Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159497, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649009

RESUMO

BACKGROUNDS: Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. The leaves of Broussonetia papyrifera contain a large number of flavonoids, which have a variety of biological functions. METHODS: In vitro experiments, free fatty acids were used to stimulate HepG2 cells. NAFLD model was established in vivo in mice fed with high fat diet (HFD) or intraperitoneally injected with Tyloxapol (Ty). At the same time, Total flavonoids of Broussonetia papyrifera (TFBP) was used to interfere with HepG2 cells or mice. RESULTS: The results showed that TFBP significantly decreased the lipid accumulation induced by oil acid (OA) with palmitic acid (PA) in HepG2 cells. TFBP decreased the total cholesterol (TC), the triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and increased high-density lipoprotein cholesterol (HDLC) in serum. TFBP could also effectively inhibit the generation of reactive oxygen species (ROS) and restrained the level of myeloperoxidase (MPO), and enhance the activity of superoxide dismutase (SOD) to alleviate the injury from oxidative stress in the liver. Additionally, TFBP activated nuclear factor erythroid-2-related factor 2 (Nrf2) pathway to increasing the phosphorylation of AMP-activated protein kinase (AMPK). Meanwhile, protein levels of mTORC signaling pathway were evidently restrained with the treatment of TFBP. CONCLUSION: Our experiments proved that TFBP has the therapeutic effect in NAFLD, and the activation of Nrf2 and AMPK signaling pathways should make sense.


Assuntos
Proteínas Quinases Ativadas por AMP , Broussonetia , Flavonoides , Fator 2 Relacionado a NF-E2 , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Broussonetia/química , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia , Células Hep G2/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014582

RESUMO

The Broussonetia genus (Moraceae), recognized for its value in many Chinese traditional herbs, mainly includes Broussonetia papyrifera (L.) L'Hér. ex Vent. (BP), Broussonetia kazinoki Siebold (BK), and Broussonetia luzonica (Blanco) Bureau (BL). Hitherto, researchers have found 338 compounds isolated from BP, BK, and BL, which included flavonoids, polyphenols, phenylpropanoids, alkaloids, terpenoids, steroids, and others. Moreover, its active compounds and extracts have exhibited a variety of pharmacological effects such as antitumor, antioxidant, anti-inflammatory, antidiabetic, anti-obesity, antibacterial, and antiviral properties, and its use against skin wrinkles. In this review, the phytochemistry and pharmacology of Broussonetia are updated systematically, after its applications are first summarized. In addition, this review also discusses the limitations of investigations and the potential direction of Broussonetia. This review can help to further understand the phytochemistry, pharmacology, and other applications of Broussonetia, which paves the way for future research.


Assuntos
Alcaloides , Broussonetia , Moraceae , Broussonetia/química , Etnofarmacologia , Flavonoides/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/química
3.
Molecules ; 27(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335241

RESUMO

Broussonetia kazinoki has been used as a traditional medicine for the treatment of burns and acne, and its extracts have been found to show tyrosinase inhibitory and anticancer activities. In this study, the tyrosinase inhibitory and cytotoxic activities of B. kazinoki were explored, leading to the isolation of kazinol C (1), kazinol E (2), kazinol F (3), broussonol N (4), and kazinol X (5), of which the compounds 4 and 5 have not been previously reported. Microbial transformation has been recognized as an efficient tool to generate more active metabolites. Microbial transformation of the major compounds 1 and 3 was conducted with Mucor hiemalis, where four glucosylated metabolites (6-9) were produced from 1, while one hydroxylated (10) and one glucosylated (11) metabolites were obtained from 3. Structures of the isolated metabolites were determined by extensive spectroscopic analyses. All compounds were evaluated for their tyrosinase inhibitory and cytotoxic activities. Compound 3 and its metabolites, kazinol Y (10) and kazinol F-4″-O-ß-d-glucopyranoside (11), exhibited the most potent tyrosinase inhibitory activities with the IC50 values ranging from 0.71 to 3.36 µM. Meanwhile, none of the metabolites, except for kazinol C-2',3″-di-O-ß-d-glucopyranoside (7), showed moderate cytotoxic activities (IC50 17.80 to 24.22 µM) against A375P, B16F10 and B16F1 cell lines.


Assuntos
Broussonetia , Broussonetia/química , Flavonoides/química , Monofenol Mono-Oxigenase
4.
Molecules ; 26(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204142

RESUMO

Broussonetia papyrifera is a multifunctional deciduous tree that is both a food and a source of traditional Chinese medicine for both humans and animals. Further analysis of the UGT gene family is of great significance to the utilization of B. papyrifera. The substrates of plant UGT genes include highly diverse and complex chemicals, such as flavonoids and terpenes. In order to deepen our understanding of this family, a comprehensive analysis was performed. Phylogenetic analysis showed that 155 BpUGTs were divided into 15 subgroups. A conserved motif analysis showed that BpUGT proteins in the same subgroups possessed similar motif structures. Tandem duplication was the primary driving force for the expansion of the BpUGT gene family. The global promoter analysis indicated that they were associated with complex hormone regulatory networks and the stress response, as well as the synthesis of secondary metabolites. The expression pattern analysis showed that the expression level of BpUGTs in leaves and roots was higher than that in fruits and stems. Next, we determined the composition and content of flavonoids, the main products of the BpUGT reaction. A total of 19 compounds were isolated and analyzed by UPLC-ESI-MS/MS in 3 species of Broussonetia including B. kazinoki, B. papyrifera, and B. kazinoki × B. papyrifera, and the number of compounds was different in these 3 species. The total flavonoid content and antioxidant capacities of the three species were analyzed respectively. All assays exhibited the same trend: the hybrid paper mulberry showed a higher total flavonoid content, a higher total phenol content and higher antioxidant activity than the other two species. Overall, our study provides valuable information for understanding the function of BpUGTs in the biosynthesis of flavonoids.


Assuntos
Broussonetia/química , Flavonoides/isolamento & purificação , Glicosiltransferases/genética , Broussonetia/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/classificação , Glicosiltransferases/metabolismo , Família Multigênica , Filogenia , Folhas de Planta/química , Folhas de Planta/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Distribuição Tecidual
5.
Int J Biol Macromol ; 174: 61-68, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33493569

RESUMO

This study was to assess the possibility of using competitive and slow binding experiments with affinity-based ultrafiltration UPLC-QTof-MS analysis to identify potent bacterial neuraminidase (bNA) inhibitors from the Broussonetia papyrifera roots extract. To isolate unbound compounds from the enzyme-binding complex, the root bark extracts were either incubated in the absence of bNA, in the presence of bNA, or with the time-dependent bNA before the ultrafiltration was performed. Thirteen flavonoids were separated from the target extract, and their inhibitory activities were tested against bNA. The isolated flavonoids exhibited potent inhibition against NA (IC50 = 0.7-54.0 µM). Our kinetic analysis of representative active flavonoids (1, 2, and 6) showed slow and time-dependent reversible inhibition. Additionally, chalcones exhibited noncompetitive inhibition characteristics, whereas flavonols and flavans showed mixed-type behavior. The computational results supported the experimental behaviors of flavonoids 2, 6, 10, and 12, indicating that bounded to the active site, but flavonoids 6 and 10 binds near but not accurately at the active site. Although this is mixed-type inhibition, their binding can be considered competitive.


Assuntos
Broussonetia/química , Flavonoides/química , Raízes de Plantas/química , Chalcona/química , Chalconas/química , Flavonóis/química , Cinética , Neuraminidase/química , Neuraminidase/isolamento & purificação , Neuraminidase/metabolismo , Casca de Planta/química , Extratos Vegetais/química , Polifenóis/química , Prenilação/fisiologia
6.
Bioorg Chem ; 104: 104298, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33011537

RESUMO

Extensive phytochemical analysis of the CHCl3-soluble part of an ethanolic extract of branches and twigs of Broussonetia papyrifera led to the isolation of fourteen compounds, including a novel 5,11-dioxabenzo[b]fluoren-10-one derivative named broussofluorenone C (12). The isolated compounds 1-14 were characterized based on their NMR and HRMS data, and examined for their anti-inflammatory activities in LPS-stimulated THP-1 cells as well as for their cellular antioxidant effects. Compounds 7-10 and 12 showed inhibitory effects on NF-κB/AP-1 activation and compounds 7-9 were subsequently confirmed to suppress the secretion of both IL-1ß and TNF-α in LPS-stimulated THP-1 cells more significantly than the prednisone used as a positive control. In the CAA assay, compound 10 exhibited the greatest antioxidant effect, greater than that of the quercetin used as a positive control. The results show possible beneficial effects and utilization of B. papyrifera wood in the treatment of inflammatory diseases as well as oxidative stress.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Broussonetia/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , NF-kappa B/análise , NF-kappa B/antagonistas & inibidores , NF-kappa B/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Células THP-1 , Fator de Transcrição AP-1/análise , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/biossíntese , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
7.
Molecules ; 25(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429421

RESUMO

Pancreatic cancer has a high mortality rate due to poor rates of early diagnosis. One tumor suppressor gene in particular, p53, is frequently mutated in pancreatic cancer, and mutations in p53 can inactivate normal wild type p53 activity and increase expression of transcription factor forkhead box M1 (FoxM1). Overexpression of FoxM1 accelerates cellular proliferation and cancer progression. Therefore, inhibition of FoxM1 represents a therapeutic strategy for treating pancreatic cancer. Broussoflavonol B (BF-B), isolated from the stem bark of Broussonetia kazinoki Siebold has previously been shown to inhibit the growth of breast cancer cells. This study aimed to investigate whether BF-B exhibits anti-pancreatic cancer activity and if so, identify the underlying mechanism. BF-B reduced cell proliferation, induced cell cycle arrest, and inhibited cell migration and invasion of human pancreatic cancer PANC-1 cells (p53 mutated). Interestingly, BF-B down-regulated FoxM1 expression at both the mRNA and protein level. It also suppressed the expression of FoxM1 downstream target genes, such as cyclin D1, cyclin B1, and survivin. Cell cycle analysis showed that BF-B induced the arrest of G0/G1 phase. BF-B reduced the phosphorylation of extracellular signal-regulated kinase ½ (ERK½) and expression of ERK½ downstream effector c-Myc, which regulates cell proliferation. Furthermore, BF-B inhibited cell migration and invasion, which are downstream functional properties of FoxM1. These results suggested that BF-B could repress pancreatic cancer cell proliferation by inactivation of the ERK/c-Myc/FoxM1 signaling pathway. Broussoflavonol B from Broussonetia kazinoki Siebold may represent a novel chemo-therapeutic agent for pancreatic cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Broussonetia/química , Flavonóis/farmacologia , Proteína Forkhead Box M1/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Cultura em Câmaras de Difusão , Flavonóis/isolamento & purificação , Proteína Forkhead Box M1/antagonistas & inibidores , Proteína Forkhead Box M1/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Casca de Planta/química , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Survivina/genética , Survivina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Sci Rep ; 10(1): 4808, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179776

RESUMO

Morus and Broussonetia trees are widely used as food and/or feed. Among 23 phenolics identified from leaves of five Moraceae species using UPLC-QTOF-MS/MS, 15 were screened using DPPH/ABTS-guided HPLCs, including seven weak (flavonoids with one hydroxyl on B-ring) and eight strong (four caffeoylquinic acids and four flavonoids, each with a double hydroxyl on B-ring) antioxidants. We then determined the activity and synergistic effects of individual antioxidants and a mixture of the eight strongest antioxidants using DPPH-guided HPLC. Our findings revealed that (1) flavonoid glucuronide may have a more negative effect on antioxidant activity than glucoside, and (2) other compounds in the mixture may exert a negative synergistic effect on antioxidant activity of the four flavonoids with B-ring double hydroxyls but not the four caffeoylquinic acids. In conclusion, the eight phenolics with the strongest antioxidant ability reliably represented the bioactivity of the five extracts examined in this study. Moreover, the Morus alba hybrid had more phenolic biosynthesis machinery than its cross-parent M. alba, whereas the Broussonetia papyrifera hybrid had significantly less phenolic machinery than B. papyrifera. This difference is probably the main reason for livestock preference for the hybrid of B. papyrifera over B. papyrifera in feed.


Assuntos
Antioxidantes , Broussonetia/química , Flavonoides/análise , Flavonoides/farmacologia , Moraceae/química , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Árvores/química , Benzotiazóis , Compostos de Bifenilo , Cromatografia Líquida de Alta Pressão/métodos , Radicais Livres , Picratos , Relação Estrutura-Atividade , Ácidos Sulfônicos , Espectrometria de Massas em Tandem/métodos
9.
Bioorg Chem ; 92: 103233, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518759

RESUMO

Broussonetia papyrifera has been used as a diuretic, tonic and suppressor of edema. Bioactivity-guided fractionation and metabolite investigation of root bark extracts of this plant resulted in the isolation and identification of six 1,3-diphenylpropanes (1, 2, 8, 10, 17, 20), flavanone (3), two chalcones (4, 5), five flavans (6, 11, 14-16), dihydroflavonol (7) and five flavonols (9, 12, 13, 18, 19), including five new compounds (5, 7, 8, 19, 20) that inhibit NO production in LPS-induced RAW264.7 cells. The structures of compounds 1-20 were elucidated on the basis of spectroscopic data (1D and 2D NMR, MS, MS/MS, and HRMS). In particular, compounds 3, 5, 7, 12, and 20 exhibited significant inhibitory effects on the NO, iNOS, and pro-inflammatory cytokine (TNF-α and IL-6) production. Therefore, this study suggests that the flavonoid-rich products of B. papyrifera, including the new compounds, could be valuable candidates for the development of pharmaceuticals or functional foods in the prevention and treatment of anti-inflammatory disease.


Assuntos
Anti-Inflamatórios/farmacologia , Broussonetia/química , Flavonoides/farmacologia , Casca de Planta/química , Animais , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Relação Dose-Resposta a Droga , Flavonoides/isolamento & purificação , Expressão Gênica/efeitos dos fármacos , Interleucina-6/antagonistas & inibidores , Lipopolissacarídeos , Medicina Tradicional Coreana , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Células RAW 264.7 , Fator de Necrose Tumoral alfa/antagonistas & inibidores
10.
Molecules ; 23(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29534539

RESUMO

Excessive nitric oxide (NO) production by macrophages has been involved in inflammatory diseases. Seven polyphenols (1-7) were isolated from Broussonetia kazinoki (B. kazinoki) and investigated as potential inhibitors of NO overproduction in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Among them, four prenylated polyphenols (2-4 and 6) with a catechol moiety efficiently suppressed the LPS-induced high level of NO with IC50 values of less than 6 µM. The compounds 2-4 and 6 also attenuated protein and mRNA levels of inducible nitric oxide synthase (iNOS). Moreover, they suppressed the nuclear factor κB (NF-κB) activity by inhibiting the degradation of inhibitory-κB-α (I-κB-α) and the translocation of NF-κB into the nucleus in LPS-activated macrophages. Taken together, these findings suggest that polyphenols from B. kazinoki might be beneficial for treatment of inflammatory diseases.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Broussonetia/química , Óxido Nítrico/metabolismo , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Animais , Antioxidantes/química , Regulação para Baixo , Lipopolissacarídeos/efeitos adversos , Camundongos , Estrutura Molecular , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Polifenóis/química , Prenilação , Transporte Proteico/efeitos dos fármacos , Células RAW 264.7
11.
J Enzyme Inhib Med Chem ; 32(1): 504-515, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28112000

RESUMO

The current study was designed to assess the inhibitory activity of Broussonetia papyrifera-derived polyphenols against 3-chymotrypsin-like and papain-like coronavirus cysteine proteases. The isolated compounds were broussochalcone B (1), broussochalcone A (2), 4-hydroxyisolonchocarpin (3), papyriflavonol A (4), 3'-(3-methylbut-2-enyl)-3',4,7-trihydroxyflavane (5), kazinol A (6), kazinol B (7), broussoflavan A (8), kazinol F (9), and kazinol J (10). All polyphenols were more potent against papain-like protease (PLpro) than against 3-chymotripsin-like protease (3CLpro); therefore, we investigated their structural features that were responsible for this selectivity. Compound 4 was the most potent inhibitor of PLpro with an IC50 value of 3.7 µM. The active compounds displayed kinetic behaviors, and the binding constants of their interaction with PLpro were determined from surface plasmon resonance analysis. Our results suggest B. papyrifera constituents as promising candidates for development into potential anti-coronaviral agents.


Assuntos
Broussonetia/química , Coronavirus/enzimologia , Polifenóis/isolamento & purificação , Inibidores de Proteases/farmacologia , Eletroforese em Gel de Poliacrilamida , Espectroscopia de Ressonância Magnética
12.
ACS Appl Mater Interfaces ; 9(2): 1384-1394, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28001353

RESUMO

In this article, Broussonetia kazinoki (BK) powdery extract is utilized to modify the silk fibroin (SF) scaffold and applied to the bone defect area. The BK/SF scaffold is an efficient cell carrier which promotes cell proliferation and osteogenic differentiation of rBMSCs (bone marrow derived mesenchymal stem cells). We confirmed biocompatibility and osteogenic differentiation capacity of BK/SF scaffolds compared to pristine SF scaffold in both in vitro and in vivo evaluation. Gene expression related to osteogenic differentiation and bone regeneration significantly upregulated in the BK/SF scaffold group. The implanted scaffolds were attached well to the surface of the bone defect region and integrated with surrounding tissues without significant inflammatory reaction. Furthermore, almost 45% of bone volume has been recovered at 8 weeks postsurgery, while the SF and control group showed 20% recovery. These results suggest that BK powdery extract incorporated with an SF scaffold might be a suitable substitute for an alternative bone graft for bone regeneration.


Assuntos
Broussonetia/química , Fibroínas/química , Regeneração Óssea , Células-Tronco Mesenquimais , Osteogênese , Engenharia Tecidual , Alicerces Teciduais
13.
Phytomedicine ; 23(12): 1462-1468, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27765366

RESUMO

BACKGROUND: Broussonetia papyrifera (B. papyrifera), also known as paper mulberry, has been used as a traditional medicine for the treatment of several diseases, including ophthalmic disorders and impotency. However, the biological activity of kazinol A (1) among flavonols isolated from B. papyrifera has not been identified. PURPOSE: We identified a candidate metabolite for anti-human bladder cancer treatment from B. papyrifera and investigated the possible molecular mechanisms underlying its cytotoxic effects in T24 and cisplatin-resistant T24R2 human bladder cancer cells. METHODS: T24 and T24R2 cells were treated with five flavonols from B. papyrifera and their cytotoxic effects were determined using MTT assay, cell cycle analysis, mitochondrial membrane potential, and propidium iodide staining. Autophagy rate was calculated by counting LC3-GFP dots in the cells. All related protein expressions were analyzed by immunoblotting. RESULTS: Compound 1 showed relatively higher cytotoxicity in the human bladder cancer cells, T24 and T24R2, rather than other tissues-originated cancer cells. Compound 1 significantly attenuated cell growth through G0/1 arrest mediated by a decrease in cyclin D1 and an increase of p21. Apoptosis and autophagy induced by compound 1 treatment was accompanied by a modulation of the AKT-BAD pathway and AMPK-mTOR pathway, respectively. CONCLUSIONS: Our results suggest that compound 1 induces cytotoxic effects in human bladder cancer cells, including the cisplatin-resistant T24R2. Compound 1 may be a candidate for the development of effective anti-cancer drug on human urinary bladder cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Broussonetia/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Humanos , Extratos Vegetais/farmacologia , Bexiga Urinária/patologia
14.
Fitoterapia ; 112: 90-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27223849

RESUMO

In this study, we evaluated the insulin-sensitizing effect of flavans purified from Broussonetia kazinoki Siebold (BK) on 3T3-L1 adipocytes. Among the tested compounds, kazinol B enhanced intracellular lipid accumulation, gene expression of proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-alpha (C/EBPα), and consistently induced PPARγ transcriptional activation. To further investigate the insulin-sensitizing effect of kazinol B, we measured glucose analogue uptake by fully differentiated adipocytes and myotubes. Kazinol B increased 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake by cells by upregulating the gene expression and translocation of glucose transporter 4 (GLUT-4) into the plasma membrane in adipocytes. Kazinol B stimulated the gene expression and secretion of adiponectin, which is associated with a low risk of types 1 and 2 diabetes mellitus. We also suggested the mechanism of the antidiabetic effect of kazinol B by assaying Akt and AMP-activated protein kinase (AMPK) phosphorylation. In conclusion, kazinol B isolated from BK improved insulin sensitivity by enhancing glucose uptake via the insulin-Akt signaling pathway and AMPK activation. These results suggest that kazinol B might be a therapeutic candidate for diabetes mellitus.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Broussonetia/química , Flavonoides/farmacologia , Resistência à Insulina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Adipócitos/efeitos dos fármacos , Adiponectina/metabolismo , Animais , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Camundongos , PPAR gama/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos
15.
Exp Mol Med ; 47: e160, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25907110

RESUMO

The axis of nuclear factor κB (NF-κB)-inducible NO synthase (iNOS)-nitric oxide plays a key role in cytokine- and streptozotocin-mediated pancreatic ß-cell damage. In this study, we investigated the effects of kazinol C and isokazinol D isolated from Broussonetia kazinoki on the ß-cell viability and function. RINm5F cells and primary islets were used for in vitro and ex vivo cytokine toxicity experiments, respectively. For type 1 diabetes induction, mice were injected with multiple low-dose streptozotocin (MLDS). Cytokine-induced toxicity was completely abolished in both RINm5F cells and islets that were pretreated with either kazinol C or isokazinol D. Both kazinols inhibited the NF-κB signaling pathway, thereby inhibiting cytokine-mediated iNOS induction, nitric oxide production, apoptotic cell death and defects in insulin secretion. Moreover, the occurrence of diabetes in MLDS-treated mice was efficiently attenuated in kazinol-pretreated mice. Immunohistochemical analysis revealed that the numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive apoptotic cells and nuclear p65-positive cells were significantly decreased in kazinol-pretreated mice. Our results suggest that kazinol C and isokazinol D block the NF-κB pathway, thus reducing the extent of ß-cell damage. Therefore, kazinol C and isokazinol D may have therapeutic value in delaying pancreatic ß-cell damage in type 1 diabetes.


Assuntos
Broussonetia/química , Citocinas/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Hemiterpenos/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Resorcinóis/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Hemiterpenos/química , Hemiterpenos/isolamento & purificação , Células Secretoras de Insulina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Óxido Nítrico/imunologia , Ratos , Resorcinóis/química , Resorcinóis/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos
16.
Oncol Rep ; 33(1): 223-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25394483

RESUMO

Kazinol C is a 1,3-diphenylpropane, obtained from Broussonetia kazinoki, that has been employed in folk medicine as an edema suppressant. It exerts beneficial effects in oxidative stress-related diseases, such as cancer. However, the molecular mechanism involved in the anticancer effects remains to be determined. AMP-activated protein kinase (AMPK) has emerged as a possible anticancer target molecule. The present study investigated the effect of kazinol C on AMPK activation as well as subsequent HT-29 colon cancer cell viability, apoptosis and migration. Kazinol C markedly induced AMPK phosphorylation and significantly attenuated HT-29 colon cancer cell growth and viability. Compound C, as a well­known AMPK inhibitor, blocked the kazinol C-induced cell death, and stable transduction of dominant-negative (DN) AMPK in colon cancer cells also inhibited kazinol C-induced cell apoptosis. In addition, kazinol C inhibited HT-29 cell migration and anchorage-independent growth. AMPK inhibition using stable transduction with DN AMPK significantly abrogated the kazinol C-induced inhibition of cancer cell migration. Thus, AMPK is a critical and novel regulator of kazinol C-mediated cancer cell apoptosis and inhibition of migration, suggesting that AMPK is a prime cancer target.


Assuntos
Adenilato Quinase/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Ativadores de Enzimas/farmacologia , Hemiterpenos/farmacologia , Resorcinóis/farmacologia , Apoptose , Broussonetia/química , Adesão Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática , Células HT29 , Humanos
17.
PLoS One ; 9(4): e94198, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714659

RESUMO

Broussonetia papyrifera leaves (BPL) as a traditional Chinese medicine are also used in livestock feed for stimulating reproduction, adipose tissue and muscle development; however, the mechanism of their action is still unknown. Through estrogen biosynthesis-guided fractionation in human ovarian granulosa-like KGN cells, five new phenolic glycosides, broussoside A-E(1-5), along with fifteen known dietary phenolic compounds, were isolated from the n-butanol extract of BPL, and their structures were elucidated on the basis of NMR spectra analysis and chemical evidence. New compounds 3, 4, 5 and the known compounds 9 and 10 were found to potently inhibit estrogen biosynthesis in KGN cells. In addition, compounds 9, 17, 18, and 20 showed strong antioxidant activity against ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) and DPPH (1, 1'-diphenyl -2-picryl-hydrazyl radical) assays. These findings suggest that BPL may improve meat quality through the regulation of estrogen biosynthesis. Furthermore, they may be useful for the discovery of potential aromatase modulators from natural products. Finally, they could be considered as a new source for natural antioxidants.


Assuntos
Antioxidantes/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Broussonetia/química , Estrogênios/metabolismo , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Antioxidantes/química , Feminino , Sequestradores de Radicais Livres , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Fenóis/química , Extratos Vegetais/química
18.
Chin J Nat Med ; 11(3): 269-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23725840

RESUMO

AIM: To investigate the chemical constituents from the leaves of Broussonetia papyrifera. METHODS: The chemical constituents were isolated and purified by macroporous adsorptive resin D101, silica gel, and ODS column chromatography and preparative HPLC. Their structures were elucidated on the basis of 1D and 2D NMR analyses. In addition, their cytotoxic activity against human hepatoma carcinoma cells (HepG-2) were evaluated by the MTT method. Furthermore, RP-HPLC and colorimetric methods were used for the analysis of cosmosiin and total flavonoids. RESULTS: A new lignan, together with five known compounds were obtained, and their structures were characterized as (+)-pinoresinol-4'-O-ß-D-glucopyranosyl-4″-O-ß-D-apiofuranoside (1), cosmosiin (2), luteolin-7-O-ß-D-glucopyranoside (3), liriodendrin (4), 3, 5, 4'-trihydroxy-bibenzyl-3-O-ß-D-glucoside (5), and apigenin-6-C-ß-D-glucopyranside (6). Furthermore, RP-HPLC and colorimetric methods were established for the analysis of cosmosiin and total flavonoids. CONCLUSION: Compound 1 was a new lignan, and compounds 5 and 6 were isolated for the first time from the title plant. Compounds 1, 4 and 6 showed definite activities against HepG-2, while the other compounds didn't show inhibitory effects. The optimal harvest time of B. papyrifera (L.) Vent. is September.


Assuntos
Broussonetia/química , Citotoxinas/toxicidade , Extratos Vegetais/toxicidade , Folhas de Planta/química , Proliferação de Células/efeitos dos fármacos , Citotoxinas/química , Citotoxinas/isolamento & purificação , Células Hep G2 , Humanos , Lignanas/química , Lignanas/toxicidade , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
19.
Anticancer Res ; 33(5): 1873-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23645733

RESUMO

Accumulating experimental and clinical evidence has indicated that tumor-initiating or cancer stem-like cells are a sub-population of tumor cells capable of initiating and driving tumor growth, and cancer stem-like cells are resistant to most current cancer therapies, including chemo- and radiation therapy. More effective targeted-therapeutic approaches are urgently needed to eliminate cancer stem-like cells. Here, we report that broussoflavonol B, a chemical purified from the bark of the Paper Mulberry tree (broussonetia papyrifera), exhibited potent growth inhibitory activity towards estrogen receptor (ER)-negative breast cancer SK-BR-3 cells at sub-micromolar concentrations. Broussoflavonol B more potently inhibited growth and induced differentiation of stem-like SK-BR-3 cells-compared to the anti-estrogen tamoxifen. In addition, broussoflavonol B treatment also reduced the steady, state levels of the Human epidermal growth factor receptor-2 (HER2) and ER-α36, a variant of ER-α. Our results, thus, indicate that broussoflavonol B is a potent growth inhibitor of ER-negative breast cancer stem-like cells and provide a rationale for pre-clinical and clinical evaluation of broussoflavonol B for breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Broussonetia/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Flavonóis/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Estrutura Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células Tumorais Cultivadas
20.
PLoS One ; 7(2): e32021, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22389678

RESUMO

Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs) was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC-MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products.


Assuntos
Antioxidantes/química , Broussonetia/química , Frutas/química , Carboidratos/química , Ácidos Graxos/química , Sequestradores de Radicais Livres/química , Oxirredução , Fenóis/química , Proteínas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA