects of the capsomer-capsomer short-range interactions, the polyion ability to follow a Hamiltonian path, and Donnan equilibrium. Conditions leading to a high yield of viral-like nanoparticles are found, and the simulations demonstrate that the capsomer elasticity provides mechanisms that improve the reliability toward correctly formed capsids. These mechanisms are related to a highly irregular capsomer cluster growth followed by the appearance of two stable capsomer clusters with the polyion acting as a tether between them. Elevated capsomeric flexibility provides an additional pathway to anneal the kinetically trapped structures by the ejection of a capsomeric monomer from a malformed complex followed by a rebinding step to form a correct capsid.


Assuntos
Capsídeo/química , Modelos Químicos , Bromovirus/química , Bromovirus/genética , Bromovirus/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , DNA Viral/química , Elasticidade , Simulação de Dinâmica Molecular , Nanopartículas , RNA Viral/química , Vírus 40 dos Símios/química , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Eletricidade Estática
8.
Sci Rep ; 6: 37096, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27872483

RESUMO

Targeted nano-delivery vehicles were developed from genetically modified Cowpea chlorotic mottle virus (CCMV) capsid by ligands bioconjugation for efficient drug delivery in cancer cells. RNA binding (N 1-25aa) and ß-hexamer forming (N 27-41aa) domain of capsid was selectively deleted by genetic engineering to achieve the efficient in vitro assembly without natural cargo. Two variants of capsids were generated by truncating 41 and 26 amino acid from N terminus (NΔ41 and NΔ26) designated as F1 and F2 respectively. These capsid were optimally self-assembled in 1:2 molar ratio (F1:F2) to form a monodisperse nano-scaffold of size 28 nm along with chemically conjugated modalities for visualization (fluorescent dye), targeting (folic acid, FA) and anticancer drug (doxorubicin). The cavity of the nano-scaffold was packed with doxorubicin conjugated gold nanoparticles (10 nm) to enhance the stability, drug loading and sustained release of drug. The chimeric system was stable at pH range of 4-8. This chimeric nano-scaffold system showed highly specific receptor mediated internalization (targeting) and ~300% more cytotoxicity (with respect to FA- delivery system) to folate receptor positive Michigan Cancer Foundation-7 (MCF7) cell lines. The present system may offer a programmable nano-scaffold based platform for developing chemotherapeutics for cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Citotoxinas/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Bromovirus/genética , Liberação Controlada de Fármacos , Fluoresceínas/administração & dosagem , Fluoresceínas/química , Receptor 1 de Folato/metabolismo , Humanos , Ligantes , Células MCF-7 , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Succinimidas/administração & dosagem , Succinimidas/química
9.
PLoS One ; 11(5): e0156547, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27244559

RESUMO

The environment of a living cell is vastly different from that of an in vitro reaction system, an issue that presents great challenges to the use of in vitro models, or computer simulations based on them, for understanding biochemistry in vivo. Virus capsids make an excellent model system for such questions because they typically have few distinct components, making them amenable to in vitro and modeling studies, yet their assembly can involve complex networks of possible reactions that cannot be resolved in detail by any current experimental technology. We previously fit kinetic simulation parameters to bulk in vitro assembly data to yield a close match between simulated and real data, and then used the simulations to study features of assembly that cannot be monitored experimentally. The present work seeks to project how assembly in these simulations fit to in vitro data would be altered by computationally adding features of the cellular environment to the system, specifically the presence of nucleic acid about which many capsids assemble. The major challenge of such work is computational: simulating fine-scale assembly pathways on the scale and in the parameter domains of real viruses is far too computationally costly to allow for explicit models of nucleic acid interaction. We bypass that limitation by applying analytical models of nucleic acid effects to adjust kinetic rate parameters learned from in vitro data to see how these adjustments, singly or in combination, might affect fine-scale assembly progress. The resulting simulations exhibit surprising behavioral complexity, with distinct effects often acting synergistically to drive efficient assembly and alter pathways relative to the in vitro model. The work demonstrates how computer simulations can help us understand how assembly might differ between the in vitro and in vivo environments and what features of the cellular environment account for these differences.


Assuntos
Bromovirus/genética , Capsídeo/metabolismo , Vírus da Hepatite B/genética , Papillomaviridae/genética , RNA Viral/metabolismo , Montagem de Vírus/genética , Proteínas do Capsídeo/metabolismo , Simulação por Computador , Modelos Biológicos , Modelos Moleculares , RNA Viral/genética
10.
Virology ; 464-465: 67-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25046269

RESUMO

In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein-protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed.


Assuntos
Bromovirus/fisiologia , Proteínas do Capsídeo/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Viral , Nicotiana/virologia , Doenças das Plantas/virologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Bromovirus/química , Bromovirus/enzimologia , Bromovirus/genética , Proteínas do Capsídeo/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/virologia , Imagem Molecular , Ligação Proteica , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Nicotiana/química , Proteínas Virais/química , Proteínas Virais/genética
11.
Appl Microbiol Biotechnol ; 98(19): 8281-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24965559

RESUMO

Based on recent developments, virus-like particles (VLPs) are considered to be perfect candidates as nanoplatforms for applications in materials science and medicine. To succeed, mass production of VLPs and self-assembly into a correct form in plant systems are key factors. Here, we report expression of synthesized coat proteins of the three viruses, Brome mosaic virus, Cucumber mosaic virus, and Maize rayado fino virus, in Nicotiana benthamiana and production of self-assembled VLPs by transient expression system using agroinfiltration. Each coat protein was synthesized and cloned into a pBYR2fp single replicon vector. Target protein expression in cells containing p19 was fourfold higher than that of cells lacking p19. After agroinfiltration, protein expression was analyzed by SDS-PAGE and quantitative image analyzer. Quantitative analysis showed that BMVCP, CMVCP, and MRFVCP concentrations were 0.5, 1.0, and 0.8 mg · g(-1) leaf fresh weight, respectively. VLPs were purified by sucrose cushion ultracentrifugation and then analyzed by transmission electron microscopy. Our results suggested that BMVCP and CMVCP proteins expressed in N. benthamiana leaves were able to correctly self-assemble into particles. Moreover, we evaluated internal cavity accessibility of VLPs to load foreign molecules. Finally, plant growth conditions after agroinfiltration are critical for increasing heterologous protein expression levels in a transient expression system.


Assuntos
Proteínas do Capsídeo/metabolismo , Vetores Genéticos/genética , Nicotiana/genética , Replicon , Vírion/metabolismo , Biotecnologia , Bromovirus/genética , Bromovirus/metabolismo , Proteínas do Capsídeo/genética , Cucumovirus/genética , Cucumovirus/metabolismo , Expressão Gênica , Vetores Genéticos/metabolismo , Nicotiana/metabolismo , Tymoviridae/genética , Tymoviridae/metabolismo , Vírion/genética
12.
Biochimie ; 95(12): 2415-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24036171

RESUMO

The potato virus X (PVX) virion can be reconstituted in vitro from the virus coat protein (CP) and RNA; heterologous RNAs may be used as well. In our recent study, structure and properties of cognate and heterologous viral ribonucleoproteins (vRNPs) were demonstrated to be similar to those of native virions. The assembly was found to be initiated at the 5' terminus of an RNA and was not dependent on RNA sequence. The aim of the present study was to search for a signal or an essential structural element that directs packaging of viral genetic material into vRNPs. vRNPs were formed by incubation of the PVX CP with heterologous capped RNAs, their functional fragments lacking the cap structure, as well as the capped and uncapped transcripts corresponding to the 5'-terminal region of the genomic PVX RNA. Experimental data show that the presence of the cap structure at the 5' end of a nucleic acid is an important condition for vRNP assembly from RNA and CP. Presumably, the 5'-cap affects conformational state of the RNA region responsible for the efficient interaction with CP and creates conformational encapsidation signal for vRNP assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Potexvirus/genética , Capuzes de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Bromovirus/genética , RNA/metabolismo , RNA Viral/metabolismo , Ribonucleoproteínas/genética , Vírion/metabolismo , Montagem de Vírus/genética
13.
J Virol ; 87(16): 8982-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23741003

RESUMO

Positive-strand RNA viruses are known to rearrange the endomembrane network to make it more conducive for replication, maturation, or egress. Our previous transmission electron microscopic (TEM) analysis showed that ectopic expression of wild-type (wt) capsid protein (CP) of Brome mosaic virus (BMV) has an intrinsic property of modifying the endoplasmic reticulum (ER) to induce vesicles similar to those present in wt BMV infection. In this study, we evaluated the functional significance of CP-mediated vesicle induction to the BMV infection cycle in planta. Consequently, the cytopathologic changes induced by wt CP or its mutants defective in virion assembly due to mutations engineered in either N- or C-proximal domains were comparatively analyzed by TEM in two susceptible (Nicotiana benthamiana and Chenopodium quinoa) and one nonhost (N. clevelandii) plant species. The results showed that in susceptible hosts, CP-mediated ER-derived vesicle induction is contingent on the expression of encapsidation-competent CP. In contrast, unlike in N. benthamiana and C. quinoa, transient expression of wt CP in nonhost N. clevelandii plants eliminated vesicle induction. Additionally, comparative source-to-sink analysis of virus spread in leaves of N. benthamiana and N. clevelandii coexpressing wt BMV and Cucumber mosaic virus (CMV) showed that despite trans-encapsidation, CMV failed to complement the defective cell-to-cell movement of BMV. The significance and relation of CP-mediated vesicle induction to virus cell-to-cell movement are discussed.


Assuntos
Bromovirus/fisiologia , Proteínas do Capsídeo/metabolismo , Montagem de Vírus , Liberação de Vírus , Bromovirus/genética , Proteínas do Capsídeo/genética , Chenopodium quinoa/virologia , Análise Mutacional de DNA , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Microscopia Eletrônica de Transmissão , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nicotiana/virologia
14.
Methods Mol Biol ; 975: 47-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23386294

RESUMO

While in dicotyledonous plants virus-induced gene silencing (VIGS) is well established to study plant-pathogen interaction, in monocots only few examples of efficient VIGS have been reported so far. One of the available systems is based on the brome mosaic virus (BMV) which allows gene silencing in different cereals including barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays).Infection of maize plants by the corn smut fungus Ustilago maydis leads to the formation of large tumors on stem, leaves, and inflorescences. During this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed comprehensive and stage-specific changes in host gene expression during disease progression.To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a VIGS system based on the Brome mosaic virus (BMV) to maize at conditions that allow successful U. maydis infection of BMV pre-infected maize plants. This setup enables quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (q(RT)-PCR)-based readout.


Assuntos
Bromovirus/genética , Interações Hospedeiro-Patógeno/genética , Interferência de RNA , Ustilago/fisiologia , Zea mays/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes/métodos , Genes de Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , RNA Viral/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/virologia , Transcriptoma , Zea mays/imunologia , Zea mays/microbiologia
15.
J Vis Exp ; (61)2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22410612

RESUMO

In viruses with positive-sense RNA genomes pathogenic to humans, animals and plants, progeny encapsidation into mature and stable virions is a cardinal phase during establishment of infection in a given host. Consequently, study of encapsidation deciphers the information regarding the know-how of the mechanism regulating virus assembly to form infectious virions. Such information is vital in formulating novel methods of curbing virus spread and disease control. Virus encapsidation can be studied in vivo and in vitro. Genome encapsidation in vivo is a highly regulated selective process involving macromolecular interactions and subcellular compartmentalization. Therefore, study leading to dissect events encompassing virus encapsidation in vivo would provide basic knowledge to understand how viruses proliferate and assemble. Recently in vitro encapsidation has been exploited for the research in the area of biomedical imaging and therapeutic applications. Non-enveloped plant viruses stand far ahead in the venture of in vitro encapsidation of the negatively charged foreign material. Brome mosaic virus (BMV), a non-enveloped multicomponent RNA virus pathogenic to plants, has been used as a model system for studying genome packaging in vivo and in vitro. For encapsidation assays in Nicotiana benthamiana plants, Agrobacterium -mediated transient expression, refer to as agroinfiltration, is an efficient and robust technique for the synchronized delivery and expression of multiple components to the same cell. In this approach, a suspension of Agrobacterium tumefaciens cells carrying binary plasmid vectors carrying cDNAs of desiredviral mRNAs is infiltrated into the intercellular space withina leaf using nothing more sophisticated than a 1 ml disposable syringe (without needle). This process results in the transfer of DNA insert into plant cells; the T-DNA insert remains transiently in the nucleus and is then transcribed by the host polymerase II, leading to the transient expression. The resulting mRNA transcript (capped and polyadenylated) is then exported to the cytoplasm for translation. After approximately 24 to 48 hours of incubation,sections of infiltrated leaves can be sampled for microscopyor biochemical analyses. Agroinfiltration permits large numbers (hundreds to thousands) of cells to be transfected simultaneously. For in vitro encapsidation, purified virions of BMV are dissociated into capsid protein by dialyzing against dissociation buffer containing calcium chloride followed by removal of RNA and un-dissociated virions by centrifugation. Genome depleted capsid protein subunits are then reassembled with desired viral genome components or non-viral components such as indocyanine dye.


Assuntos
Bromovirus/fisiologia , Montagem de Vírus/fisiologia , Agrobacterium tumefaciens/virologia , Bromovirus/genética , Nicotiana/virologia
16.
J Virol ; 86(9): 5204-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357282

RESUMO

Despite overwhelming interest in the impact exerted by recombination during evolution of RNA viruses, the relative contribution of the polarity of inoculum templates remains poorly understood. Here, by agroinfiltrating Nicotiana benthamiana leaves, we show that brome mosaic virus (BMV) replicase is competent to initiate positive-strand [(+)-strand] synthesis on an ectopically expressed RNA3 negative strand [(-) strand] and faithfully complete the replication cycle. Consequently, we sought to examine the role of RNA polarity in BMV recombination by expressing a series of replication-defective mutants of BMV RNA3 in (+) or (-) polarity. Temporal analysis of progeny sequences revealed that the genetic makeup of the primary recombinant pool is determined by the polarity of the inoculum template. When the polarity of the inoculum template was (+), the recombinant pool that accumulated during early phases of replication was a mixture of nonhomologous recombinants. These are longer than the inoculum template length, and a nascent 3' untranslated region (UTR) of wild-type (WT) RNA1 or RNA2 was added to the input mutant RNA3 3' UTR due to end-to-end template switching by BMV replicase during (-)-strand synthesis. In contrast, when the polarity of the inoculum was (-), the progeny contained a pool of native-length homologous recombinants generated by template switching of BMV replicase with a nascent UTR from WT RNA1 or RNA2 during (+)-strand synthesis. Repair of a point mutation caused by polymerase error occurred only when the polarity of the inoculum template was (+). These results contribute to the explanation of the functional role of RNA polarity in recombination mediated by copy choice mechanisms.


Assuntos
Bromovirus/genética , RNA Viral/genética , Vírus Reordenados/genética , Regiões 3' não Traduzidas , Sequência de Bases , Bromovirus/metabolismo , Ordem dos Genes , Vetores Genéticos/genética , Instabilidade Genômica , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Moldes Genéticos , Nicotiana/virologia , Replicação Viral/genética
17.
PLoS One ; 6(8): e23988, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915247

RESUMO

Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV) is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol) levels were significantly increased in strains depleted for a heat shock protein (HSF1) or proteasome components (PRE1 and RPT6), suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol) localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.


Assuntos
Bromovirus/crescimento & desenvolvimento , RNA Viral/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Replicação Viral/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Bromovirus/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Replicação Viral/genética
18.
Virus Genes ; 43(1): 120-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21537997

RESUMO

Cowpea chlorotic mottle virus (CCMV, family Bromoviridae) is found worldwide and has been used as a model virus for a long time, but no data is available about the genetic diversity of field isolates. Recently, two new field isolates (Car1 and Car2) of CCMV obtained from cowpea showed distinct phenotypic symptoms when inoculated to cowpea. CCMV-Car1 induced severe mosaic and interveinal chlorosis, while CCMV-Car2 produced mild mottling and leaf rolling. Both isolates produced asymptomatic infection in Nicotiana benthamiana. The complete genome of both isolates was amplified by reverse transcription-polymerase chain reaction using specific primers against the CCMV sequences available in the GenBank database, cloned and sequenced. Both nucleotide and amino acid sequences were compared between the newly sequenced CCMV isolates and the three previously characterized CCMV strains (T, M1, and R). Phylogenetic analysis of the RNA 1 sequence showed that CCMV-Car1 was in a separate branch from the rest of the CCMV isolates while CCMV-Car2 grouped together with CCMV-R. On the basis of RNA 2 and RNA 3 sequences, two major groupings were obtained. One group included CCMV-Car1 and CCMV-Car2 isolates while the other contained CCMV-T, CCMV-M1, and CCMV-R strains. Recombination programs detected a potential recombination event in the RNA 1 sequence of CCMV-Car2 isolate but not in RNA 2 and RNA 3 sequences. The results showed that both mutations and recombination have played an important role in the genetic diversity of these two new isolates of CCMV.


Assuntos
Bromovirus/genética , Bromovirus/isolamento & purificação , Fabaceae/virologia , Genoma Viral , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Sequência de Aminoácidos , Bromovirus/classificação , Clonagem Molecular , Variação Genética , Dados de Sequência Molecular , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência , Nicotiana/virologia
19.
New Phytol ; 189(2): 471-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21039559

RESUMO

Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis.


Assuntos
Bromovirus/genética , Inativação Gênica , Genes de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Ustilago/fisiologia , Zea mays/genética , Zea mays/microbiologia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Interferência de RNA , Zea mays/enzimologia , Zea mays/virologia
20.
Mol Plant Microbe Interact ; 23(11): 1433-47, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20923351

RESUMO

Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mutant virus named QC that exhibited a dramatically altered ratio of the RNAs in virions. RNA2 was far more abundant than the other RNAs, although the ratios could be affected by the host plant species. RNAs with the QC mutation were competent for replication early in the infection, suggesting that they were either selectively packaged or degraded after packaging. In support of the latter idea, low concentrations of truncated RNA1 that co-migrated with RNA2 were found in the QC virions. Spectroscopic analysis and peptide fingerprinting experiments showed that the QC virus capsid interacted with the encapsidated RNAs differently than did the wild type. Furthermore, wild-type BMV RNA1 was found to be more susceptible to nuclease digestion relative to RNA2 as a function of the buffer pH. Other BMV capsid mutants also had altered ratios of packaged RNAs.


Assuntos
Substituição de Aminoácidos , Bromovirus/genética , Bromovirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , RNA Viral/fisiologia , Sequência de Aminoácidos , Regulação Viral da Expressão Gênica/fisiologia , Microscopia Eletrônica , Modelos Moleculares , Mutação , Conformação Proteica , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA