Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
Drug Des Devel Ther ; 18: 1321-1338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681206

RESUMO

Purpose: Cinobufotalin injection has obvious curative effects on liver cancer patients with less toxicity and fewer side effects than other therapeutic approaches. However, the core ingredients and mechanism underlying these anti-liver cancer effects have not been fully clarified due to its complex composition. Methods: Multidimensional network analysis was used to screen the core ingredients, key targets and pathways underlying the therapeutic effects of cinobufotalin injection on liver cancer, and in vitro and in vivo experiments were performed to confirm the findings. Results: By construction of ingredient networks and integrated analysis, eight core ingredients and ten key targets were finally identified in cinobufotalin injection, and all of the core ingredients are tightly linked with the key targets, and these key targets are highly associated with the cell cycle-related pathways, supporting that both cinobufotalin injection and its core ingredients exert anti-liver cancer roles by blocking cell cycle-related pathways. Moreover, in vitro and in vivo experiments confirmed that either cinobufotalin injection or one of its core ingredients, cinobufagin, significantly inhibited cell proliferation, colony formation, cell cycle progression and xenograft tumor growth, and the key target molecules involved in the cell cycle pathway such as CDK1, CDK4, CCNB1, CHEK1 and CCNE1, exhibit consistent changes in expression after treatment with cinobufotalin injection or cinobufagin. Interestingly, some key targets CDK1, CDK4, PLK1, CHEK1, TTK were predicted to bind with multiple of core ingredients of cinobufotalin injection, and the affinity between one of the critical ingredients cinobufagin and key target CDK1 was further confirmed by SPR assay. Conclusion: Cinobufotalin injection was confirmed to includes eight core ingredients, and they play therapeutic effects in liver cancer by blocking cell cycle-related pathways, which provides important insights for the mechanism of cinobufotalin injection antagonizing liver cancer and the development of novel small molecule anti-cancer drugs.


Assuntos
Antineoplásicos , Bufanolídeos , Proliferação de Células , Neoplasias Hepáticas , Bufanolídeos/farmacologia , Bufanolídeos/química , Bufanolídeos/administração & dosagem , Humanos , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos Endogâmicos BALB C , Ciclo Celular/efeitos dos fármacos , Camundongos Nus , Relação Dose-Resposta a Droga , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Células Tumorais Cultivadas , Relação Estrutura-Atividade , Estrutura Molecular , Injeções
2.
Phytomedicine ; 128: 155497, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640855

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE: This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90ß-STAT3-PD-L1 axis activity. METHODS: We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90ß (HSP90ß) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS: We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90ß's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90ß-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION: Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.


Assuntos
Bufanolídeos , Neoplasias Colorretais , Proteínas de Choque Térmico HSP90 , Fator de Transcrição STAT3 , Ensaios Antitumorais Modelo de Xenoenxerto , Bufanolídeos/farmacologia , Animais , Neoplasias Colorretais/tratamento farmacológico , Humanos , Camundongos , Fator de Transcrição STAT3/metabolismo , Linfócitos T/efeitos dos fármacos , Linhagem Celular Tumoral , Antígeno B7-H1 , Camundongos Nus , Camundongos Endogâmicos BALB C , Venenos de Anfíbios/farmacologia , Feminino
3.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611850

RESUMO

The traditional Chinese medicine toad venom (Venenum bufonis) has been extensively used to treat various diseases, including cancers, in China and other Southeast Asian countries. The major constituents of toad venom, e.g., bufadienolides and alkaloids, exhibit broad-spectrum pharmacological effects in cancers. Herein, two new bufadienolides (1 and 2), along with eleven known compounds (3-13) were successfully isolated from Bufo melanostictus Schneider. Their structures were elucidated by extensive spectroscopic data and X-ray diffraction analysis. Furthermore, four lactam derivatives were synthesized through the transformation of bufadienolides lactones. The inhibitory effects of these compounds against human prostate cancer cell lines PC-3 and DU145 were evaluated. The outcomes indicated a notable trend, with a substantial subset displaying nanomolar range IC50 values against PC-3 and DU145 cells, underscoring their pronounced cytotoxicity. Moreover, a noteworthy distinction surfaces, wherein lactones consistently outperformed their lactam counterparts, further validating their heightened potency for the treatment of prostate cancer. This study contributes significant preclinical evidence substantiating the therapeutic viability of bufadienolides and toad venom as intervention strategies for prostate cancer.


Assuntos
Venenos de Anfíbios , Antineoplásicos , Bufanolídeos , Neoplasias da Próstata , Humanos , Masculino , Animais , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/farmacologia , Venenos de Anfíbios/farmacologia , Bufanolídeos/farmacologia , Bufonidae , Lactamas , Lactonas
4.
Environ Toxicol ; 39(6): 3548-3562, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477013

RESUMO

Tumor cell metastasis is the key cause of death in patients with nasopharyngeal carcinoma (NPC). MiR-2110 was cloned and identified in Epstein-Barr virus (EBV)-positive NPC, but its role is unclear in NPC. In this study, we investigated the effect of miR-2110 on NPC metastasis and its related molecular basis. In addition, we also explored whether miR-2110 can be regulated by cinobufotalin (CB) and participate in the inhibition of CB on NPC metastasis. Bioinformatics, RT-PCR, and in situ hybridization were used to observe the expression of miR-2110 in NPC tissues and cells. Scratch, Boyden, and tail vein metastasis model of nude mouse were used to detect the effect of miR-2110 on NPC metastasis. Western blot, Co-IP, luciferase activity, colocalization of micro confocal and ubiquitination assays were used to identify the molecular mechanism of miR-2110 affecting NPC metastasis. Finally, miR-2110 induced by CB participates in CB-stimulated inhibition of NPC metastasis was explored. The data showed that increased miR-2110 significantly suppresses NPC cell migration, invasion, and metastasis. Suppressing miR-2110 markedly restored NPC cell migration and invasion. Mechanistically, miR-2110 directly targeted FGFR1 and reduced its protein expression. Decreased FGFR1 attenuated its recruitment of NEDD4, which downregulated NEDD4-induced phosphatase and tensin homolog (PTEN) ubiquitination and degradation and further increased PTEN protein stability, thereby inactivating PI3K/AKT-stimulated epithelial-mesenchymal transition signaling and ultimately suppressing NPC metastasis. Interestingly, CB, a potential new inhibitory drug for NPC metastasis, significantly induced miR-2110 expression by suppressing PI3K/AKT/c-Jun-mediated transcription inhibition. Suppression of miR-2110 significantly restored cell migration and invasion in CB-treated NPC cells. Finally, a clinical sample assay indicated that reduced miR-2110 was negatively correlated with NPC lymph node metastasis and positively related to NPC patient survival prognosis. In summary, miR-2110 is a metastatic suppressor involving in CB-induced suppression of NPC metastasis.


Assuntos
Bufanolídeos , Movimento Celular , Camundongos Nus , MicroRNAs , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , PTEN Fosfo-Hidrolase , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Ubiquitinação , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Ubiquitinação/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Bufanolídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Masculino , Metástase Neoplásica , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
5.
Phytomedicine ; 127: 155391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452690

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the commonest cancers worldwide. Metastasis is the most common cause of death in patients with CRC. Arenobufagin is an active component of bufadienolides, extracted from toad skin and parotid venom. Arenobufagin reportedly inhibits epithelial-to-mesenchymal transition (EMT) and metastasis in various cancers. However, the mechanism through which arenobufagin inhibits CRC metastasis remains unclear. PURPOSE: This study aimed to elucidate the molecular mechanisms by which arenobufagin inhibits CRC metastasis. METHODS: Wound-healing and transwell assays were used to assess the migration and invasion of CRC cells. The expression of nuclear factor erythroid-2-related factor 2 (Nrf2) in the CRC tissues was assessed using immunohistochemistry. The protein expression levels of c-MYC and Nrf2 were detected by immunoblotting. A mouse model of lung metastasis was used to study the effects of arenobufagin on CRC lung metastasis in vivo. RESULTS: Arenobufagin observably inhibited the migration and invasion of CRC cells by downregulating c-MYC and inactivating the Nrf2 signaling pathway. Pretreatment with the Nrf2 inhibitor brusatol markedly enhanced arenobufagin-mediated inhibition of migration and invasion, whereas pretreatment with the Nrf2 agonist tert­butylhydroquinone significantly attenuated arenobufagin-mediated inhibition of migration and invasion of CRC cells. Furthermore, Nrf2 knockdown with short hairpin RNA enhanced the arenobufagin-induced inhibition of the migration and invasion of CRC cells. Importantly, c-MYC acts as an upstream modulator of Nrf2 in CRC cells. c-MYC knockdown markedly enhanced arenobufagin-mediated inhibition of the Nrf2 signaling pathway, cell migration, and invasion. Arenobufagin inhibited CRC lung metastasis in vivo. Together, these findings provide evidence that interruption of the c-MYC/Nrf2 signaling pathway is crucial for arenobufagin-inhibited cell metastasis in CRC. CONCLUSIONS: Collectively, our findings show that arenobufagin could be used as a potential anticancer agent against CRC metastasis. The arenobufagin-targeted c-MYC/Nrf2 signaling pathway may be a novel chemotherapeutic strategy for treating CRC.


Assuntos
Bufanolídeos , Neoplasias Colorretais , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Bufanolídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transição Epitelial-Mesenquimal , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Metástase Neoplásica
6.
Phytomedicine ; 128: 155532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493722

RESUMO

BACKGROUND: The tumor microenvironment (TME) of hepatocellular carcinoma is heterogeneous enough to be prone to drug resistance and multidrug resistance during treatment, and reprogramming of cholesterol metabolism in TME mediates tumor-associated macrophages (TAMs) polarization, which has an impact on the regulation of malignant tumor progression. Arenobufagin (ARBU) was extracted and isolated from toad venom (purity ≥98 %), which is the main active ingredient of the traditional Chinese medicine Chan'su with good anti-tumor effects. PURPOSE: To investigate the regulatory effect of ARBU on lipid metabolism in tumor microenvironment, interfere with macrophage polarization, and determine its mechanism of action on liver cancer progression. METHODS: In this study, the inhibitory effect of ARBU on the proliferation of Hepa1-6 in C57 mice and the safety of administration were evaluated by establishing a transplanted tumor model of Hepa1-6 hepatocellular carcinoma mice and using 5-FU as a positive control drug. In addition, we constructed a co-culture system of Hepa1-6 cells and primary mouse macrophages to study the effects of ARBU on the polarization phenotypic transformation of macrophages and the proliferation and migration of hepatoma cells. The influence of ARBU on the metabolism of lipids in the hepatocellular carcinoma mouse model was investigated by combining it with lipidomics technology. The influence of ARBU on the PCSK9/LDL-R signaling pathway and macrophage polarization, which regulate cholesterol metabolism, was tested by using qRT-PCR, gene editing, IF, and WB. CONCLUSION: ARBU significantly inhibited the proliferation of Hepa1-6 in vivo and in vitro, regulated cholesterol metabolism, and promoted the M1-type polarization of macrophages in the tumor microenvironment. ARBU inhibits cholesterol synthesis in the TME through the PCSK9/LDL-R signaling pathway, thereby blocking macrophage M2 polarization, promoting apoptosis of the tumor cells, and inhibiting their proliferation and migration.


Assuntos
Bufanolídeos , Carcinoma Hepatocelular , Proliferação de Células , Colesterol , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9 , Microambiente Tumoral , Macrófagos Associados a Tumor , Animais , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Pró-Proteína Convertase 9/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Macrófagos Associados a Tumor/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Colesterol/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Masculino , Movimento Celular/efeitos dos fármacos , Venenos de Anfíbios/farmacologia
7.
Apoptosis ; 29(5-6): 635-648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38393643

RESUMO

Patients with metastatic colorectal cancer often have poor outcomes, primarily due to hepatic metastasis. Colorectal cancer (CRC) cells have the ability to secrete cytokines and other molecules that can remodel the tumor microenvironment, facilitating the spread of cancer to the liver. Kupffer cells (KCs), which are macrophages in the liver, can be polarized to M2 type, thereby promoting the expression of adhesion molecules that aid in tumor metastasis. Our research has shown that huachanshu (with bufalin as the main active monomer) can effectively inhibit CRC metastasis. However, the underlying mechanism still needs to be thoroughly investigated. We have observed that highly metastatic CRC cells have a greater ability to induce M2-type polarization of Kupffer cells, leading to enhanced metastasis. Interestingly, we have found that inhibiting the expression of IL-6, which is highly expressed in the serum, can reverse this phenomenon. Notably, bufalin has been shown to attenuate the M2-type polarization of Kupffer cells induced by highly metastatic Colorectal cancer (mCRC) cells and down-regulate IL-6 expression, ultimately inhibiting tumor metastasis. In this project, our aim is to study how high mCRC cells induce M2-type polarization and how bufalin, via the SRC-3/IL-6 pathway, can inhibit CRC metastasis. This research will provide a theoretical foundation for understanding the anti-CRC effect of bufalin.


Assuntos
Bufanolídeos , Neoplasias do Colo , Interleucina-6 , Células de Kupffer , Neoplasias Hepáticas , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Humanos , Animais , Interleucina-6/metabolismo , Interleucina-6/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Metástase Neoplásica
8.
Med Sci Monit ; 30: e942783, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369741

RESUMO

Resibufogenin (RBG), a significant bufadienolide compound found in the traditional Chinese medicine Chansu, has garnered increasing attention in recent years for its wide range of pharmacological effects. This compound has shown promising potential in various therapeutic areas, including oncology, cardiology, and respiratory medicine. Among its notable properties, the anticancer effects of RBG are particularly striking, positioning it as a potential candidate for innovative cancer treatments. The mechanism of action of RBG is diverse, impacting various cellular processes. Its anticancer efficacy has been observed in different types of cancer cells, where it induces apoptosis and inhibits cell proliferation. Beyond its oncological applications, RBG also demonstrates substantial anti-inflammatory and antiviral activities. These properties suggest its utility in managing chronic inflammatory disorders and viral infections, respectively. The compound's cardiotonic effects are also noteworthy, providing potential benefits in cardiovascular health, particularly in heart failure management. Additionally, RBG has shown effectiveness in blood pressure regulation and respiratory function improvement, making it a versatile agent in the treatment of hypertension and respiratory disorders. However, despite these promising aspects, systematic reviews focusing specifically on RBG are limited. This article aims to address this gap by comprehensively reviewing RBG's origin, physiological, and pharmacological effects. The review will serve as a crucial reference for clinicians and researchers interested in the therapeutic applications of RBG, highlighting its potential in various medical domains. By synthesizing current research findings, this review will facilitate a deeper understanding of RBG's role in medicine and encourage further investigation into its clinical uses.


Assuntos
Bufanolídeos , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Coração , Pressão Sanguínea
9.
Chin J Integr Med ; 30(4): 366-378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212503

RESUMO

Chinese medicine cinobufacini is an extract from the dried skin of Bufo bufo gargarizans Cantor, with active ingredients of bufadienolides and indole alkaloids. With further research and clinical applications, it is found that cinobufacini alone or in combination with other therapeutic methods can play an anti-tumor role by controlling proliferation of tumor cells, promoting apoptosis, inhibiting formation of tumor neovascularization, reversing multidrug resistance, and regulating immune response; it also has the functions of relieving cancer pain and regulating immune function. In this paper, the chemical composition, pharmacological effects, clinical applications, and adverse reactions of cinobufacini are summarized. However, the extraction of monomer components of cinobufacini, the relationship between different mechanisms, and the causes of adverse reactions need to be further studied. Also, high-quality clinical studies should be conducted.


Assuntos
Venenos de Anfíbios , Bufanolídeos , Neoplasias , Animais , Humanos , Neoplasias/tratamento farmacológico , Bufonidae , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico , Venenos de Anfíbios/química , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico
10.
Eur J Pharmacol ; 964: 176293, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38158113

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with no cure. Bufotalin (BT), an active component extracted from Venenum Bufonis, has been prescribed as a treatment for chronic inflammatory diseases. However, whether BT has antifibrotic properties has never been investigated. In this study, we report on the potential therapeutic effect and mechanism of BT on IPF. BT was shown to attenuate lung injury, inflammation, and fibrosis as well as preserve pulmonary function in bleomycin (BLM)-induced pulmonary fibrosis model. We next confirmed BT's ability to inhibit TGF-ß1-induced epithelial-mesenchymal transition (EMT) and myofibroblast activation (including differentiation, proliferation, migration, and extracellular matrix production) in vitro. Furthermore, transcriptional profile analysis indicated the Wnt signaling pathway as a potential target of BT. Mechanistically, BT effectively prevented ß-catenin from translocating into the nucleus to activate transcription of profibrotic genes. This was achieved by blunting TGF-ß1-induced increases in phosphorylated Akt Ser437 (p-Akt S437) and phosphorylated glycogen synthase kinase (GSK)-3ß Ser9 (p-GSK-3ß S9), thereby reactivating GSK-3ß. Additionally, the antifibrotic effects of BT were further validated in another in vivo model of radiation-induced pulmonary fibrosis. Collectively, these data demonstrated the potent antifibrotic actions of BT through inhibition of Akt/GSK-3ß/ß-catenin axis downstream of TGF-ß1. Thus, BT could be a potential option to be further explored in IPF treatment.


Assuntos
Bufanolídeos , Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Animais , Humanos , Masculino , Camundongos , Células A549 , beta Catenina/metabolismo , Bleomicina/farmacologia , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Transição Epitelial-Mesenquimal , Glicogênio Sintase Quinase 3 beta/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt
11.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4552-4568, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802796

RESUMO

Bufonis Venenum, an animal medicinal material, is widely used for treating cardiovascular diseases and pain induced by rheumatics or malignant tumors. In view of the high activity and high toxicity, it is of great significance to pay attention to the quality control of Bufonis Venenum to ensure the safety and effectiveness of its preparations. China's drug standards involve 102 preparations(474 batch numbers) containing Bufonis Venenum approved for sale, including 14 preparations in the Chinese Pharmacopoeia(2020 edition) and 68 preparations in the standards issued by the Ministry of Health Drug Standard of the People's Republic of China. Bufonis Venenum is mostly used in pill and powder preparations in the form of raw powder, with the main functions of clearing heat, removing toxin, relieving swelling and pain, replenishing qi, activating blood, opening orifice, and awakening brain. Except the high level of quality control for Bufonis Venenum in the preparations in the Chinese Pharmacopoeia(2020 edition), the quality control standards of Bufonis Venenum in other preparations are low or even absent. Therefore, it is urgent to conduct research on the improvement of quality standards for the preparations containing Bufonis Venenum. This study retrieved the reports focusing on the quality evaluation and quality control of the preparations containing Bufonis Venenum from CNKI, PubMed, and Web of Science. Qualitative and quantitative analysis methods for 64 preparations containing Bufonis Venenum have been reported, mainly including thin-layer chromatography, HPLC fingerprint, and multi-component content determination. The index components mainly involved bufadienolides, such as gamabufalin, arenobufagin, bufotalin, bufalin, cinobufagin, and resibufogenin. According to the literature information, this paper suggests that attention should be paid to the correlations between the analysis methods and detection indexes of medicinal materials, decoction pieces and preparations, the monitoring of indole alkaloids, and the content uniformity inspection for further improving the quality standards for the preparations containing Bufonis Venenum.


Assuntos
Bufanolídeos , Bufonidae , Animais , Humanos , Pós , Bufanolídeos/farmacologia , Controle de Qualidade , Cromatografia Líquida de Alta Pressão , Dor/tratamento farmacológico
12.
Molecules ; 28(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836626

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer and has a poor prognosis. As standardized TNBC treatment regimens cause drug resistance and tumor recurrence, the development of new TNBC treatment strategies is urgently required. Bufotalin is a bufadienolide isolated from the skin and parotid venom glands of the toad Bufo gargarizan, and has several pharmacological properties, including antiviral, anti-inflammatory, and anticancer activities. However, the anticancer effect and underlying molecular mechanisms of action of bufotalin in TNBC have not been fully studied. In the current study, we investigated the effects of bufotalin on the growth and metastasis of MDA-MB-231 and HCC1937 TNBC cells. Bufotalin potently inhibited the proliferation of both TNBC cell lines by promoting cell cycle arrest and caspase-mediated apoptosis. Furthermore, bufotalin effectively suppressed the migration and invasion of both TNBC cell lines by regulating the expression of key epithelial-mesenchymal transition (EMT) biomarkers, matrix metalloproteinases (MMPs), and integrin α6. Notably, the anticancer effect of bufotalin in TNBC cells was associated with the downregulation of the signal transducer and activator of the transcription 3 (STAT3) signaling pathway. Collectively, our results suggest that the natural compound bufotalin may exert antiproliferative and antimetastatic activities in TNBC cells by modulating the apoptotic pathway and the STAT3/EMT axis.


Assuntos
Bufanolídeos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Transição Epitelial-Mesenquimal , Recidiva Local de Neoplasia , Apoptose , Bufanolídeos/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Fator de Transcrição STAT3/metabolismo
13.
Med Sci Monit ; 29: e940889, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743616

RESUMO

Cinobufagin (CBF) is a bufadienolide, which is a major active ingredient of toad venom. In recent years, CBF has attracted increasing attention due to its highly potent and multiple pharmacological activities. To better understand the status of research on CBF, we collated recent studies on CBF to provide a valuable reference for clinical researchers and practitioners. According to reports, CBF exhibits extensive pharmacological properties, including antitumor, analgesic, cardioprotection, immunomodulatory, antifibrotic, antiviral, and antiprotozoal effects. Studies on the pharmacological activity of CBF have mainly focused on its anticancer activity. It has been demonstrated that CBF has a therapeutic effect on liver cancer, osteosarcoma, melanoma, colorectal cancer, acute promyelocytic leukemia, nasopharyngeal carcinoma, multiple myeloma, gastric cancer, and breast cancer. However, the direct molecular targets of CBF are currently unknown. In addition, there are few reports on toxicological and pharmacokinetic of CBF. Subsequent studies focusing on these aspects will help promote the development and application of CBF in clinical practice.


Assuntos
Venenos de Anfíbios , Neoplasias Ósseas , Bufanolídeos , Neoplasias Nasofaríngeas , Humanos , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico
14.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446363

RESUMO

Marinobufagenin (MBG) is a member of the bufadienolide family of compounds, which are natural cardiac glycosides found in a variety of animal species, including man, which have different physiological and biochemical functions but have a common action on the inhibition of the adenosine triphosphatase sodium-potassium pump (Na+/K+-ATPase). MBG acts as an endogenous cardiotonic steroid, and in the last decade, its role as a pathogenic factor in various human diseases has emerged. In this paper, we have collated major evidence regarding the biological characteristics and functions of MBG and its implications in human pathology. This review focused on MBG involvement in chronic kidney disease, including end-stage renal disease, cardiovascular diseases, sex and gender medicine, and its actions on the nervous and immune systems. The role of MBG in pathogenesis and the development of a wide range of pathological conditions indicate that this endogenous peptide could be used in the future as a diagnostic biomarker and/or therapeutic target, opening important avenues of scientific research.


Assuntos
Bufanolídeos , Glicosídeos Cardíacos , Insuficiência Renal Crônica , Masculino , Animais , Feminino , Humanos , Bufanolídeos/farmacologia , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/uso terapêutico , ATPase Trocadora de Sódio-Potássio/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico
15.
Drug Dev Res ; 84(5): 815-838, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154099

RESUMO

Bufadienolides, naturally found in toad venoms having steroid-like structures, reveal antiproliferative effects at low doses. However, their application as anticancer drugs is strongly prevented by their Na+ /K+ -ATPase binding activities. Although several kinds of research were dedicated to moderating their Na+ /K+ -ATPase binding activity, still deeper fundamental knowledge is required to bring these findings into medical practice. In this work, we reviewed data related to anticancer activity of bufadienolides such as bufalin, arenobufagin, bufotalin, gamabufotalin, cinobufotalin, and cinobufagin and their derivatives. Bufotoxins, derivatives of bufadienolides containing polar molecules mainly belonging to argininyl residues, are reviewed as well. The established structures of bufotoxins have been compiled into a one-page figure to review their structures. We also highlighted advances in the structure-modification of the structure of compounds in this class. Drug delivery approaches to target these compounds to tumor cells were discussed in one section. The issues related to extraction, identification, and quantification are separated into another section.


Assuntos
Venenos de Anfíbios , Antineoplásicos , Bufanolídeos , Bufanolídeos/farmacologia , Bufanolídeos/química , Bufanolídeos/metabolismo , Antineoplásicos/farmacologia , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/química , Adenosina Trifosfatases
16.
Int J Biol Macromol ; 242(Pt 2): 124819, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178894

RESUMO

Due to its poor prognosis and propensity for metastasizing, colon cancer, a frequent cancer of the gastrointestinal system, has a high morbidity and mortality rate. However, the harsh physiological conditions of the gastrointestinal tract can cause the anti-cancer medicine bufadienolides (BU) to lose some of its structure, impairing its ability to fight cancer. In this study, pH-responsive bufadienolides nanocrystals decorated by chitosan quaternary ammonium salt (HE BU NCs) were successfully constructed by a solvent evaporation method to improve the bioavailability, release characteristics and intestinal transport ability of BU. In vitro, studies have shown that HE BU NCs could improve BU internalization, significantly induce apoptosis, decrease mitochondrial membrane potential, and increase ROS levels in tumour cells. In vivo, experiments showed that HE BU NCs effectively targeted intestinal sites, increased their retention time, and exerted antitumor activity through Caspase-3 and Bax/Bcl-2 ratio pathways. In conclusion, pH-responsive bufadienolides nanocrystals decorated by chitosan quaternary ammonium salt could protect bufadienolides from the destruction of an acidic environment, achieve synergistic release in the intestinal site, improve oral bioavailability, and ultimately exert anti-colon cancer effects, which is a promising strategy for the treatment of colon cancer.


Assuntos
Compostos de Amônio , Bufanolídeos , Quitosana , Neoplasias do Colo , Nanopartículas , Humanos , Quitosana/química , Bufanolídeos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Nanopartículas/química , Concentração de Íons de Hidrogênio
17.
Drug Metab Rev ; 55(3): 195-204, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37114332

RESUMO

Intrinsic or acquired drug resistance of tumor cells is the main cause of tumor chemotherapy failure and tumor-related death. Bufalin (BF) is the main active monomer component extracted from the Traditional Chinese Medicine Toad venom (secretions of glands behind the ears and epidermis of bufo gargarizans and Bufo Melanostictus Schneider). It is a cardiotonic steroid with broad-spectrum anti-cancer effects and has been widely used against various malignant tumors in clinical practice. Pharmacological studies also found that BF has the effect of reversing drug resistance, which provides a new perspective for the application of Traditional Chinese Medicine as a chemosensitizer in cancer therapy. This article provides an extensive search and summary of published research on mitigating drug resistance to BF and reviews its potential mechanisms.


Assuntos
Bufanolídeos , Neoplasias , Humanos , Biofarmácia , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Resistência a Medicamentos
18.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110862

RESUMO

Toad venom is a traditional Chinese medicine with high medicinal value. The existing quality evaluation standards of toad venom have obvious limitations because of the lack of research on proteins. Thus, it is necessary to screen suitable quality markers and establish appropriate quality evaluation methods for toad venom proteins to guarantee their safety and efficacy in clinical applications. SDS-PAGE, HPLC, and cytotoxicity assays were used to analyze differences in protein components of toad venom from different areas. Functional proteins were screened as potential quality markers by proteomic and bioinformatic analyses. The protein components and small molecular components of toad venom were not correlated in content. Additionally, the protein component had strong cytotoxicity. Proteomics analysis showed that 13 antimicrobial proteins, four anti-inflammatory and analgesic proteins, and 20 antitumor proteins were differentially expressed extracellular proteins. A candidate list of functional proteins was coded as potential quality markers. Moreover, Lysozyme C-1, which has antimicrobial activity, and Neuropeptide B (NPB), which has anti-inflammatory and analgesic activity, were identified as potential quality markers for toad venom proteins. Quality markers can be used as the basis of quality studies of toad venom proteins and help to construct and improve safe, scientific, and comprehensive quality evaluation methods.


Assuntos
Venenos de Anfíbios , Bufanolídeos , Animais , Venenos de Anfíbios/química , Proteômica , Bufonidae , Medicina Tradicional Chinesa , Anti-Inflamatórios , Bufanolídeos/farmacologia
19.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903477

RESUMO

The renaissance of research into natural products has unequivocally and paradigmatically shifted our knowledge about the significant role of natural products in cancer chemoprevention. Bufalin is a pharmacologically active molecule isolated from the skin of the toad Bufo gargarizans or Bufo melanostictus. Bufalin has characteristically unique properties to regulate multiple molecular targets and can be used to harness multi-targeted therapeutic regimes against different cancers. There is burgeoning evidence related to functional roles of signaling cascades in carcinogenesis and metastasis. Bufalin has been reported to regulate pleiotropically a myriad of signal transduction cascades in various cancers. Importantly, bufalin mechanistically regulated JAK/STAT, Wnt/ß-Catenin, mTOR, TRAIL/TRAIL-R, EGFR, and c-MET pathways. Furthermore, bufalin-mediated modulation of non-coding RNAs in different cancers has also started to gain tremendous momentum. Similarly, bufalin-mediated targeting of tumor microenvironments and tumor macrophages is an area of exciting research and we have only started to scratch the surface of the complicated nature of molecular oncology. Cell culture studies and animal models provide proof-of-concept for the impetus role of bufalin in the inhibition of carcinogenesis and metastasis. Bufalin-related clinical studies are insufficient and interdisciplinary researchers require detailed analysis of the existing knowledge gaps.


Assuntos
Bufanolídeos , beta Catenina , Animais , beta Catenina/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Bufanolídeos/farmacologia , Carcinogênese , Apoptose , Microambiente Tumoral
20.
Int J Biol Macromol ; 229: 825-837, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36592847

RESUMO

Bufadienolides are steroids that inhibit Na+/K+-ATPase; recent evidence shows that bufalin inhibits the activity of porcine aminopeptidase N (pAPN). We evaluated the selectivity of some bufadienolides on metallo-aminopeptidases. Among the enzymes of the M1 and M17 families, pAPN and porcine aminopeptidase A (pAPA) were the only targets of some bufadienolides. ѱ-bufarenogin, telocinobufagin, marinobufagin, bufalin, cinobufagin, and bufogenin inhibited the activity of pAPN in a dose-dependent manner in the range of 10-7-10-6 M. The inhibition mechanism was classical reversible noncompetitive for telocinobufagin, bufalin and cinobufagin. Bufogenin had the lowest Ki value and a non-competitive behavior. pAPA activity was inhibited by ѱ-bufarenogin, cinobufagin, and bufogenin, with a classical competitive type of inhibition. The models of enzyme-inhibitor complexes agreed with the non-competitive type of inhibition of pAPN by telocinobufagin, bufalin, cinobufagin, and bufogenin. Since APN is a target in cancer therapy, we tested the effect of bufadienolides on the MeWo APN+ human melanoma cell line; they induced cell death, but we obtained scant evidence that inhibition of APN contributed to their effect. Thus, APN is a selective target of some bufadienolides, and we suggest that inhibition of APN activity by bufadienolides is not a major contributor to their antiproliferative properties in MeWo cells.


Assuntos
Bufanolídeos , Melanoma , Humanos , Suínos , Animais , Antígenos CD13 , Aminopeptidases , Bufanolídeos/farmacologia , Bufanolídeos/metabolismo , Inibidores Enzimáticos , Melanoma/tratamento farmacológico , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA