Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629612

RESUMO

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Assuntos
Miosinas , Células Vegetais , Miosinas/metabolismo , Células Vegetais/metabolismo , Bryopsida/metabolismo , Bryopsida/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/crescimento & desenvolvimento , Desenvolvimento Vegetal/fisiologia
2.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571393

RESUMO

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Assuntos
Bryopsida , Etilenos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/efeitos dos fármacos , Mutação/genética
3.
New Phytol ; 229(4): 1924-1936, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098085

RESUMO

The fundamental process of polarised exocytosis requires the interconnected activity of molecular motors trafficking vesicular cargo within a dynamic cytoskeletal network. In plants, few mechanistic details are known about how molecular motors, such as myosin XI, associate with their secretory cargo to support the ubiquitous processes of polarised growth and cell division. Live-cell imaging coupled with targeted gene knockouts and a high-throughput RNAi assay enabled the first characterisation of the loss of Rab-E function. Yeast two-hybrid and subsequent in silico structural prediction uncovered a specific interaction between Rab-E and myosin XI that is conserved between P. patens and A. thaliana. Rab-E co-localises with myosin XI at sites of active exocytosis, and at the growing tip both proteins are spatiotemporally coupled. Rab-E is required for normal plant growth in P. patens and the rab-E and myosin XI phenotypes are rescued by A. thaliana's Rab-E1c and myosin XI-K/E, respectively. Both PpMyoXI and AtMyoXI-K interact with PpRabE14, and the interaction is specifically mediated by PpMyoXI residue V1422. This interaction is required for polarised growth. Our results suggest that the interaction of Rab-E and myosin XI is a conserved feature of polarised growth in plants.


Assuntos
Bryopsida/crescimento & desenvolvimento , Exocitose , Miosinas , Proteínas de Plantas , Divisão Celular , Proliferação de Células , Técnicas do Sistema de Duplo-Híbrido
4.
Mol Genet Genomics ; 295(2): 373-389, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31781862

RESUMO

eIF4A is a RNA-stimulated ATPase and helicase. Besides its key role in regulating cap-dependent translation initiation in eukaryotes, it also performs specific functions in regulating cell cycle progression, plant growth and abiotic stress tolerance. Flowering plants encode three eIF4A paralogues, eIF4A1, eIF4A2 and eIF4A3 that share conserved sequence motifs but differ in functions. To date, however, no information is available on eIF4A in basal land plants. In this study we report that genome of the moss Physcomitrella patens encodes multiple eIF4A genes. The encoded proteins possess the highly conserved motifs characteristic of the DEAD box helicases. Spatial expression analysis shows these genes to be ubiquitously expressed in all tissue types with Pp3c6_1080V3.1 showing high expression in filamentous protonemata. Targeted deletion of conserved core motifs in Pp3c6_1080V3.1 slowed protonemata growth and resulted in dwarfing of leafy gametophores suggesting a role for Pp3c6_1080V3.1 in regulating cell division/elongation. Rapid and strong induction of Pp3c6_1080V3.1 under salt stress and slow recovery of knockout plants upon exposure to high salt further suggest Pp3c6_1080V3.1 to be involved in stress management in P. patens. Protein-protein interaction studies that show Pp3c6_1080V3.1 to interact with the Physcomitrella heterogenous ribonucleoprotein, LIF2L1, a transcriptional regulator of stress-responsive genes in Arabidopsis. The results presented in this study provide insight into evolutionary conserved functions of eIF4A and shed light on the novel link between eIF4A activities and stress mitigation pathways/RNA metabolic processes in P. patens.


Assuntos
Bryopsida/genética , RNA Helicases DEAD-box/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Desenvolvimento Vegetal/genética , Adenosina Trifosfatases/genética , Arabidopsis/genética , Bryopsida/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Ligação Proteica , RNA/genética
5.
Elife ; 82019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30835203

RESUMO

Lagging chromosome is a hallmark of aneuploidy arising from errors in the kinetochore-spindle attachment in animal cells. However, kinetochore components and cellular phenotypes associated with kinetochore dysfunction are much less explored in plants. Here, we carried out a comprehensive characterization of conserved kinetochore components in the moss Physcomitrella patens and uncovered a distinct scenario in plant cells regarding both the localization and cellular impact of the kinetochore proteins. Most surprisingly, knock-down of several kinetochore proteins led to polyploidy, not aneuploidy, through cytokinesis failure in >90% of the cells that exhibited lagging chromosomes for several minutes or longer. The resultant cells, containing two or more nuclei, proceeded to the next cell cycle and eventually developed into polyploid plants. As lagging chromosomes have been observed in various plant species in the wild, our observation raised a possibility that they could be one of the natural pathways to polyploidy in plants.


Assuntos
Bryopsida/crescimento & desenvolvimento , Citocinese , Cinetocoros/metabolismo , Proteínas de Plantas/metabolismo , Poliploidia , Técnicas de Silenciamento de Genes , Proteínas de Plantas/genética
6.
Genes (Basel) ; 10(2)2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769913

RESUMO

Drought and salinity are major factors limiting crop productivity worldwide. DREB (dehydration-responsive element-binding) transcription factors play important roles in plant stress response and have been identified in a wide variety of plants. Studies on DREB are focused on the A-1 (DREB1) and A-2 (DREB2) groups. Studies on A-5 group DREBs, which represent a large proportion of the DREB subfamily, is limited. In this study, we characterized and analyzed the stress tolerance function of ScDREB10, an A-5c type DREB gene from the desert moss Syntrichia caninervis. Transactivation assay in yeast showed that ScDREB10 had transactivation activity. Transient expression assay revealed that ScDREB10 was distributed both in the nucleus and cytosol of tobacco leaf epidermal cells. Overexpression of ScDREB10 significantly increased the germination percentage of Arabidopsis seeds under osmotic and salt stresses, and improved the osmotic and salt stress tolerances of Arabidopsis at the seedling stage and is associated with the expression of downstream stress-related genes and improved reactive oxygen species (ROS) scavenging ability. Our study provides insight into the molecular mechanism of stress tolerance of A-5 type DREB proteins, as well as providing a promising candidate gene for crop salt and drought stress breeding.


Assuntos
Arabidopsis/genética , Bryopsida/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Arabidopsis/crescimento & desenvolvimento , Bryopsida/genética , Secas , Germinação/genética , Pressão Osmótica , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Salinidade , Tolerância ao Sal/genética , Plântula/genética , Nicotiana/genética , Fatores de Transcrição/genética
7.
J Cell Biol ; 217(10): 3531-3544, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30061106

RESUMO

Coordination between actin and microtubules is important for numerous cellular processes in diverse eukaryotes. In plants, tip-growing cells require actin for cell expansion and microtubules for orientation of cell expansion, but how the two cytoskeletons are linked is an open question. In tip-growing cells of the moss Physcomitrella patens, we show that an actin cluster near the cell apex dictates the direction of rapid cell expansion. Formation of this structure depends on the convergence of microtubules near the cell tip. We discovered that microtubule convergence requires class VIII myosin function, and actin is necessary for myosin VIII-mediated focusing of microtubules. The loss of myosin VIII function affects both networks, indicating functional connections among the three cytoskeletal components. Our data suggest that microtubules direct localization of formins, actin nucleation factors, that generate actin filaments further focusing microtubules, thereby establishing a positive feedback loop ensuring that actin polymerization and cell expansion occur at a defined site resulting in persistent polarized growth.


Assuntos
Actinas/metabolismo , Bryopsida/crescimento & desenvolvimento , Microtúbulos/metabolismo , Miosinas/metabolismo , Proteínas de Plantas/metabolismo , Actinas/genética , Bryopsida/genética , Microtúbulos/genética , Miosinas/genética , Proteínas de Plantas/genética
8.
Protoplasma ; 254(3): 1307-1315, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27645140

RESUMO

Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.


Assuntos
Benzofuranos/farmacologia , Bryopsida/crescimento & desenvolvimento , Divisão Celular/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hidroxibenzoatos/farmacologia , Líquens/química , Salicilatos/farmacologia , Metabolismo Secundário/fisiologia , Alelopatia , Bryopsida/metabolismo , Tamanho Celular/efeitos dos fármacos , Células Germinativas Vegetais/efeitos dos fármacos , Extratos Vegetais/farmacologia
9.
Plant Physiol ; 169(4): 2572-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26463087

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase implicated in cellular proliferation and survival. In animal cells, loss of PTEN leads to increased levels of phosphatidylinositol (3,4,5)-trisphosphate, stimulation of glucose and lipid metabolism, cellular growth, and morphological changes (related to adaptation and survival). Intriguingly, in plants, phosphatidylinositol (3,4,5)-trisphosphate has not been detected, and the enzymes that synthesize it were never reported. In this study we performed a genetic, biochemical, and functional characterization of the moss Physcomitrella patens PTEN gene family. P. patens has four PTENs, which are ubiquitously expressed during the entire moss life cycle. Using a knock-in approach, we show that all four genes are expressed in growing tissues, namely caulonemal and rhizoid cells. At the subcellular level, PpPTEN-green fluorescent protein fusions localized to the cytosol and the nucleus. Analysis of single and double knockouts revealed no significant phenotypes at different developmental stages, indicative of functional redundancy. However, compared with wild-type triple and quadruple pten knockouts, caulonemal cells grew faster, switched from the juvenile protonemal stage to adult gametophores earlier, and produced more rhizoids. Furthermore, analysis of lipid content and quantitative real-time polymerase chain reaction data performed in quadruple mutants revealed altered phosphoinositide levels [increase in phosphatidylinositol (3,5)-bisphosphate and decrease in phosphatidylinositol 3-phosphate] and up-regulation of marker genes from the synthesis phase of the cell cycle (e.g. P. patens proliferating cell nuclear antigen, ribonucleotide reductase, and minichromosome maintenance) and of the retinoblastoma-related protein gene P. patens retinoblastoma-related protein1. Together, these results suggest that PpPTEN is a suppressor of cell growth and morphogenic development in plants.


Assuntos
Bryopsida/enzimologia , Regulação da Expressão Gênica de Plantas , Proteínas dos Microfilamentos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Bryopsida/citologia , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Ciclo Celular , Técnicas de Inativação de Genes , Mutação , PTEN Fosfo-Hidrolase/genética , Fenótipo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Plantas/genética , Alinhamento de Sequência , Tensinas , Regulação para Cima
10.
Biosci Biotechnol Biochem ; 79(1): 36-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25228236

RESUMO

Two genes encoding RelA/SpoT homologs, PpRSH2a and PpRSH2b, which are involved in the synthesis of bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) for the stringent response, were isolated from the moss, Physcomitrella patens. A complementary analysis of PpRSH2a and PpRSH2b in Escherichia coli showed that these genes had ppGpp biosynthetic activity. The recombinant PpRSH2a and PpRSH2b were also shown to synthesize ppGpp in vitro. Both proteins were localized to the chloroplasts of P. patens. Expression of the PpRSH genes was induced upon treatment with abscisic acid or abiotic stresses, such as dehydration and UV irradiation. Overexpression of PpRSH2a and PpRSH2b caused suppression of the growth in response to 1% (w/v) of glucose. The present study suggests the existence of a mechanism to regulate the growth of P. patens, which is governed by plant RSH in chloroplasts.


Assuntos
Bryopsida/genética , Cloroplastos/genética , Guanosina Tetrafosfato/biossíntese , Ligases/genética , Proteínas de Plantas/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Bryopsida/efeitos dos fármacos , Bryopsida/crescimento & desenvolvimento , Bryopsida/efeitos da radiação , Cloroplastos/efeitos dos fármacos , Cloroplastos/enzimologia , Cloroplastos/efeitos da radiação , Dessecação , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Ligases/metabolismo , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Raios Ultravioleta
11.
Plant Mol Biol ; 84(6): 719-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24370935

RESUMO

C-5 DNA methylation is an essential mechanism controlling gene expression and developmental programs in a variety of organisms. Though the role of DNA methylation has been intensively studied in mammals and Arabidopsis, little is known about the evolution of this mechanism. The chromomethylase (CMT) methyltransferase family is unique to plants and was found to be involved in DNA methylation in Arabidopsis, maize and tobacco. The moss Physcomitrella patens, a model for early terrestrial plants, harbors a single homolog of the CMT protein family designated as PpCMT. Our phylogenetic analysis suggested that the CMT family is unique to embryophytes and its earliest known member PpCMT belongs to the CMT3 subfamily. Thus, P. patens may serve as a model to study the ancient functions of the CMT3 family. We have generated a ΔPpcmt deletion mutant which demonstrated that PpCMT is essential for P. patens protonema and gametophore development and is involved in CHG methylation as demonstrated at four distinct genomic loci. PpCMT protein accumulation pattern correlated with proliferating cells and was sub-localized to the nucleus as predicted from its function. Taken together, our results suggested that CHG DNA methylation mediated by CMT has been employed early in land plant evolution to control developmental programs during both the vegetative and reproductive haploid phases along the plant life cycle.


Assuntos
Bryopsida/enzimologia , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos , Evolução Biológica , Bryopsida/citologia , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Dosagem de Genes , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Transgenes
12.
Plant Physiol ; 163(4): 1568-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24170203

RESUMO

We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.


Assuntos
Biocatálise , Bryopsida/enzimologia , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Pirimidinas/metabolismo , Ribonucleosídeos/metabolismo , Zea mays/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Bryopsida/efeitos dos fármacos , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Cristalografia por Raios X , Citocininas/química , Citocininas/metabolismo , Técnicas de Inativação de Genes , Hidrólise/efeitos dos fármacos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , N-Glicosil Hidrolases/genética , Nitrogênio/farmacologia , Fenótipo , Filogenia , Pirimidinas/química , Ribonucleosídeos/química , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/genética
13.
Plant Physiol ; 162(4): 1937-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23749850

RESUMO

Aluminum (Al) and proton (H⁺) tolerances are essential traits for plants to adapt to acid soil environments. In Arabidopsis (Arabidopsis thaliana), these tolerances are mediated by a zinc-finger transcription factor, SENSITIVE TO PROTON RHIZOTOXICITY1 (AtSTOP1), which regulates the transcription of multiple genes critical for tolerance to both stressors. Here, the functions of orthologous proteins (STOP1-like proteins) in other plant species were characterized by reverse genetics analyses and in planta complementation assays. RNA interference of a gene for NtSTOP1 repressed Al and H⁺ tolerances of tobacco (Nicotiana tabacum) roots. Tobacco roots released citrate in response to Al, concomitant with the up-regulated transcription of an ortholog of an Al tolerance gene encoding a citrate-transporting multidrug and toxic compound extrusion protein. The RNA interference repression of NtSTOP1 blocked this process and also repressed the transcription of another orthologous gene for Al tolerance, ALUMINUM SENSITIVE3, which encodes a prokaryote-type transporter. These results demonstrated that NtSTOP1 regulates Al tolerance in tobacco through the transcriptional regulation of these genes. The in planta complementation assays revealed that other plant species, including woody plants, a legume, and a moss (Physcomitrella patens), possess functional STOP1-like proteins that can activate several H⁺ and Al-tolerance genes in Arabidopsis. Knocking out the gene encoding the STOP1-like protein decreased the Al tolerance of P. patens. Together, our results strongly suggest that transcriptional regulation by STOP1-like proteins is evolutionarily conserved among land plants and that it confers the ability to survive in acid soils through the transcriptional regulation of Al- and H⁺-tolerance genes.


Assuntos
Proteínas de Arabidopsis/genética , Nicotiana/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Alumínio/toxicidade , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Citratos/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Teste de Complementação Genética , Hidroponia , Malatos/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Solo , Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
14.
Elife ; 2: e00269, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23543845

RESUMO

The transition from the juvenile to adult phase in plants is controlled by diverse exogenous and endogenous cues such as age, day length, light, nutrients, and temperature. Previous studies have shown that the gradual decline in microRNA156 (miR156) with age promotes the expression of adult traits. However, how age temporally regulates the abundance of miR156 is poorly understood. We show here that the expression of miR156 responds to sugar. Sugar represses miR156 expression at both the transcriptional level and post-transcriptional level through the degradation of miR156 primary transcripts. Defoliation and photosynthetic mutant assays further demonstrate that sugar from the pre-existing leaves acts as a mobile signal to repress miR156, and subsequently triggers the juvenile-to-adult phase transition in young leaf primordia. We propose that the gradual increase in sugar after seed germination serves as an endogenous cue for developmental timing in plants. DOI:http://dx.doi.org/10.7554/eLife.00269.001.


Assuntos
Arabidopsis/metabolismo , MicroRNAs/metabolismo , Folhas de Planta/metabolismo , RNA de Plantas/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Metabolismo dos Carboidratos , Sinais (Psicologia) , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , MicroRNAs/genética , Mutação , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA de Plantas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Tempo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Transcrição Gênica
15.
Plant J ; 73(3): 417-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23020796

RESUMO

Tip growth is essential for land colonization by bryophytes, plant sexual reproduction and water and nutrient uptake. Because this specialized form of polarized cell growth requires both a dynamic actin cytoskeleton and active secretion, it has been proposed that the F-actin-associated motor myosin XI is essential for this process. Nevertheless, a spatial and temporal relationship between myosin XI and F-actin during tip growth is not known in any plant cell. Here, we use the highly polarized cells of the moss Physcomitrella patens to show that myosin XI and F-actin localize, in vivo, at the same apical domain and that both signals fluctuate. Surprisingly, phase analysis shows that increase in myosin XI anticipates that of F-actin; in contrast, myosin XI levels at the tip fluctuate in identical phase with a vesicle marker. Pharmacological analysis using a low concentration of the actin polymerization inhibitor latrunculin B showed that the F-actin at the tip can be significantly diminished while myosin XI remains elevated in this region, suggesting that a mechanism exists to cluster myosin XI-associated structures at the cell's apex. In addition, this approach uncovered a mechanism for actin polymerization-dependent motility in the moss cytoplasm, where myosin XI-associated structures seem to anticipate and organize the actin polymerization machinery. From our results, we inferred a model where the interaction between myosin XI-associated vesicular structures and F-actin polymerization-driven motility function at the cell's apex to maintain polarized cell growth. We hypothesize this is a general mechanism for the participation of myosin XI and F-actin in tip growing cells.


Assuntos
Actinas/metabolismo , Bryopsida/crescimento & desenvolvimento , Miosinas/metabolismo , Bryopsida/citologia , Bryopsida/metabolismo
16.
Int J Mol Sci ; 13(8): 9673-9691, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22949824

RESUMO

PpCHS is a member of the type III polyketide synthase family and catalyses the synthesis of the flavonoid precursor naringenin chalcone from p-coumaroyl-CoA. Recent research reports the production of pyrone derivatives using either hexanoyl-CoA or butyryl-CoA as starter molecule. The Cys-His-Asn catalytic triad found in other plant chalcone synthase predicted polypeptides is conserved in PpCHS. Site directed mutagenesis involving these amino acids residing in the active-site cavity revealed that the cavity volume of the active-site plays a significant role in the selection of starter molecules as well as product formation. Substitutions of Cys 170 with Arg and Ser amino acids decreased the ability of the PpCHS to utilize hexanoyl-CoA as a starter molecule, which directly effected the production of pyrone derivatives (products). These substitutions are believed to have a restricted number of elongations of the growing polypeptide chain due to the smaller cavity volume of the mutant's active site.


Assuntos
Aciltransferases/metabolismo , Bryopsida/enzimologia , Mutação/genética , Acil Coenzima A/metabolismo , Aciltransferases/química , Aciltransferases/genética , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Domínio Catalítico , Cinética , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes , Especificidade por Substrato
17.
J Cell Biol ; 198(2): 235-50, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22801781

RESUMO

Class II formins are key regulators of actin and are essential for polarized plant cell growth. Here, we show that the class II formin N-terminal phosphatase and tensin (PTEN) domain binds phosphoinositide-3,5-bisphosphate (PI(3,5)P(2)). Replacing the PTEN domain with polypeptides of known lipid-binding specificity, we show that PI(3,5)P(2) binding was required for formin-mediated polarized growth. Via PTEN, formin also localized to the cell apex, phragmoplast, and to the cell cortex as dynamic cortical spots. We show that the cortical localization driven by binding to PI(3,5)P(2) was required for function. Silencing the kinases that produce PI(3,5)P(2) reduced cortical targeting of formin and inhibited polarized growth. We show a subset of cortical formin spots moved in actin-dependent linear trajectories. We observed that the linearly moving subpopulation of cortical formin generated new actin filaments de novo and along preexisting filaments, providing evidence for formin-mediated actin bundling in vivo. Taken together, our data directly link PI(3,5)P(2) to generation and remodeling of the cortical actin array.


Assuntos
Bryopsida/crescimento & desenvolvimento , Polaridade Celular/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Citoesqueleto/metabolismo , Dados de Sequência Molecular , PTEN Fosfo-Hidrolase/metabolismo , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína/fisiologia
18.
Rev. biol. trop ; 60(supl.2): 93-107, abr. 2012. ilus, graf, mapas, tab
Artigo em Inglês | LILACS, SaludCR | ID: lil-657837

RESUMO

Caulerpa sertularioides has been spreading in Bahía Culebra, a seasonal upwelling bay in the north Pacific of Costa Rica, since 2001. The survey was carried out from December 2003 to March 2005, in several locations around Bahía Culebra, located inside the Gulf of Papagayo. This study investigated spatial and temporal patterns, percent coverage, monthly growth rate, reproductive adaptations, and morphological variations of frond length and stolon diameter of Caulerpa sertularioides, at different environmental physical and chemical factors at the bay. The alga extended to depths of 23 m on a variety of substrates. The stolons extended quickly, with a maximum growth rate of 31.2 cm month-1. This alga grows mainly by fragmentation of its fronds and stolons; nevertheless it can also reproduce sexually by releasing gametes in the water column. These two modes of spreading promote the adaptation of this opportunistic species to environmental, chemical, and physical changes at this bay. At the same time the alga showed variations in the length of its fronds and stolons, adapting to conditions such as depth and season. Average percent cover and frond density increased during the dry season when the upwelling of nutrients and cold water occurs. In the rainy season the average percent cover and frond density decreased; however there was a peak in September, when high precipitation resulted in runoff into the bay of nutrient-rich waters. The morphological and physiological plasticity of C. sertularioides, in synergy with its predominant clonal propagation and sexual reproduction provided this species with a great adaptability to changes in temperature and nutrient concentration at Bahía Culebra.


Desde el 2001 se ha observado una propagación del alga verde Caulerpa sertularioides en Bahía Culebra, zona de afloramiento costero, en el Pacífico norte de Costa Rica. El muestreo se llevó acabo entre Diciembre 2003 a marzo 2005, en varias localidades de Bahía Culebra. En este estudio se presentan los patrones de distribución, cobertura, tasa mensual de crecimiento, adaptaciones reproductivas y variaciones morfológicas del largo de la fronda y diámetro del estolón de Caulerpa sertularioides, a diferentes factores ambientales físico-químicos en Bahía Culebra. Esta alga se extiende hasta profundidades de 23 m, en una gran variedad de sustratos. Los estolones se extienden rápidamente, con un crecimiento máximo de 31.2 cm mes-1. Esta alga se propaga principalmente por la fragmentación de sus frondas y estolones, así mismo se reproduce sexualmente liberando gametos a la columna de agua. Estos modos de reproducción promueven la adaptación de esta especie oportunista, a los cambios ambientales, tanto químicos, como físicos, de la bahía. Al mismo tiempo esta alga presenta variaciones en el largo de sus frondas y el diámetro del rizoma, adaptándose a diferentes profundidades y condiciones de la época del año. El porcentaje de cobertura y densidad de frondas aumentan durante la época seca, cuando emergen aguas frías y nutrientes por el afloramiento costero. Por otro lado, en la época lluviosa estas medidas decrecen, sin embargo se presenta un pico en setiembre, cuando la precipitación aumenta y llega una carga extra de nutrientes a la bahía por escorrentía. La plasticidad morfológica y fisiológica de C. sertularioides, en sinergia con su propagación clonal, proveen a esta alga con una gran adaptabilidad a los cambios en temperatura y nutrientes de Bahía Culebra.


Assuntos
Alga Marinha/classificação , Flora Aquática , Bryopsida/crescimento & desenvolvimento , Caulerpa/crescimento & desenvolvimento , Mudança Climática , Costa Rica
19.
Mol Plant ; 4(5): 909-21, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21873296

RESUMO

Plants have two classes of myosins. While recent work has focused on class XI myosins showing that myosin XI is responsible for organelle motility and cytoplasmic streaming, much less is known about the role of myosin VIII in plant growth and development. We have used a combination of RNAi and insertional knockouts to probe myosin VIII function in the moss Physcomitrella patens. We isolated Δmyo8ABCDE plants demonstrating that myosin VIII is not required for plant viability. However, myosin VIII mutants are smaller than wild-type plants in part due to a defect in cell size. Additionally, Δmyo8ABCDE plants produce more side branches and form gametophores much earlier than wild-type plants. In the absence of nutrient media, Δmyo8ABCDE plants exhibit significant protonemal patterning defects, including highly curved protonemal filaments, morphologically defective side branches, as well as an increase in the number of branches. Exogenous auxin partially rescues protonemal defects in Δmyo8ABCDE plants grown in the absence of nutrients. This result, together with defects in protonemal branching, smaller caulonemal cells, and accelerated development in the Δmyo8ABCDE plants, suggests that myosin VIII is involved in hormone homeostasis in P. patens.


Assuntos
Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Miosinas/metabolismo , Proteínas de Plantas/metabolismo , Bryopsida/genética , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Miosinas/genética , Proteínas de Plantas/genética
20.
Plant Cell ; 22(6): 1868-82, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20525854

RESUMO

Class XI myosins are plant specific and responsible for cytoplasmic streaming. Because of the large number of myosin XI genes in angiosperms, it has been difficult to determine their precise role, particularly with respect to tip growth. The moss Physcomitrella patens provides an ideal system to study myosin XI function. P. patens has only two myosin XI genes, and these genes encode proteins that are 94% identical to each other. To determine their role in tip growth, we used RNA interference to specifically silence each myosin XI gene using 5' untranslated region sequences. We discovered that the two myosin XI genes are functionally redundant, since silencing of either gene does not affect growth or polarity. However, simultaneous silencing of both myosin XIs results in severely stunted plants composed of small rounded cells. Although similar to the phenotype resulting from silencing of other actin-associated proteins, we show that this phenotype is not due to altered actin dynamics. Consistent with a role in tip growth, we show that a functional, full-length fusion of monomeric enhanced green fluorescent protein (mEGFP) to myosin XI accumulates at a subcortical, apical region of actively growing protonemal cells.


Assuntos
Regiões 5' não Traduzidas , Bryopsida/genética , Miosinas/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Actinas/metabolismo , Bryopsida/crescimento & desenvolvimento , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Miosinas/genética , Proteínas de Plantas/genética , Brotos de Planta/genética , Interferência de RNA , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA