Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571393

RESUMO

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Assuntos
Bryopsida , Etilenos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/efeitos dos fármacos , Mutação/genética
2.
Plant Mol Biol ; 106(1-2): 123-143, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33713297

RESUMO

Plants utilize a plethora of peptide signals to regulate their immune response. Peptide ligands and their cognate receptors involved in immune signaling share common motifs among many species of vascular plants. However, the origin and evolution of immune peptides is still poorly understood. Here, we searched for genes encoding small secreted peptides in the genomes of three bryophyte lineages-mosses, liverworts and hornworts-that occupy a critical position in the study of land plant evolution. We found that bryophytes shared common predicted small secreted peptides (SSPs) with vascular plants. The number of SSPs is higher in the genomes of mosses than in both the liverwort Marchantia polymorpha and the hornwort Anthoceros sp. The synthetic peptide elicitors-AtPEP and StPEP-specific for vascular plants, triggered ROS production in the protonema of the moss Physcomitrella patens, suggesting the possibility of recognizing peptide ligands from angiosperms by moss receptors. Mass spectrometry analysis of the moss Physcomitrella patens, both the wild type and the Δcerk mutant secretomes, revealed peptides that specifically responded to chitosan treatment, suggesting their role in immune signaling.


Assuntos
Bryopsida/imunologia , Bryopsida/metabolismo , Peptídeos/metabolismo , Imunidade Vegetal , Transdução de Sinais , Sequência de Aminoácidos , Bryopsida/efeitos dos fármacos , Bryopsida/genética , Quitosana/farmacologia , Genoma de Planta , Peptídeos/química , Imunidade Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111035

RESUMO

In the present work, we investigated the response to Cd in Leptodictyum riparium, a cosmopolitan moss (Bryophyta) that can accumulate higher amounts of metals than other plants, even angiosperms, with absence or slight apparent damage. High-performance liquid chromatography followed by electrospray ionization tandem mass spectrometry of extracts from L. riparium gametophytes, exposed to 0, 36 and 360 µM Cd for 7 days, revealed the presence of γ-glutamylcysteine (γ-EC), reduced glutathione (GSH), and traces of phytochelatins. The increase in Cd concentrations progressively augmented reactive oxygen species levels, with activation of both antioxidant (catalase and superoxide dismutase) and detoxifying (glutathione-S-transferase) enzymes. After Cd treatment, cytosolic and vacuolar localization of thiol peptides was performed by means of the fluorescent dye monochlorobimane and subsequent observation with confocal laser scanning microscopy. The cytosolic fluorescence observed with the highest Cd concentrations was also consistent with the formation of γ-EC-bimane in the cytosol, possibly catalyzed by the peptidase activity of the L. riparium phytochelatin synthase. On the whole, activation of phytochelatin synthase and glutathione-S-transferase, but minimally phytochelatin synthesis, play a role to counteract Cd toxicity in L. riparium, in this manner minimizing the cellular damage caused by the metal. This study strengthens previous investigations on the L. riparium ability to efficiently hinder metal pollution, hinting at a potential use for biomonitoring and phytoremediation purposes.


Assuntos
Aminoaciltransferases/metabolismo , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Glutationa Transferase/metabolismo , Fitoquelatinas/metabolismo , Estresse Fisiológico/fisiologia , Antioxidantes , Biodegradação Ambiental , Monitoramento Biológico , Cádmio/administração & dosagem , Parede Celular/metabolismo , Clorofila , Células Germinativas Vegetais , Glutationa , Metais , Espécies Reativas de Oxigênio/metabolismo
4.
Ecotoxicol Environ Saf ; 193: 110333, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088551

RESUMO

Antioxidative responses of axenic protonema cultures of the moss Physcomitrella patens exposed to 10 µM Cd over 40 d were studied. Cd treatment suppressed growth by ca. 75% with concomitant browning of some filaments and suppression of chlorophyll autofluorescence but had no impact on tissue water content. Despite this negative growth responses which could be related to enhanced ROS formation (as detected using fluorescence staining reagents for total ROS, hydroperoxides and lipid peroxidation), some metabolites revealed strong elevation by Cd which could contribute to attenuation of long-term Cd stress (elevation of ascorbic, malic and citric acids). Molar ratio of malate to Cd was 12.7 and citrate to Cd 2.5, thus potentially contributing to Cd chelation. Interestingly, GSH/GSSG pool and nitric oxide formation remained unaltered by Cd. Accumulation of Cd reached 82 µg/g DW with bioaccumulation factor of 73. Data indicate that Cd induces elevation of potentially protective metabolites even after prolonged exposure though they do not prevent oxidative stress sufficiently.


Assuntos
Bryopsida/efeitos dos fármacos , Cádmio/toxicidade , Antioxidantes/metabolismo , Bryopsida/metabolismo , Cádmio/análise , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
BMC Plant Biol ; 19(1): 9, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616513

RESUMO

BACKGROUND: Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS: Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS: Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.


Assuntos
Acetatos/farmacologia , Anti-Infecciosos/metabolismo , Bryopsida/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Anti-Infecciosos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Bryopsida/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Peptídeos/isolamento & purificação
6.
J Pept Sci ; 25(2): e3138, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30575224

RESUMO

Plant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones. In this study, we performed a comprehensive analysis of the whole extracellular peptidome, using moss Physcomitrella patens as a model. Hundreds of modified and unmodified endogenous peptides that originated from functional and nonfunctional protein precursors were identified. The plant proteases responsible for shaping the pool of endogenous peptides were predicted. Salicylic acid (SA) influenced peptide production in the secretome. The proteasome activity was altered upon SA treatment, thereby influencing the composition of the peptide pools. These results shed more light on the role of proteases and posttranslational modification in the "active management" of the extracellular peptide pool in response to stress conditions. It also identifies a list of potential peptide hormones in the moss secretome for further analysis.


Assuntos
Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ácido Salicílico/farmacologia , Bryopsida/enzimologia , Peptídeos/química , Ácido Salicílico/química
7.
Ecotoxicol Environ Saf ; 113: 499-505, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576736

RESUMO

The effects of iron nanoparticles on bryophytes (Physcomitrella patens) were studied following foliar exposure. We used iron nanoparticles (Fe-NP) representative of industrial emissions from the metallurgical industries. After a characterization of iron nanoparticles and the validation of nanoparticle internalization in cells, the effects (cytotoxicity, oxidative stress, lipid peroxidation of membrane) of iron nanoparticles were determined through the axenic culturing of Physcomitrella patens exposed at five different concentrations (5 ng, 50 ng, 500 ng, 5 µg and 50 µg per plant). Following exposure, the plant health, measured as ATP concentrations, was not impacted. Moreover, we studied oxidative stress in three ways: through the measure of reactive oxygen species (ROS) production, through malondialdehyde (MDA) production and also through glutathione regulation. At concentrations tested over a short period, the level of ROS, MDA and glutathione were not significantly disturbed.


Assuntos
Bryopsida/efeitos dos fármacos , Ferro/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Briófitas/metabolismo , Bryopsida/metabolismo , Células Germinativas Vegetais/efeitos dos fármacos , Glutationa/metabolismo , Ferro/química , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Nanopartículas/química , Folhas de Planta/efeitos dos fármacos , Plantas/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Biosci Biotechnol Biochem ; 79(1): 36-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25228236

RESUMO

Two genes encoding RelA/SpoT homologs, PpRSH2a and PpRSH2b, which are involved in the synthesis of bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) for the stringent response, were isolated from the moss, Physcomitrella patens. A complementary analysis of PpRSH2a and PpRSH2b in Escherichia coli showed that these genes had ppGpp biosynthetic activity. The recombinant PpRSH2a and PpRSH2b were also shown to synthesize ppGpp in vitro. Both proteins were localized to the chloroplasts of P. patens. Expression of the PpRSH genes was induced upon treatment with abscisic acid or abiotic stresses, such as dehydration and UV irradiation. Overexpression of PpRSH2a and PpRSH2b caused suppression of the growth in response to 1% (w/v) of glucose. The present study suggests the existence of a mechanism to regulate the growth of P. patens, which is governed by plant RSH in chloroplasts.


Assuntos
Bryopsida/genética , Cloroplastos/genética , Guanosina Tetrafosfato/biossíntese , Ligases/genética , Proteínas de Plantas/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Bryopsida/efeitos dos fármacos , Bryopsida/crescimento & desenvolvimento , Bryopsida/efeitos da radiação , Cloroplastos/efeitos dos fármacos , Cloroplastos/enzimologia , Cloroplastos/efeitos da radiação , Dessecação , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Ligases/metabolismo , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Raios Ultravioleta
9.
PLoS One ; 8(9): e77356, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086772

RESUMO

Inducible transgene expression provides a useful tool to analyze gene function. The moss Physcomitrellapatens is a model basal land plant with well-developed research tools, including a high efficiency of gene targeting and substantial genomics resources. However, current systems for controlled transgene expression remain limited. Here we report the development of an estrogen receptor mediated inducible gene expression system, based on the system used in flowering plants. After identifying the appropriate promoters to drive the chimeric transducer, we succeeded in inducing transcription over 1,000-fold after 24 h incubation with ß-estradiol. The P. patens system was also effective for high-level long-term induction of gene expression; transcript levels of the activated gene were maintained for at least seven days on medium containing ß-estradiol. We also established two potentially neutral targeting sites and a set of vectors for reproducible expression of two transgenes. This ß-estradiol-dependent system will be useful to test genes individually or in combination, allowing stable, inducible transgenic expression in P. patens.


Assuntos
Bryopsida/efeitos dos fármacos , Bryopsida/genética , Estradiol/farmacologia , Engenharia Genética/métodos , Ativação Transcricional/efeitos dos fármacos , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Loci Gênicos/efeitos dos fármacos , Loci Gênicos/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Fatores de Tempo , Transgenes/genética
10.
Plant Physiol ; 163(4): 1568-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24170203

RESUMO

We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.


Assuntos
Biocatálise , Bryopsida/enzimologia , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Pirimidinas/metabolismo , Ribonucleosídeos/metabolismo , Zea mays/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Bryopsida/efeitos dos fármacos , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Cristalografia por Raios X , Citocininas/química , Citocininas/metabolismo , Técnicas de Inativação de Genes , Hidrólise/efeitos dos fármacos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , N-Glicosil Hidrolases/genética , Nitrogênio/farmacologia , Fenótipo , Filogenia , Pirimidinas/química , Ribonucleosídeos/química , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/genética
11.
Plant Cell Physiol ; 53(10): 1815-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22952250

RESUMO

Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light.


Assuntos
Aclimatação , Bryopsida/fisiologia , Bryopsida/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Secas , Luz , Pressão Osmótica , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Sorbitol/farmacologia , Proteínas das Membranas dos Tilacoides/metabolismo , Tilacoides/metabolismo , Xantofilas/metabolismo , Zeaxantinas
12.
Plant Signal Behav ; 7(8): 979-82, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22836495

RESUMO

The plasma membrane H (+) -ATPase provides the driving force for solute transport via an electrochemical gradient of H (+) across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H (+) -ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H (+) -ATPase (pT H (+) -ATPase) and non-pT H (+) -ATPase as in the green algae, and that pT H (+) -ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H (+) -ATPase genes, designated PpHA (Physcomitrella patens H (+) -ATPase). Six isoforms are the pT H (+) -ATPase; a remaining isoform is non-pT H (+) -ATPase. An apparent 95-kD protein was recognized by anti-H (+) -ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H (+) -ATPase. Furthermore, we could not detect the pT H (+) -ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H (+) -ATPase most likely appeared for the first time in bryophyte.


Assuntos
Bryopsida/enzimologia , Bryopsida/genética , Membrana Celular/enzimologia , Evolução Molecular , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Treonina/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Bryopsida/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Chara/efeitos dos fármacos , Chara/enzimologia , Glicosídeos/farmacologia , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Filogenia , ATPases Translocadoras de Prótons/metabolismo
13.
Ying Yong Sheng Tai Xue Bao ; 21(10): 2671-6, 2010 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-21328959

RESUMO

A hydroponic experiment was conducted to study the leaf cell damage and the changes in photosynthetic pigment contents of three moss species under Cd stress, aimed to reveal the Cd sensibility and tolerance of the species. Even though the Cd stress was relatively low (1 mg Cd x L(-1)), the leaf cells of Dolichomitriopsis diversiformis and Plagiomnium acutum were damaged. With the increasing level of Cd stress, the leaf cell damage of the three moss species aggravated significantly, and the resulted damage under high level (100 mg x L(-1)) Cd stress was in the order Brachythecium procumbens > P. acutum > D. diversiformis. Relatively low (1 mg x L(-1)) Cd stress had no significant effects on the total chlorophyll content of the three species. However, with the increase of Cd stress (> or = 10 mg x L(-1)), the total chlorophyll content decreased significantly, with the order of B. procumbens > P. acutum > D. diversiformis. The Cd stress at 1 and 10 mg x L(-1) had no significant effects on the chlorophyll a/b, but the Cd stress at 100 mg x L(-1) led to a significant decrease of chlorophyll a/b in P. acutum and B. procumbens. The maximal decline of carotenoid content in B. procumbens was observed at 1 mg x L(-1) of Cd. The three moss species could significantly enrich Cd, and the Cd enrichment was D. diversiformis > P. acutum > B. procumbens. The leaf cell damage rate and the changes of chlorophyll and carotenoid contents could be used to indicate the differences in the sensitivity of D. diversiformis, P. acutum, and B. procumbens to Cd stress. D. diversiformis had the strongest tolerance to Cd stress, while P. acutum and B. procumbens had weaker tolerance. The tolerance of the three moss species to Cd stress was positively correlated to the capability of their Cd enrichment.


Assuntos
Bryopsida/efeitos dos fármacos , Cádmio/toxicidade , Fotossíntese/fisiologia , Pigmentos Biológicos/metabolismo , Folhas de Planta/citologia , Bryopsida/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estresse Fisiológico
14.
PLoS One ; 4(5): e5744, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19478943

RESUMO

BACKGROUND: Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments. METHODOLOGY/PRINCIPAL FINDINGS: In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore. CONCLUSIONS/SIGNIFICANCE: Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells.


Assuntos
Actinas/metabolismo , Polaridade Celular , Proteínas de Fluorescência Verde/metabolismo , Células Vegetais , Desenvolvimento Vegetal , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bryopsida/citologia , Bryopsida/efeitos dos fármacos , Bryopsida/crescimento & desenvolvimento , Polaridade Celular/efeitos dos fármacos , Células Germinativas/citologia , Células Germinativas/efeitos dos fármacos , Lilium/citologia , Lilium/efeitos dos fármacos , Lilium/crescimento & desenvolvimento , Microscopia Confocal , Faloidina/metabolismo , Plantas/efeitos dos fármacos , Tubo Polínico/citologia , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/crescimento & desenvolvimento , Coloração e Rotulagem , Tiazolidinas/farmacologia , Fixação de Tecidos , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento
15.
Plant Mol Biol ; 65(5): 667-76, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17786562

RESUMO

Sulfate assimilation provides reduced sulfur for the synthesis of the amino acids cysteine and methionine and for a range of other metabolites. The key step in control of plant sulfate assimilation is the reduction of adenosine 5'-phosphosulfate to sulfite. The enzyme catalyzing this reaction, adenosine 5'phosphosulfate reductase (APR), is found as an iron sulfur protein in plants, algae, and many bacteria. In the moss Physcomitrella patens, however, a novel isoform of the enzyme, APR-B, has recently been discovered lacking the co-factor. To assess the function of the novel APR-B we used homologous recombination to disrupt the corresponding gene in P. patens. The knock-out plants were able to grow on sulfate as a sole sulfur source and the content of low molecular weight thiols was not different from wild type plants or plants where APR was disrupted. However, when treated with low concentrations of cadmium the APR-B knockout plants were more sensitive than both wild type and APR knockouts. In wild type P. patens, the two APR isoforms were not affected by treatments that strongly regulate this enzyme in flowering plants. The data thus suggest that in P. patens APS reduction is not the major control step of sulfate assimilation.


Assuntos
Bryopsida/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Proteínas de Plantas/fisiologia , Sulfatos/metabolismo , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Cádmio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Proteínas de Plantas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , RNA Mensageiro/metabolismo
16.
Plant Cell Environ ; 29(9): 1801-11, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16913869

RESUMO

Cd(2+) causes disturbance of metabolic pathways through severe damage on several levels. Here we present a comprehensive study of Cd(2+)-mediated effects on transcript, enzyme and metabolite levels in a plant without phytochelatin (PC). The moss Physcomitrella patens (Hedw.) B.S.G. was stressed with up to 10 microm Cd(2+) to investigate the regulation of gene transcription and activities of enzymes involved in the assimilatory sulphate reduction pathway and in glutathione biosynthesis. Real-time PCR, specific enzyme assays as well as thiol peptide profiling techniques were applied. Upon supplementation of 10 microm Cd(2+), the moss showed a more than fourfold increase in expression of genes encoding ATP sulphurylase (ATPS), adenosylphosphosulphate reductase, phosphoradenosylphosphorsulphate reductase, sulphite reductase (SiR) and gamma-glutamyl cysteine synthetase (gamma-ECS). Likewise, elevated enzyme activities of gamma-ECS and glutathione synthetase were observed. Contrarily, activity of O-acetylserine (thiol) lyase (OAS-TL), responsible for biosynthesis of cysteine, was diminished. At the metabolite level, nearly doubling of intracellular cysteine and glutathione content was noted, while the moss did not produce any detectable amounts of PCs. These results suggest a Cd(2+)-induced activation of the assimilatory sulphate reduction pathway as well as of glutathione biosynthesis on different levels of regulation.


Assuntos
Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Cádmio/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sulfatos/metabolismo , Bryopsida/enzimologia , Bryopsida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcrição Gênica/efeitos dos fármacos
17.
Plant J ; 44(6): 917-27, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16359385

RESUMO

While the import of nuclear-encoded chloroplast proteins is relatively well studied, the targeting of proteins to the outer membrane of the chloroplast envelope is not. The insertion of most outer membrane proteins (OMP) is generally considered to occur without the utilization of energy or proteinaceous components. Recently, however, proteins have been shown to be involved in the integration of outer envelope protein 14 (OEP14), whose outer membrane insertion was previously thought to be spontaneous. Here we investigate the insertion of two proteins from Physcomitrella patens, PpOEP64-1 and PpOEP64-2 (formerly known as PpToc64-1 and PpToc64-2), into the outer membrane of chloroplasts. The association of PpOEP64-1 with chloroplasts was not affected by chloroplast pre-treatments. Its insertion into the membrane was affected, however, demonstrating the importance of measuring insertion specifically in these types of assays. We found that the insertion of PpOEP64-1, PpOEP64-2 and two other OMPs, OEP14 and digalactosyldiacylglycerol synthase 1 (DGD1), was reduced by either nucleotide depletion or proteolysis of the chloroplasts. Integration was also inhibited in the presence of an excess of an imported precursor protein. In addition, OEP14 competed with the insertion of the OEP64s and DGD1. These data demonstrate that the targeting of several OMPs involves proteins present in chloroplasts and requires nucleotides. Together with previous reports, our data suggest that OMPs in general do not insert spontaneously.


Assuntos
Bryopsida/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Apirase/farmacologia , Bryopsida/citologia , Bryopsida/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Metabolismo Energético , Membranas Intracelulares/química , Membranas Intracelulares/efeitos dos fármacos , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termolisina/farmacologia , Tripsina/farmacologia
18.
Plant Cell ; 11(8): 1457-72, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10449580

RESUMO

The 26S proteasome, a multisubunit complex, is the primary protease of the ubiquitin-mediated proteolytic system in eukaryotes. We have recently characterized MCB1 (RPN10), a subunit of the 26S complex that has affinity for multiubiquitin chains in vitro and as a result may function as a receptor for ubiquitinated substrates. To define the role of MCB1 further, we analyzed its function in Physcomitrella patens by generating MCB1 gene disruptions using homologous recombination. PpMCB1, which is 50 to 75% similar to orthologs from other eukaryotes, is present in the 26S proteasome complex and has a similar affinity for multiubiquitin chains, using a conserved hydrophobic domain within the C-terminal half of the polypeptide. Unlike yeast Deltamcb1 strains, which grow normally, P. patens Deltamcb1 strains are viable but are under developmental arrest, generating abnormal caulonema that are unable to form buds and gametophores. Treatment with auxin and cytokinin restored bud formation and subsequent partial development of gametophores. Complementation of a Deltamcb1 strain with mutated versions of PpMCB1 revealed that the multiubiquitin chain binding site is not essential for the wild-type phenotype. These results show that MCB1 has an important function in the 26S proteasome of higher order eukaryotes in addition to its ability to bind multiubiquitin chains, and they provide further support for a role of the ubiquitin/26S proteasome proteolytic pathway in plant developmental processes triggered by hormones.


Assuntos
Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Proteínas de Transporte/metabolismo , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Bryopsida/efeitos dos fármacos , Citocininas/farmacologia , DNA Complementar/genética , Biblioteca Gênica , Teste de Complementação Genética , Ácidos Indolacéticos/farmacologia , Dados de Sequência Molecular , Mutagênese , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
19.
Proc Natl Acad Sci U S A ; 92(10): 4124-8, 1995 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-11536690

RESUMO

Mechanical signals are important influences on the development and morphology of higher plants. Using tobacco transformed with the Ca(2+)-sensitive luminescent protein aequorin, we recently reported the effects of mechanical signals of touch and wind on the luminescence and thus intracellular calcium of young seedlings. When mesophyll protoplasts are isolated from these transgenic tobacco plants and mechanically stimulated by swirling them in solution, cytoplasmic Ca2+ increases immediately and transiently up to 10 microM, and these transients are unaffected by an excess of EGTA in the medium. The size of the transient effect is related to the strength of swirling. Epidermal strips isolated from transgenic tobacco leaves and containing only viable guard cells and trichomes also respond to the strength of swirling in solution and can increase their cytoplasmic Ca2+ transiently up to 10 microM. Finally, the moss Physcomitrella patens containing recombinant aequorin exhibits transient increases in cytoplasmic Ca2+ up to 5 microM when swirled in solution. This effect is strongly inhibited by ruthenium red. Our data indicate that the effect of mechanical stimulation can be found in a number of different cell types and in a lower plant as well as tobacco and suggest that mechanoperception and the resulting increase in cytoplasmic Ca2+ may be widespread.


Assuntos
Bryopsida/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Nicotiana/metabolismo , Plantas Tóxicas , Transdução de Sinais/fisiologia , Vento , Equorina/genética , Bryopsida/citologia , Bryopsida/efeitos dos fármacos , Bryopsida/genética , Bloqueadores dos Canais de Cálcio/farmacologia , Quelantes/farmacologia , Citoplasma/metabolismo , Ácido Egtázico/farmacologia , Medições Luminescentes , Estimulação Física , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Rutênio Vermelho/farmacologia , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA