Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 15: 1383123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799460

RESUMO

Most drugs that target the complement system are designed to inhibit the complement pathway at either the proximal or terminal levels. The use of a natural complement regulator such as factor H (FH) could provide a superior treatment option by restoring the balance of an overactive complement system while preserving its normal physiological functions. Until now, the systemic treatment of complement-associated disorders with FH has been deemed unfeasible, primarily due to high production costs, risks related to FH purified from donors' blood, and the challenging expression of recombinant FH in different host systems. We recently demonstrated that a moss-based expression system can produce high yields of properly folded, fully functional, recombinant FH. However, the half-life of the initial variant (CPV-101) was relatively short. Here we show that the same polypeptide with modified glycosylation (CPV-104) achieves a pharmacokinetic profile comparable to that of native FH derived from human serum. The treatment of FH-deficient mice with CPV-104 significantly improved important efficacy parameters such as the normalization of serum C3 levels and the rapid degradation of C3 deposits in the kidney compared to treatment with CPV-101. Furthermore, CPV-104 showed comparable functionality to serum-derived FH in vitro, as well as similar performance in ex vivo assays involving samples from patients with atypical hemolytic uremic syndrome, C3 glomerulopathy and paroxysomal nocturnal hematuria. CPV-104 - the human FH analog expressed in moss - will therefore allow the treatment of complement-associated human diseases by rebalancing instead of inhibiting the complement cascade.


Assuntos
Fator H do Complemento , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/genética , Animais , Camundongos , Meia-Vida , Polissacarídeos/metabolismo , Bryopsida/metabolismo , Bryopsida/genética , Glicosilação , Proteínas Recombinantes , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino
2.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571393

RESUMO

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Assuntos
Bryopsida , Etilenos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/efeitos dos fármacos , Mutação/genética
3.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629612

RESUMO

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Assuntos
Miosinas , Células Vegetais , Miosinas/metabolismo , Células Vegetais/metabolismo , Bryopsida/metabolismo , Bryopsida/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/crescimento & desenvolvimento , Desenvolvimento Vegetal/fisiologia
4.
Methods Mol Biol ; 2758: 375-385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549025

RESUMO

Here, we report our approach to peptidomic analysis of the plant model Physcomitrium patens. Intracellular and extracellular peptides were extracted under conditions preventing proteolytic digestion by endogenous proteases. The extracts were fractionated on size exclusion columns to isolate intracellular peptides and on reversed-phase cartridges to isolate extracellular peptides, with the isolated peptides subjected to LC-MS/MS analysis. Mass spectrometry data were analyzed for the presence of peptides derived from the known proteins or microproteins encoded by small open reading frames (<100 aa, smORFs) predicted in the moss genome. Experimental details are provided for each step.


Assuntos
Bryopsida , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Proteínas/metabolismo , Peptídeo Hidrolases/metabolismo , Bryopsida/metabolismo
5.
Microb Ecol ; 87(1): 49, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427046

RESUMO

Moss-cyanobacteria symbioses were proposed to be based on nutrient exchange, with hosts providing C and S while bacteria provide N, but we still lack understanding of the underlying molecular mechanisms of their interactions. We investigated how contact between the ubiquitous moss Hylocomium splendens and its cyanobiont affects nutrient-related gene expression of both partners. We isolated a cyanobacterium from H. splendens and co-incubated it with washed H. splendens shoots. Cyanobacterium and moss were also incubated separately. After 1 week, we performed acetylene reduction assays to estimate N2 fixation and RNAseq to evaluate metatranscriptomes. Genes related to N2 fixation and the biosynthesis of several amino acids were up-regulated in the cyanobiont when hosted by the moss. However, S-uptake and the biosynthesis of the S-containing amino acids methionine and cysteine were down-regulated in the cyanobiont while the degradation of selenocysteine was up-regulated. In contrast, the number of differentially expressed genes in the moss was much lower, and almost no transcripts related to nutrient metabolism were affected. It is possible that, at least during the early stage of this symbiosis, the cyanobiont receives few if any nutrients from the host in return for N, suggesting that moss-cyanobacteria symbioses encompass relationships that are more plastic than a constant mutualist flow of nutrients.


Assuntos
Briófitas , Bryopsida , Cianobactérias , Simbiose , Fixação de Nitrogênio , Bryopsida/genética , Bryopsida/metabolismo , Bryopsida/microbiologia , Cianobactérias/metabolismo , Aminoácidos/metabolismo
6.
Plant J ; 117(5): 1466-1486, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059656

RESUMO

The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and ß-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.


Assuntos
Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Proteoma/metabolismo , Germinação , Processos Heterotróficos , Lipase/metabolismo , Plântula/metabolismo , Esporos/metabolismo , Bryopsida/metabolismo , Sementes/metabolismo
7.
Plant Physiol ; 194(1): 434-455, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37770073

RESUMO

Tandem direct repeat (TDR)-containing proteins, present across all domains of life, play crucial roles in plant development and defense mechanisms. Previously, we identified that disruption of a bryophyte-specific protein family, SHORT-LEAF (SHLF), possessing the longest reported TDRs, is the cause of the shlf mutant phenotype in Physcomitrium patens. shlf exhibits reduced apical dominance, altered auxin distribution, and 2-fold shorter leaves. However, the molecular role of SHLF was unclear due to the absence of known conserved domains. Through a series of protein domain deletion analyses, here, we demonstrate the importance of the signal peptide and the conserved TDRs and report a minimal functional protein (miniSHLF) containing the N-terminal signal peptide and first two TDRs (N-TDR1-2). We also demonstrate that SHLF behaves as a secretory protein and that the TDRs contribute to a pool of secreted peptides essential for SHLF function. Further, we identified that the mutant secretome lacks SHLF peptides, which are abundant in WT and miniSHLF secretomes. Interestingly, shlf mutants supplemented with the secretome or peptidome from WT or miniSHLF showed complete or partial phenotypic recovery. Transcriptomic and metabolomic analyses revealed that shlf displays an elevated stress response, including high ROS activity and differential accumulation of genes and metabolites involved in the phenylpropanoid pathway, which may affect auxin distribution. The TDR-specific synthetic peptide SHLFpep3 (INIINAPLQGFKIA) also rescued the mutant phenotypes, including the altered auxin distribution, in a dosage-dependent manner and restored the mutant's stress levels. Our study shows that secretory SHLF peptides derived from conserved TDRs regulate moss gametophore development.


Assuntos
Bryopsida , Peptídeos , Peptídeos/genética , Peptídeos/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Ácidos Indolacéticos/metabolismo , Sequências Repetitivas de Ácido Nucleico , Sinais Direcionadores de Proteínas/genética
8.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982830

RESUMO

Antarctic organisms are consistently suffering from multiple environmental pressures, especially the strong UV radiation caused by the loss of the ozone layer. The mosses and lichens dominate the vegetation of the Antarctic continent, which grow and propagate in these harsh environments. However, the molecular mechanisms and related regulatory networks of these Antarctic plants against UV-B radiation are largely unknown. Here, we used an integrated multi-omics approach to study the regulatory mechanism of long non-coding RNAs (lncRNAs) of an Antarctic moss (Pohlia nutans) in response to UV-B radiation. We identified a total of 5729 lncRNA sequences by transcriptome sequencing, including 1459 differentially expressed lncRNAs (DELs). Through functional annotation, we found that the target genes of DELs were significantly enriched in plant-pathogen interaction and the flavonoid synthesis pathway. In addition, a total of 451 metabolites were detected by metabonomic analysis, and 97 differentially change metabolites (DCMs) were found. Flavonoids account for 20% of the total significantly up-regulated metabolites. In addition, the comprehensive transcriptome and metabolome analyses revealed the co-expression pattern of DELs and DCMs of flavonoids. Our results provide insights into the regulatory network of lncRNA under UV-B radiation and the adaptation of Antarctic moss to the polar environments.


Assuntos
Briófitas , Bryopsida , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Raios Ultravioleta , Briófitas/genética , Briófitas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Plantas/metabolismo , Flavonoides
9.
Genes Cells ; 27(4): 293-304, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35194890

RESUMO

Pentatricopeptide repeat (PPR) proteins are involved in RNA metabolism and also play a role in posttranscriptional regulation during plant organellar gene expression. Although a hundred of PPR proteins exist in the moss Physcomitrium patens, their functions are not fully understood. Here, we report the function of P-class PPR protein PpPPR_32 in P. patens. A transient expression assay using green fluorescent protein demonstrated that the N-terminal region of PpPPR_32 functions as a chloroplast-targeting transit peptide, indicating that PpPPR_32 is localized in chloroplasts. PpPPR_32 knockout mutants grew autotrophically but with reduced protonema growth and the poor formation of photosystem I (PSI) complexes. Quantitative real-time reverse transcription-polymerase chain reaction and RNA gel blot hybridization analyses revealed a significant reduction in the transcript level of the psaC gene encoding the iron sulfur protein of PSI but no alteration to the transcript levels of other PSI genes. This suggests that PpPPR_32 is specifically involved in the expression level of the psaC gene. Our results indicate that PpPPR_32 is essential for the accumulation of psaC transcript and PSI complexes.


Assuntos
Bryopsida , Proteínas Ferro-Enxofre , Bryopsida/genética , Bryopsida/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Glycobiology ; 32(4): 356-364, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34939106

RESUMO

Plant GH19 chitinases have several loop structures, which may define their enzymatic properties. Among these loops, the longest loop, Loop-III, is most frequently conserved in GH19 enzymes. A GH19 chitinase from the moss Bryum coronatum (BcChi-A) has only one loop structure, Loop-III, which is connected to the catalytically important ß-sheet region. Here, we produced and characterized a Loop-III-deleted mutant of BcChi-A (BcChi-A-ΔIII) and found that its stability and chitinase activity were strongly reduced. The deletion of Loop-III also moderately affected the chitooligosaccharide binding ability as well as the binding mode to the substrate-binding groove. The crystal structure of an inactive mutant of BcChi-A-ΔIII was successfully solved, revealing that the remaining polypeptide chain has an almost identical fold to that of the original protein. Loop-III is not necessarily essential for the folding of the enzyme protein. However, closer examination of the crystal structure revealed that the deletion of Loop-III altered the arrangement of the catalytic triad, Glu61, Glu70 and Ser102, and the orientation of the Trp103 side chain, which is important for sugar residue binding. We concluded that Loop-III is not directly involved in the enzymatic activity but assists the enzyme function by stabilizing the conformation of the ß-sheet region and the adjacent substrate-binding platform from behind the core-functional regions.


Assuntos
Briófitas , Bryopsida , Quitinases , Briófitas/metabolismo , Bryopsida/metabolismo , Quitina/química , Quitinases/química , Conformação Proteica em Folha beta
11.
New Phytol ; 233(6): 2442-2457, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954833

RESUMO

Small signalling peptides are key molecules for cell-to-cell communications in plants. The cysteine-rich signalling peptide, rapid alkalinisation factors (RALFs) family are involved in diverse developmental and stress responses and have expanded considerably during land plant evolution, implying neofunctionalisations in the RALF family. However, the ancestral roles of RALFs when land plant first acquired them remain unknown. Here, we functionally characterised two of the three RALFs in bryophyte Physcomitrium patens using loss-of-function mutants, overexpressors, as well as fluorescent proteins tagged reporter lines. We showed that PpRALF1 and PpRALF2 have overlapping functions in promoting protonema tip growth and elongation, showing a homologous function as the Arabidopsis RALF1 in promoting root hair tip growth. Although both PpRALFs are secreted to the plasma membrane on which PpRALF1 symmetrically localised, PpRALF2 showed a polarised localisation at the growing tip. Notably, proteolytic cleavage of PpRALF1 is necessary for its function. Our data reveal a possible evolutionary origin of the RALF functions and suggest that functional divergence of RALFs is essential to drive complex morphogenesis and to facilitate other novel processes in land plants.


Assuntos
Arabidopsis , Bryopsida , Arabidopsis/genética , Arabidopsis/metabolismo , Bryopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo
12.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884882

RESUMO

Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.


Assuntos
Citocininas/metabolismo , Embriófitas/metabolismo , Histidina Quinase/metabolismo , Isopenteniladenosina/metabolismo , Bryopsida/metabolismo , Biologia Computacional , Concentração de Íons de Hidrogênio , Picea/metabolismo , Proteínas de Plantas/metabolismo , Selaginellaceae/metabolismo , Especificidade por Substrato
13.
Plant Physiol Biochem ; 167: 459-469, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418592

RESUMO

The moss Physcomitrium (Physcomitrella) patens is a bryophyte that provides genetic information about the adaptation to the life on land by early Embryophytes and is a reference organism for comparative evolutionary studies in plants. Copper is an essential micronutrient for every living organism, its transport across the plasma membrane is achieved by the copper transport protein family COPT/CTR. Two genes related to the COPT family were identified in Physcomitrella patens, PpaCOPT1 and PpaCOPT2. Homology modelling of both proteins showed the presence of three putative transmembrane domains (TMD) and the Mx3M motif, constituting a potential Cu + selectivity filter present in other members of this family. Functional characterization of PpaCOPT1 and PpaCOPT2 in the yeast mutant ctr1Δctr3Δ restored its growth on medium with non-fermentable carbon sources at micromolar Cu concentrations, providing support that these two moss proteins function as high affinity Cu + transporters. Localization of PpaCOPT1 and PpaCOPT2 in yeast cells was observed at the tonoplast and plasma membrane, respectively. The heterologous expression of PpaCOPT2 in tobacco epidermal cells co-localized with the plasma membrane marker. Finally, only PpaCOPT1 was expressed in seven-day old protonema and was influenced by extracellular copper levels. This evidence suggests different roles of PpaCOPT1 and PpaCOPT2 in copper homeostasis in Physcomitrella patens.


Assuntos
Bryopsida , Sequência de Aminoácidos , Bryopsida/genética , Bryopsida/metabolismo , Cobre/metabolismo , Proteínas de Transporte de Cobre , Homeostase
14.
Plant Mol Biol ; 106(1-2): 123-143, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33713297

RESUMO

Plants utilize a plethora of peptide signals to regulate their immune response. Peptide ligands and their cognate receptors involved in immune signaling share common motifs among many species of vascular plants. However, the origin and evolution of immune peptides is still poorly understood. Here, we searched for genes encoding small secreted peptides in the genomes of three bryophyte lineages-mosses, liverworts and hornworts-that occupy a critical position in the study of land plant evolution. We found that bryophytes shared common predicted small secreted peptides (SSPs) with vascular plants. The number of SSPs is higher in the genomes of mosses than in both the liverwort Marchantia polymorpha and the hornwort Anthoceros sp. The synthetic peptide elicitors-AtPEP and StPEP-specific for vascular plants, triggered ROS production in the protonema of the moss Physcomitrella patens, suggesting the possibility of recognizing peptide ligands from angiosperms by moss receptors. Mass spectrometry analysis of the moss Physcomitrella patens, both the wild type and the Δcerk mutant secretomes, revealed peptides that specifically responded to chitosan treatment, suggesting their role in immune signaling.


Assuntos
Bryopsida/imunologia , Bryopsida/metabolismo , Peptídeos/metabolismo , Imunidade Vegetal , Transdução de Sinais , Sequência de Aminoácidos , Bryopsida/efeitos dos fármacos , Bryopsida/genética , Quitosana/farmacologia , Genoma de Planta , Peptídeos/química , Imunidade Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Biochim Biophys Acta Proteins Proteom ; 1869(3): 140592, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359411

RESUMO

eIF4A is a DEAD box containing RNA helicase that plays crucial roles in regulating translation initiation, growth and abiotic stress tolerance in plants. It also functions as an ATP-dependent RNA binding protein to curb granule formation by limiting RNA-RNA interactions that promote RNA condensation and formation of ribonucleoprotein particles in vivo. Helicase activity of eIF4A is known to be dictated by its binding partners. Proteins interacting with eIF4A have been identified across land plants. In monocots a close link between eIF4A regulated processes and DNA methylation in epigenetic regulation of plant development is inferred from interaction between OseIF4A and the de novo methyltransferase OsDRM2 and loss-of-function studies of these genes in Oryza sativa and Brachypodium distachyon. In the moss Physcomitrella patens, eIF4A1 encoded by Pp3c6_1080V3.1 interacts with the heterogeneous nuclear ribonucleoprotein (hnRNP) PpLIF2L1, homolog of which in Arabidopsis regulates transcription of stress-responsive genes. In this study, using different protein-protein interaction methods, targeted gene knockout strategy and quantitative expression analysis we show genetic interaction between PpeIF4A1 and the putative nucleosome remodeler protein PpDDM1 and between PpDDM1 and PpLIF2L1 in vivo. Stress-induced co-expression of PpeIF4A1, PpDDM1 and PpLIF2L1, their roles in salt stress tolerance and differences in subnuclear distribution of PpLIF2L1 in ppeif4a1 cells in comparison to wild type suggest existence of a regulatory network comprising of RNA helicases, chromatin remodelling proteins and hnRNP active in stress-responsive biological processes in P. patens.


Assuntos
Adenosina Trifosfatases/metabolismo , Bryopsida/metabolismo , Montagem e Desmontagem da Cromatina , Fator de Iniciação 4A em Eucariotos/metabolismo , Fatores de Transcrição/metabolismo , Metilação de DNA , Ligação Proteica
16.
Plant J ; 103(3): 1140-1154, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32365245

RESUMO

Thiol-based redox-regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin-dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione-mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo-lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH ) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild-type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.


Assuntos
Cloroplastos/metabolismo , Glutationa Redutase/metabolismo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Bryopsida/enzimologia , Bryopsida/metabolismo , Bryopsida/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cloroplastos/enzimologia , Cloroplastos/fisiologia , Técnicas de Inativação de Genes , Glutationa/metabolismo , Glutationa Redutase/fisiologia , Oxirredução
17.
PLoS One ; 15(3): e0230237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32160254

RESUMO

Plagiothecium longisetum was described by Lindberg in 1872, based on Maximowicz materials from Japan. In the 1970s, this species was synonymized with P. nemorale. However, a polyphasic approach applied to the investigation of the P. nemorale sensu lato showed a clear separation between the specimens of former P. longisetum and the type of P. nemorale. Morphological features and molecular analyses provide evidence that those two groups are distinct, as well as allowed to describe the new species. The results are strongly supported by the statistical analyses of morphometric features and phylogenetic analyses based on concatenated nuclear and chloroplast DNA markers. The maximum likelihood (ML) and Bayesian inference (BI) analyses of ITS, rps4 and rpl16 regions place both species outside the P. nemorale group. The distinctions between individual species, reflected by the morphological features-easy to observe-and the molecular data, provide a scientific foundation for the resurrection of P. longisetum Lindb. and establishment of a new species-P. angusticellum sp. nov.


Assuntos
Bryopsida/genética , Bryopsida/metabolismo , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
18.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111035

RESUMO

In the present work, we investigated the response to Cd in Leptodictyum riparium, a cosmopolitan moss (Bryophyta) that can accumulate higher amounts of metals than other plants, even angiosperms, with absence or slight apparent damage. High-performance liquid chromatography followed by electrospray ionization tandem mass spectrometry of extracts from L. riparium gametophytes, exposed to 0, 36 and 360 µM Cd for 7 days, revealed the presence of γ-glutamylcysteine (γ-EC), reduced glutathione (GSH), and traces of phytochelatins. The increase in Cd concentrations progressively augmented reactive oxygen species levels, with activation of both antioxidant (catalase and superoxide dismutase) and detoxifying (glutathione-S-transferase) enzymes. After Cd treatment, cytosolic and vacuolar localization of thiol peptides was performed by means of the fluorescent dye monochlorobimane and subsequent observation with confocal laser scanning microscopy. The cytosolic fluorescence observed with the highest Cd concentrations was also consistent with the formation of γ-EC-bimane in the cytosol, possibly catalyzed by the peptidase activity of the L. riparium phytochelatin synthase. On the whole, activation of phytochelatin synthase and glutathione-S-transferase, but minimally phytochelatin synthesis, play a role to counteract Cd toxicity in L. riparium, in this manner minimizing the cellular damage caused by the metal. This study strengthens previous investigations on the L. riparium ability to efficiently hinder metal pollution, hinting at a potential use for biomonitoring and phytoremediation purposes.


Assuntos
Aminoaciltransferases/metabolismo , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Glutationa Transferase/metabolismo , Fitoquelatinas/metabolismo , Estresse Fisiológico/fisiologia , Antioxidantes , Biodegradação Ambiental , Monitoramento Biológico , Cádmio/administração & dosagem , Parede Celular/metabolismo , Clorofila , Células Germinativas Vegetais , Glutationa , Metais , Espécies Reativas de Oxigênio/metabolismo
19.
Ecotoxicol Environ Saf ; 193: 110333, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088551

RESUMO

Antioxidative responses of axenic protonema cultures of the moss Physcomitrella patens exposed to 10 µM Cd over 40 d were studied. Cd treatment suppressed growth by ca. 75% with concomitant browning of some filaments and suppression of chlorophyll autofluorescence but had no impact on tissue water content. Despite this negative growth responses which could be related to enhanced ROS formation (as detected using fluorescence staining reagents for total ROS, hydroperoxides and lipid peroxidation), some metabolites revealed strong elevation by Cd which could contribute to attenuation of long-term Cd stress (elevation of ascorbic, malic and citric acids). Molar ratio of malate to Cd was 12.7 and citrate to Cd 2.5, thus potentially contributing to Cd chelation. Interestingly, GSH/GSSG pool and nitric oxide formation remained unaltered by Cd. Accumulation of Cd reached 82 µg/g DW with bioaccumulation factor of 73. Data indicate that Cd induces elevation of potentially protective metabolites even after prolonged exposure though they do not prevent oxidative stress sufficiently.


Assuntos
Bryopsida/efeitos dos fármacos , Cádmio/toxicidade , Antioxidantes/metabolismo , Bryopsida/metabolismo , Cádmio/análise , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
20.
J Biol Chem ; 295(11): 3497-3505, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31996373

RESUMO

Pentatricopeptide repeat (PPR) proteins with C-terminal DYW domains are present in organisms that undergo C-to-U editing of organelle RNA transcripts. PPR domains act as specificity factors through electrostatic interactions between a pair of polar residues and the nitrogenous bases of an RNA target. DYW-deaminase domains act as the editing enzyme. Two moss (Physcomitrella patens) PPR proteins containing DYW-deaminase domains, PPR65 and PPR56, can convert Cs to Us in cognate, exogenous RNA targets co-expressed in Escherichia coli We show here that purified, recombinant PPR65 exhibits robust editase activity on synthetic RNAs containing cognate, mitochondrial PpccmFC sequences in vitro, indicating that a PPR protein with a DYW domain is solely sufficient for catalyzing C-to-U RNA editing in vitro Monomeric fractions possessed the highest conversion efficiency, and oligomeric fractions had reduced activity. Inductively coupled plasma (ICP)-MS analysis indicated a stoichiometry of two zinc ions per highly active PPR65 monomer. Editing activity was sensitive to addition of zinc acetate or the zinc chelators 1,10-o-phenanthroline and EDTA. Addition of ATP or nonhydrolyzable nucleotide analogs stimulated PPR65-catalyzed RNA-editing activity on PpccmFC substrates, indicating potential allosteric regulation of PPR65 by ATP. Unlike for bacterial cytidine deaminase, addition of two putative transition-state analogs, zebularine and tetrahydrouridine, failed to disrupt RNA-editing activity. RNA oligonucleotides with a single incorporated zebularine also did not disrupt editing in vitro, suggesting that PPR65 cannot bind modified bases due to differences in the structure of the active site compared with other zinc-dependent nucleotide deaminases.


Assuntos
Biocatálise , Bryopsida/metabolismo , Citosina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Edição de RNA/genética , Sequências Repetitivas de Aminoácidos , Uracila/metabolismo , Trifosfato de Adenosina/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Íons , Magnésio/farmacologia , Mutação/genética , Extratos Vegetais/química , Proteínas de Plantas/isolamento & purificação , Agregados Proteicos , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Tetra-Hidrouridina , Zea mays/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA