Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Pflugers Arch ; 476(8): 1235-1247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38856775

RESUMO

To assess the possible interactions between the dorsolateral periaqueductal gray matter (dlPAG) and the different domains of the nucleus ambiguus (nA), we have examined the pattern of double-staining c-Fos/FoxP2 protein immunoreactivity (c-Fos-ir/FoxP2-ir) and tyrosine hydroxylase (TH) throughout the rostrocaudal extent of nA in spontaneously breathing anaesthetised male Sprague-Dawley rats during dlPAG electrical stimulation. Activation of the dlPAG elicited a selective increase in c-Fos-ir with an ipsilateral predominance in the somatas of the loose (p < 0.05) and compact formation (p < 0.01) within the nA and confirmed the expression of FoxP2 bilaterally in all the domains within the nA. A second group of experiments was made to examine the importance of the dlPAG in modulating the laryngeal response evoked after electrical or chemical (glutamate) dlPAG stimulations. Both electrical and chemical stimulations evoked a significant decrease in laryngeal resistance (subglottal pressure) (p < 0.001) accompanied with an increase in respiratory rate together with a pressor and tachycardic response. The results of our study contribute to new data on the role of the mesencephalic neuronal circuits in the control mechanisms of subglottic pressure and laryngeal activity.


Assuntos
Estimulação Elétrica , Laringe , Substância Cinzenta Periaquedutal , Proteínas Proto-Oncogênicas c-fos , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Estimulação Elétrica/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Laringe/fisiologia , Laringe/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Pressão , Bulbo/metabolismo , Bulbo/fisiologia , Ácido Glutâmico/metabolismo
2.
Science ; 383(6687): eadi8081, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452069

RESUMO

Phonation critically depends on precise controls of laryngeal muscles in coordination with ongoing respiration. However, the neural mechanisms governing these processes remain unclear. We identified excitatory vocalization-specific laryngeal premotor neurons located in the retroambiguus nucleus (RAmVOC) in adult mice as being both necessary and sufficient for driving vocal cord closure and eliciting mouse ultrasonic vocalizations (USVs). The duration of RAmVOC activation can determine the lengths of both USV syllables and concurrent expiration periods, with the impact of RAmVOC activation depending on respiration phases. RAmVOC neurons receive inhibition from the preBötzinger complex, and inspiration needs override RAmVOC-mediated vocal cord closure. Ablating inhibitory synapses in RAmVOC neurons compromised this inspiration gating of laryngeal adduction, resulting in discoordination of vocalization with respiration. Our study reveals the circuits for vocal production and vocal-respiratory coordination.


Assuntos
Tronco Encefálico , Fonação , Respiração , Prega Vocal , Animais , Masculino , Camundongos , Tronco Encefálico/fisiologia , Bulbo/fisiologia , Neurônios/fisiologia , Fonação/fisiologia , Prega Vocal/inervação , Prega Vocal/fisiologia , Camundongos Endogâmicos C57BL , Feminino , Proteínas Proto-Oncogênicas c-fos/genética
3.
ACS Biomater Sci Eng ; 10(2): 838-850, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38178628

RESUMO

The development of remote surgery hinges on comprehending the mechanical properties of the tissue at the surgical site. Understanding the mechanical behavior of the medulla oblongata tissue is instrumental for precisely determining the remote surgery implementation site. Additionally, exploring this tissue's response under electric fields can inform the creation of electrical stimulation therapy regimens. This could potentially reduce the extent of medulla oblongata tissue damage from mechanical compression. Various types of pulsed electric fields were integrated into a custom-built indentation device for this study. Experimental findings suggested that applying pulsed electric fields amplified the shear modulus of the medulla oblongata tissue. In the electric field, the elasticity and viscosity of the tissue increased. The most significant influence was noted from the low-frequency pulsed electric field, while the burst pulsed electric field had a minimal impact. At the microstructural scale, the application of an electric field led to the concentration of myelin in areas distant from the surface layer in the medulla oblongata, and the orderly structure of proteoglycans became disordered. The alterations observed in the myelin and proteoglycans under an electric field were considered to be the fundamental causes of the changes in the mechanical behavior of the medulla oblongata tissue. Moreover, cell polarization and extracellular matrix cavitation were observed, with transmission electron microscopy results pointing to laminar separation within the myelin at the ultrastructure scale. This study thoroughly explored the impact of electric field application on the mechanical behavior and microstructure of the medulla oblongata tissue, delving into the underlying mechanisms. This investigation delved into the changes and mechanisms in the mechanical behavior and microstructure of medulla oblongata tissue under the influence of electric fields. Furthermore, this study could serve as a reference for the development of electrical stimulation regimens in the central nervous system. The acquired mechanical behavior data could provide valuable baseline information to aid in the evolution of remote surgery techniques involving the medulla oblongata tissue.


Assuntos
Bulbo , Proteoglicanas , Bulbo/fisiologia , Estimulação Elétrica , Proteoglicanas/farmacologia
4.
J Physiol ; 602(2): 317-332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38152023

RESUMO

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.


Assuntos
Hipertensão , MicroRNAs , Animais , Ratos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Pressão Sanguínea/fisiologia , Luciferases/metabolismo , Bulbo/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
5.
Sci Rep ; 13(1): 20046, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049443

RESUMO

Hydrogen sulfide (H2S), which is synthesized in the brain, modulates the neural network. Recently, the importance of H2S in respiratory central pattern generation has been recognized, yet the function of H2S in the medullary respiratory network remains poorly understood. Here, to evaluate the functional roles of H2S in the medullary respiratory network, the Bötzinger complex (BötC), the pre-Bötzinger complex (preBötC), and the rostral ventral respiratory group (rVRG), we observed the effects of inhibition of H2S synthesis at each region on the respiratory pattern by using an in situ arterially perfused preparation of decerebrated male rats. After microinjection of an H2S synthase inhibitor, cystathionine ß-synthase, into the BötC or preBötC, the amplitude of the inspiratory burst decreased and the respiratory frequency increased according to shorter expiration and inspiration, respectively. These alterations were abolished or attenuated in the presence of a blocker of excitatory synaptic transmission. On the other hand, after microinjection of the H2S synthase inhibitor into the rVRG, the amplitude of the inspiratory burst was attenuated, and the respiratory frequency decreased, which was the opposite effect to those obtained by blockade of inhibitory synaptic transmission at the rVRG. These results suggest that H2S synthesized in the BötC and preBötC functions to limit respiratory frequency by sustaining the respiratory phase and to maintain the power of inspiration. In contrast, H2S synthesized in the rVRG functions to promote respiratory frequency by modulating the interval of inspiration and to maintain the power of inspiration. The underlying mechanism might facilitate excitatory synaptic transmission and/or attenuate inhibitory synaptic transmission.


Assuntos
Sulfeto de Hidrogênio , Centro Respiratório , Ratos , Masculino , Animais , Centro Respiratório/fisiologia , Sulfeto de Hidrogênio/farmacologia , Bulbo/fisiologia , Transmissão Sináptica/fisiologia , Taxa Respiratória , Sulfetos/farmacologia , Inibidores Enzimáticos/farmacologia
6.
Elife ; 122023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458576

RESUMO

Rhythmic breathing is generated by neural circuits located in the brainstem. At its core is the preBötzinger Complex (preBötC), a region of the medulla, necessary for the generation of rhythmic breathing in mammals. The preBötC is comprised of various neuronal populations expressing neurokinin-1 receptors, the cognate G-protein-coupled receptor of the neuropeptide substance P (encoded by the tachykinin precursor 1 or Tac1). Neurokinin-1 receptors are highly expressed in the preBötC and destruction or deletion of neurokinin-1 receptor-expressing preBötC neurons severely impair rhythmic breathing. Although, the application of substance P to the preBötC stimulates breathing in rodents, substance P is also involved in nociception and locomotion in various brain regions, suggesting that Tac1 neurons found in the preBötC may have diverse functional roles. Here, we characterized the role of Tac1-expressing preBötC neurons in the generation of rhythmic breathing in vivo, as well as motor behaviors. Using a cre-lox recombination approach, we injected adeno-associated virus containing the excitatory channelrhodopsin-2 ChETA in the preBötC region of Tac1-cre mice. Employing a combination of histological, optogenetics, respiratory, and behavioral assays, we showed that stimulation of glutamatergic or Tac1 preBötC neurons promoted rhythmic breathing in both anesthetized and freely moving animals, but also triggered locomotion and overcame respiratory depression by opioid drugs. Overall, our study identified a population of excitatory preBötC with major roles in rhythmic breathing and behaviors.


Assuntos
Receptores da Neurocinina-1 , Substância P , Camundongos , Animais , Receptores da Neurocinina-1/genética , Neurônios/fisiologia , Bulbo/fisiologia , Respiração , Centro Respiratório/fisiologia , Mamíferos
7.
Medicina (Kaunas) ; 59(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37374250

RESUMO

Background and Objectives: An altered sympathetic function is established in primary arterial hypertension (PAH) development. Therefore, PAH could be targeted by applying an electric current to the medulla where reflex centers for blood pressure control reside. This study aims to evaluate the electric caudal ventrolateral medulla (CVLM) stimulation effect on blood pressure and animal survivability in a freely moving rat model. Materials and Methods: A total of 20 Wistar rats aged 12-16 weeks were randomly assigned to either: the experimental group (n = 10; electrode tip implanted in CVLM region) or the control group (n = 10; tip implanted 4 mm above the CVLM in the cerebellum). After a period of recovery (4 days), an experimental phase ensued, divided into an "OFF stimulation" period (5-7 days post-surgery) and an "ON stimulation" period (8-14 days post-surgery). Results: Three animals (15%, one in the control, two in the experimental group) dropped out due to postoperative complications. Arterial pressure in the experimental group rats during the "OFF stimulation" period decreased by 8.23 mm Hg (p = 0.001) and heart rate by 26.93 beats/min (p = 0.008). Conclusions: From a physiological perspective, CVLM could be an effective deep brain stimulation (DBS) target for drug-resistant hypertension: able to influence the baroreflex arc directly, having no known direct integrative or neuroendocrine function. Targeting the baroreflex regulatory center, but not its sensory or effector parts, could lead to a more predictable effect and stability of the control system. Although targeting neural centers in the medullary region is considered dangerous and prone to complications, it could open a new vista for deep brain stimulation therapy. A possible change in electrode design would be required to apply CVLM DBS in clinical trials in the future.


Assuntos
Barorreflexo , Hipertensão , Ratos , Animais , Ratos Wistar , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Bulbo/fisiologia , Hipertensão/terapia , Estimulação Elétrica
8.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656752

RESUMO

Obstructive sleep apnea (OSA) is characterized by sporadic collapse of the upper airway leading to periodic disruptions in breathing. Upper airway patency is governed by genioglossal nerve activity that originates from the hypoglossal motor nucleus. Mice with targeted deletion of the gene Hmox2, encoding the carbon monoxide (CO) producing enzyme, heme oxygenase-2 (HO-2), exhibit OSA, yet the contribution of central HO-2 dysregulation to the phenomenon is unknown. Using the rhythmic brainstem slice preparation that contains the preBötzinger complex (preBötC) and the hypoglossal nucleus, we tested the hypothesis that central HO-2 dysregulation weakens hypoglossal motoneuron output. Disrupting HO-2 activity increased the occurrence of subnetwork activity from the preBötC, which was associated with an increased irregularity of rhythmogenesis. These phenomena were also associated with the intermittent inability of the preBötC rhythm to drive output from the hypoglossal nucleus (i.e. transmission failures), and a reduction in the input-output relationship between the preBötC and the motor nucleus. HO-2 dysregulation reduced excitatory synaptic currents and intrinsic excitability in inspiratory hypoglossal neurons. Inhibiting activity of the CO-regulated H2S producing enzyme, cystathionine-γ-lyase (CSE), reduced transmission failures in HO-2 null brainstem slices, which also normalized excitatory synaptic currents and intrinsic excitability of hypoglossal motoneurons. These findings demonstrate a hitherto uncharacterized modulation of hypoglossal activity through mutual interaction of HO-2/CO and CSE/H2S, and support the potential importance of centrally derived gasotransmitter activity in regulating upper airway control.


Assuntos
Gasotransmissores , Apneia Obstrutiva do Sono , Camundongos , Animais , Neurônios Motores/fisiologia , Respiração , Bulbo/fisiologia , Nervo Hipoglosso/fisiologia
9.
Pflugers Arch ; 475(2): 233-248, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36289078

RESUMO

One side effect of cisplatin, a cytotoxic platinum anticancer drug, is peripheral neuropathy; however, its central nervous system effects remain unclear. We monitored respiratory nerve activity from the C4 ventral root in brainstem and spinal cord preparations from neonatal rats (P0-3) to investigate its central effects. Bath application of 10-100 µM cisplatin for 15-20 min dose-dependently decreased the respiratory rate and increased the amplitude of C4 inspiratory activity. These effects were not reversed after washout. In separate perfusion experiments, cisplatin application to the medulla decreased the respiratory rate, and application to the spinal cord increased the C4 burst amplitude without changing the burst rate. Application of other platinum drugs, carboplatin or oxaliplatin, induced no change of respiratory activity. A membrane potential analysis of respiratory-related neurons in the rostral medulla showed that firing frequencies of action potentials in the burst phase tended to decrease during cisplatin application. In contrast, in inspiratory spinal motor neurons, cisplatin application increased the peak firing frequency of action potentials during the inspiratory burst phase. The increased burst amplitude and decreased respiratory frequency were partially antagonized by riluzole and picrotoxin, respectively. Taken together, cisplatin inhibited respiratory rhythm via medullary inhibitory system activation and enhanced inspiratory motor nerve activity by changing the firing property of motor neurons.


Assuntos
Cisplatino , Taxa Respiratória , Ratos , Animais , Animais Recém-Nascidos , Cisplatino/farmacologia , Ratos Wistar , Platina , Bulbo/fisiologia , Medula Espinal , Neurônios Motores , Respiração
10.
J Neurosci ; 42(30): 5870-5881, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35701159

RESUMO

Following tissue injury, latent sensitization (LS) of nociceptive signaling can persist indefinitely, kept in remission by compensatory µ-opioid receptor constitutive activity (MORCA) in the dorsal horn of the spinal cord. To demonstrate LS, we conducted plantar incision in mice and then waited 3-4 weeks for hypersensitivity to resolve. At this time (remission), systemic administration of the opioid receptor antagonist/inverse agonist naltrexone reinstated mechanical and heat hypersensitivity. We first tested the hypothesis that LS extends to serotonergic neurons in the rostral ventral medulla (RVM) that convey pronociceptive input to the spinal cord. We report that in male and female mice, hypersensitivity was accompanied by increased Fos expression in serotonergic neurons of the RVM, abolished on chemogenetic inhibition of RVM 5-HT neurons, and blocked by intrathecal injection of the 5-HT3R antagonist ondansetron; the 5-HT2AR antagonist MDL-11 939 had no effect. Second, to test for MORCA, we microinjected the MOR inverse agonist d-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) and/or neutral opioid receptor antagonist 6ß-naltrexol. Intra-RVM CTAP produced mechanical hypersensitivity at both hindpaws; 6ß-naltrexol had no effect by itself, but blocked CTAP-induced hypersensitivity. This indicates that MORCA, rather than an opioid ligand-dependent mechanism, maintains LS in remission. We conclude that incision establishes LS in descending RVM 5-HT neurons that drives pronociceptive 5-HT3R signaling in the dorsal horn, and this LS is tonically opposed by MORCA in the RVM. The 5-HT3 receptor is a promising therapeutic target for the development of drugs to prevent the transition from acute to chronic postsurgical pain.SIGNIFICANCE STATEMENT Surgery leads to latent pain sensitization and a compensatory state of endogenous pain control that is maintained long after tissue healing. Here, we show that either chemogenetic inhibition of serotonergic neuron activity in the RVM or pharmacological inhibition of 5-HT3 receptor signaling at the spinal cord blocks behavioral signs of postsurgical latent sensitization. We conclude that MORCA in the RVM opposes descending serotonergic facilitation of LS and that the 5-HT3 receptor is a promising therapeutic target for the development of drugs to prevent the transition from acute to chronic postsurgical pain.


Assuntos
Hiperalgesia , Antagonistas de Entorpecentes , Dor Pós-Operatória , Receptores Opioides mu , Analgésicos Opioides , Animais , Feminino , Hiperalgesia/metabolismo , Masculino , Bulbo/fisiologia , Camundongos , Antagonistas de Entorpecentes/farmacologia , Dor Pós-Operatória/metabolismo , Receptores Opioides mu/metabolismo , Serotonina/metabolismo
11.
Brain Behav Immun ; 102: 370-386, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339628

RESUMO

Recent evidence has suggested that the carotid bodies might act as immunological sensors, detecting pro-inflammatory mediators and signalling to the central nervous system, which, in turn, orchestrates autonomic responses. Here, we confirmed that the TNF-α receptor type I is expressed in the carotid bodies of rats. The systemic administration of TNF-α increased carotid body afferent discharge and activated glutamatergic neurons in the nucleus tractus solitarius (NTS) that project to the rostral ventrolateral medulla (RVLM), where many pre-sympathetic neurons reside. The activation of these neurons was accompanied by an increase in splanchnic sympathetic nerve activity. Carotid body ablation blunted the TNF-α-induced activation of RVLM-projecting NTS neurons and the increase in splanchnic sympathetic nerve activity. Finally, plasma and spleen levels of cytokines after TNF-α administration were higher in rats subjected to either carotid body ablation or splanchnic sympathetic denervation. Collectively, our findings indicate that the carotid body detects circulating TNF-α to activate a counteracting sympathetic anti-inflammatory mechanism.


Assuntos
Corpo Carotídeo , Animais , Anti-Inflamatórios , Bulbo/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo , Núcleo Solitário/fisiologia , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa
12.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670653

RESUMO

The role of inhibitory neurons in the respiratory network is a matter of ongoing debate. Conflicting and contradicting results are manifold and the question whether inhibitory neurons are essential for the generation of the respiratory rhythm as such is controversial. Inhibitory neurons are required in pulmonary reflexes for adapting the activity of the central respiratory network to the status of the lung and it is hypothesized that glycinergic neurons mediate the inspiratory off-switch. Over the years, optogenetic tools have been developed that allow for cell-specific activation of subsets of neurons in vitro and in vivo. In this study, we aimed to identify the effect of activation of inhibitory neurons in vivo. Here, we used a conditional transgenic mouse line that expresses Channelrhodopsin 2 in inhibitory neurons. A 200 µm multimode optical fiber ferrule was implanted in adult mice using stereotaxic surgery, allowing us to stimulate inhibitory, respiratory neurons within the core excitatory network in the preBötzinger complex of the ventrolateral medulla. We show that, in anesthetized mice, activation of inhibitory neurons by blue light (470 nm) continuously or with stimulation frequencies above 10 Hz results in a significant reduction of the respiratory rate, in some cases leading to complete cessation of breathing. However, a lower stimulation frequency (4-5 Hz) could induce a significant increase in the respiratory rate. This phenomenon can be explained by the resetting of the respiratory cycle, since stimulation during inspiration shortened the associated breath and thereby increased the respiratory rate, while stimulation during the expiratory interval reduced the respiratory rate. Taken together, these results support the concept that activation of inhibitory neurons mediates phase-switching by inhibiting excitatory rhythmogenic neurons in the preBötzinger complex.


Assuntos
Inalação/fisiologia , Bulbo/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Optogenética , Anestesia , Animais , Luz , Camundongos Transgênicos , Fibras Ópticas , Taxa Respiratória
13.
J Neurophysiol ; 125(3): 699-719, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427575

RESUMO

Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.


Assuntos
Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Receptores de Neurotransmissores/fisiologia , Mecânica Respiratória/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Humanos , Bulbo/citologia , Receptores Purinérgicos/fisiologia , Respiração , Neurônios Serotoninérgicos/fisiologia
14.
Proc Natl Acad Sci U S A ; 117(47): 29803-29810, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168718

RESUMO

In the brain, compact clusters of neuron cell bodies, termed nuclei, are essential for maintaining parameters of host physiology within a narrow range optimal for health. Neurons residing in the brainstem dorsal motor nucleus (DMN) project in the vagus nerve to communicate with the lungs, liver, gastrointestinal tract, and other organs. Vagus nerve-mediated reflexes also control immune system responses to infection and injury by inhibiting the production of tumor necrosis factor (TNF) and other cytokines in the spleen, although the function of DMN neurons in regulating TNF release is not known. Here, optogenetics and functional mapping reveal cholinergic neurons in the DMN, which project to the celiac-superior mesenteric ganglia, significantly increase splenic nerve activity and inhibit TNF production. Efferent vagus nerve fibers terminating in the celiac-superior mesenteric ganglia form varicose-like structures surrounding individual nerve cell bodies innervating the spleen. Selective optogenetic activation of DMN cholinergic neurons or electrical activation of the cervical vagus nerve evokes action potentials in the splenic nerve. Pharmacological blockade and surgical transection of the vagus nerve inhibit vagus nerve-evoked splenic nerve responses. These results indicate that cholinergic neurons residing in the brainstem DMN control TNF production, revealing a role for brainstem coordination of immunity.


Assuntos
Endotoxemia/fisiopatologia , Inflamação/patologia , Bulbo/fisiologia , Baço/inervação , Fatores de Necrose Tumoral/metabolismo , Nervo Vago/fisiologia , Potenciais de Ação/imunologia , Animais , Neurônios Colinérgicos/fisiologia , Modelos Animais de Doenças , Endotoxemia/imunologia , Gânglios Simpáticos/fisiologia , Humanos , Inflamação/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Masculino , Bulbo/citologia , Camundongos , Camundongos Transgênicos , Optogenética , Ratos , Transdução de Sinais/imunologia , Baço/metabolismo , Técnicas Estereotáxicas
15.
J Physiol ; 597(13): 3407-3423, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077360

RESUMO

KEY POINTS: Spinally-projecting neurons of the rostral ventrolateral medulla (RVLM) determine sympathetic outflow to different territories of the body. Previous studies suggest the existence of RVLM neurons with distinct functional classes, such as neurons that target sympathetic nerves bound for functionally-similar tissue types (e.g. muscle vasculature). The existence of RVLM neurons with more general actions had not been critically tested. Using viral tracing, we show that a significant minority of RVLM neurons send axon collaterals to disparate spinal segments (T2 and T10 ). Furthermore, optogenetic activation of sympathetic premotor neurons projecting to lumbar spinal segments also produced activation of sympathetic nerves from rostral spinal segments that innervate functionally diverse tissues (heart and forelimb muscle). These findings suggest the existence of individual RVLM neurons for which the axons branch to drive sympathetic preganglionic neurons of more than one functional class and may be able to produce global changes in sympathetic activity. ABSTRACT: We investigate the extent of spinal axon collateralization of rat rostral ventrolateral medulla (RVLM) sympathetic premotor neurons and its functional consequences. In anatomical tracing experiments, two recombinant herpes viral vectors with retrograde tropism and expressing different fluorophores were injected into the intermediolateral column at upper thoracic and lower thoracic levels. Histological analysis revealed that ∼21% of RVLM bulbospinal neurons were retrogradely labelled by both vectors, indicating substantial axonal collateralization to disparate spinal segments. In functional experiments, another virus with retrograde tropism, a canine adenovirus expressing Cre recombinase, was injected into the left intermediolateral horn around the thoracolumbar junction, whereas a Cre-dependent viral vector encoding Channelrhodopsin2 under LoxP control was injected into the ipsilateral RVLM. In subsequent terminal experiments, blue laser light (473 nm × 20 ms pulses at 10 mW) was used to activate RVLM neurons that had been transduced by both vectors. Stimulus-locked activation, at appropriate latencies, was recorded in the following pairs of sympathetic nerves: forelimb and hindlimb muscle sympathetic fibres, as well as cardiac and either hindlimb muscle or lumbar sympathetic nerves. The latter result demonstrates that axon collaterals of lumbar-projecting RVLM neurons project to, and excite, both functionally similar (forelimb and hindlimb muscle) and functionally dissimilar (lumbar and cardiac) preganglionic neurons. Taken together, these findings show that the axons of a significant proportion of RVLM neurons collateralise widely within the spinal cord, and that they may excite preganglionic neurons of more than one functional class.


Assuntos
Axônios/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Fibras Autônomas Pré-Ganglionares/fisiologia , Membro Posterior/fisiologia , Interneurônios/fisiologia , Masculino , Bulbo/fisiologia , Músculos/fisiologia , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley
16.
Brain Res ; 1718: 103-113, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30537518

RESUMO

To observe the effect of electroacupuncture (EA) on swallowing and its underlying mechanism, 32 Sprague-Dawley (SD) rats were chose and the electrophysiology was used to detect the discharge of nucleus ambiguus (NA) after EA at CV23 (Lianquan), GV16 (Fengfu), and other acupoints. The swallowing-related motor neuron was identified by antidromic stimulation through recurrent laryngeal nerve. Meanwhile, the swallowing numbers were induced by Double-distilled water (DDW) and the neuron discharges were recorded before and after EA. Beside, 50 SD rats were used for testing the c-fos expressions in NA after EA at different acupoints and the other 80 SD rats were used for chemical damage through the microinjection to bilateral NA. 58 neurons provided complete data after histological identification. And two types of swallowing-related (SR) motor neurons were identified, named spontaneous and silent neurons. We found that the onset latency of the first swallow was shorter and the swallowing numbers were increased after EA at CV23 than the other acupoints (P < 0.01). The excitatory neuron response rates were 66.67%, 71.11%, 42.22% and 35.56% for CV23, GV16, PC6 (Neiguan), and ST36 (Zusanli), respectively. The c-fos expressions on CV23 and GV16 groups were significantly higher than the other groups (P < 0.05). After chemical damage, the swallowing numbers could not be regulated by EA, but could be regulated by EA after fake damage. The results of the present study demonstrate that EA at CV23 and GV16 could regulate swallowing function via activating swallowing-related motor neurons in NA.


Assuntos
Deglutição/fisiologia , Bulbo/fisiologia , Pontos de Acupuntura , Animais , Eletroacupuntura/métodos , Feminino , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
17.
Brain Res ; 1708: 69-77, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529283

RESUMO

Our previous studies have shown that electroacupuncture (EA) at the Jianshi-Neiguan acupoints (P5-6, overlying the median nerve) attenuates sympathoexcitatory responses through its influence on neuronal activity in the rostral ventrolateral medulla (rVLM). The nucleus tractus solitarii (NTS) receives input from somatic nerve stimulation. Connections between the NTS and the rVLM during EA stimulation have not been investigated and thus were the focus of the present study. Seven to ten days after unilateral microinjection of a rhodamine-conjugated microsphere retrograde tracer (100 nl) into the rVLM, rats were subjected to EA or sham-EA without electrical stimulation. EA was performed for 30 min at the P5-6 acupoints bilaterally. Perikarya containing the microsphere tracer were found in the NTS of both groups. Compared to controls (needle placement without electrical stimulation, n = 7), c-Fos immunoreactivity and neurons double-labeled with c-Fos, an immediate early gene, and the tracer were significantly increased in the NTS of EA-treated rats (all P < 0.05; n = 8), particularly, in the medial and lateral subdivisions of NTS at subpostremal and obex levels. These results suggest that EA at the P5-6 acupoints activates NTS neurons. Furthermore, EA-activated NTS neurons directly project to the rVLM and likely influence the rVLM activity.


Assuntos
Eletroacupuntura/métodos , Bulbo/fisiologia , Núcleo Solitário/fisiologia , Pontos de Acupuntura , Terapia por Acupuntura/métodos , Animais , Pressão Sanguínea/fisiologia , Estimulação Elétrica , Masculino , Nervo Mediano/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/metabolismo
18.
Brain Res Bull ; 144: 132-139, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30502399

RESUMO

Ventrolateral medulla(VLM) was one of the essential part of central pattern generator(CPG) in swallowing and electro-acupuncture(EA) was an important intervention in swallowing disorder. But the effect and mechanism of EA at acupoints on swallowing were unknown. The present aim to detect the effect of EA at Lianquan (CV23) on swallowing and swallowing-related(SR) interneuron in VLM. Thirty-six Sprague-Dawley rats were operated and the swallowing reflex was induced through Double distilled water (DDW) infusion. Simultaneously, the numbers of swallowing were recorded. Then EA was given at Lianquan and Neiguan (PC6) and the neuron discharges in VLM were detected. A total of 72 neurons were recorded, 60 of which were correctly recorded after histology identification. Two types of SR neurons were found and the numbers of swallowing increased after EA at CV23 and PC6 compared with no EA group. The neuron response rates were 78.3% and 50% for EA at CV23 and PC6 respectively with significant difference (P < 0.05). Meanwhile, the neuron spike patterns were changed after EA at CV23 and PC6. In addition, twenty-four rats were used for immunofluorescence after EA at CV23 and PC6. The results showed that c-fos positive cells in CV23 group were 20.63±2.35, while PC6 group was 14.13±1.78 and 6.88±1.42 in control group. There were significant difference between them (P < 0.05). These results indicated that EA could regulate the swallowing function via activating the SR interneurons in VLM under the physiological condition.


Assuntos
Deglutição/fisiologia , Eletroacupuntura/métodos , Bulbo/fisiologia , Pontos de Acupuntura , Terapia por Acupuntura , Animais , Deglutição/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Bulbo/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos , Ratos , Ratos Sprague-Dawley
19.
Neurochem Res ; 43(12): 2353-2361, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30324331

RESUMO

The mechanisms underlying the pronociceptive effect of paradoxical sleep deprivation (PSD) are not fully established. The modulation of BDNF signaling-mediated descending facilitation from the rostral ventromedial medulla (RVM) of brain stem has been demonstrated in persistent pain models of inflammatory pain, but not in incisional pain model. Recent study has shown that PSD increases the expression of brain-derived neurotrophic factor (BDNF) in the brainstem structure. Therefore, in the current study, we asked whether the BDNF signaling-mediated descending facilitation was involved in the PSD-induced pronociceptive effect on incisional pain and delay the recovery period of postoperative pain in rats. Our results found that a preoperative 24 h PSD significantly aggravated the pain hypersensitivity after incision and prolonged the duration of postoperative pain. The lesions of ipsilateral dorsolateral funiculus partly reversed the PSD-induced pronociceptive effect on incisional pain. Interestingly, the 24 h PSD, but not incision significantly enhanced the levels of BDNF protein expression in the RVM areas of rats. Furthermore, at 1 day or 4 days after incision, intra-RVM microinjection of a BDNF antibody partly reversed the PSD-induced pronociceptive effects in incisional rats, while it did not change the cumulative pain scores and paw withdrawal thresholds in rats receiving only plantar incision. These findings suggest that the preoperative PSD may aggravate and prolong the incision-induced pain hypersensitivity via BDNF signaling-mediated descending facilitation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Hiperalgesia/fisiopatologia , Bulbo/fisiologia , Dor Pós-Operatória/fisiopatologia , Privação do Sono/fisiopatologia , Ferida Cirúrgica/fisiopatologia , Animais , Hiperalgesia/etiologia , Masculino , Dor Pós-Operatória/etiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Privação do Sono/complicações , Ferida Cirúrgica/complicações , Fatores de Tempo
20.
J Physiol ; 596(19): 4581-4595, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30019338

RESUMO

KEY POINTS: Causal relationships between central cardiovascular pathways and sympathetic vasomotor tone have not been evidenced. This study aimed to verify the sympathoexcitatory role of hypothalamic paraventricular nucleus neurons that project to the rostral ventrolateral medulla (PVN-RVLM neurons). By using optogenetic techniques, we demonstrated that stimulation of PVN-RVLM glutamatergic neurons increased renal sympathetic nerve activity and arterial pressure via, at least in part, stimulation of RVLM C1 neurons in rats. This monosynaptic pathway may function in acute sympathetic adjustments to stressors and/or be a component of chronic sympathetic hyperactivity in pathological conditions such as heart failure. ABSTRACT: The rostral ventrolateral medulla (RVLM), which is known to play an important role in regulating sympathetic vasomotor tone, receives axonal projections from the hypothalamic paraventricular nucleus (PVN). However, no studies have proved that excitation of the PVN neurons that send axonal projections to the RVLM (PVN-RVLM neurons) causes sympathoexcitation. This study aimed to directly examine the sympathoexcitatory role of PVN-RVLM neurons. Male rats received microinjections into the PVN with an adeno-associated virus (AAV) vector that encoded a hybrid of channelrhodopsin-2/1 with the reporter tdTomato (ChIEF-tdTomato), or into the RVLM with a retrograde AAV vector that encoded a channelrhodopsin with green fluorescent protein (ChR2-GFPretro ). Under anaesthesia with urethane and α-chloralose, photostimulation (473 nm wavelength) of PVN-RVLM neurons, achieved by laser illumination of either RVLM of ChIEF-tdTomato rats (n = 8) or PVN of ChR2-GFPretro rats (n = 4), elicited significant renal sympathoexcitation. Immunofluorescence confocal microscopy showed that RVLM adrenergic C1 neurons of ChIEF-tdTomato rats were closely associated with tdTomato-labelled, PVN-derived axons that contained vesicular glutamate transporter 2. In another subset of anaesthetized ChIEF-tdTomato rats (n = 6), the renal sympathoexcitation elicited by photostimulation of the PVN was suppressed by administering ionotropic glutamate receptor blockers into the RVLM. These results demonstrate that excitation of PVN-RVLM glutamatergic neurons leads to sympathoexcitation via, at least in part, stimulation of RVLM C1 neurons.


Assuntos
Bulbo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Axônios/fisiologia , Pressão Sanguínea , Ácido Glutâmico/metabolismo , Rim/fisiologia , Masculino , Optogenética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA