Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Ethnopharmacol ; 330: 118244, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38663781

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleuri Radix (BR) has been recognized as an essential herbal medicine for relieving liver depression for thousands of years. Contemporary research has provided compelling evidence of its pharmacological effects, including anti-inflammatory, immunomodulatory, metabolic regulation, and anticancer properties, positioning it as a promising treatment option for various liver diseases. Hepatitis, steatohepatitis, cirrhosis, and liver cancer are among the prevalent and impactful liver diseases worldwide. However, there remains a lack of comprehensive systematic reviews that explore the prescription, bio-active components, and underlying mechanisms of BR in treating liver diseases. AIM OF THE REVIEW: To summarize the BR classical Chinese medical prescription and ingredients in treating liver diseases and their mechanisms to inform reference for further development and research. MATERIALS AND METHODS: Literature in the last three decades of BR and its classical Chinese medical prescription and ingredients were collated and summarized by searching PubMed, Wiley, Springer, Google Scholar, Web of Science, CNKI, etc. RESULTS: BR and its classical prescriptions, such as Xiao Chai Hu decoction, Da Chai Hu decoction, Si Ni San, and Chai Hu Shu Gan San, have been utilized for centuries as effective therapies for liver diseases, including hepatitis, steatohepatitis, cirrhosis, and liver cancer. BR is a rich source of active ingredients, such as saikosaponins, polysaccharides, flavonoids, sterols, organic acids, and so on. These bioactive compounds exhibit a wide range of beneficial effects, including anti-inflammatory, antioxidant, immunomodulatory, and lipid metabolism regulation. However, it is important to acknowledge that BR and its constituents can also possess hepatotoxicity, which is associated with cytochrome P450 (CYP450) enzymes and oxidative stress. Therefore, caution should be exercised when using BR in therapeutic applications to ensure the safe and appropriate utilization of its potential benefits while minimizing any potential risks. CONCLUSIONS: To sum up, BR, its compounds, and its based traditional Chinese medicine are effective in liver diseases through multiple targets, multiple pathways, and multiple effects. Advances in pharmacological and toxicological investigations of BR and its bio-active components in the future will provide further contributions to the discovery of novel therapeutics for liver diseases.


Assuntos
Bupleurum , Medicamentos de Ervas Chinesas , Hepatopatias , Animais , Humanos , Bupleurum/química , Doença Crônica , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Hepatopatias/tratamento farmacológico , Hepatopatias/metabolismo , Medicina Tradicional Chinesa/métodos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
J Ethnopharmacol ; 328: 118038, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38479544

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleurum chinense DC.-Scutellaria baicalensis Georgi (BS) is a classic drug pair that has good clinical effects on depression and many tumors. However, the concurrent targeting mechanism of how the aforementioned drug pair is valid in the two distinct diseases, has not been clarified yet. AIM OF THE STUDY: The components of BS were detected by LC-MS, combined with network pharmacology to explore the active ingredients and common targeting mechanism of its multi-pathway regulation of BS in treating depression and CRC, and to validate the dual effects of BS using the CUMS mice model and orthotopic transplantation tumor mice model of CRC. RESULTS: Twenty-nine components were screened, 84 common gene targets were obteined, and the top 5 key targets including STAT3, PIK3R1, PIK3CA, AKT1, IL-6 were identified by PPI network. GO and KEGG analyses revealed that PI3K/AKT and JAK/STAT signaling pathways might play a crucial role of BS in regulating depression and CRC. BS significantly modulated CUMS-induced depressive-like behavior, attenuated neuronal damage, and reduced serum EPI and NE levels in CUMS model mice. BS improved the pathological histological changes of solid tumors and liver tissues and inhibited solid tumors and liver metastases in tumor-bearing mice. BS significantly decreased the proteins' expression of IL-6, p-JAK2, p-STAT3, p-PI3K, p-AKT1 in hippocampal tissues and solid tumors, and regulated the levels of IL-2, IL-6 and IL-10 in serum of two models of mice. CONCLUSION: BS can exert dual antidepressant and anti-CRC effects by inhibiting the expression of IL-6/JAK2/STAT3 and PI3K/AKT pathway proteins and regulating the release of inflammatory cytokines.


Assuntos
Bupleurum , Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Animais , Camundongos , Farmacologia em Rede , Depressão/tratamento farmacológico , Interleucina-6 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Scutellaria baicalensis , Modelos Animais de Doenças , Neoplasias Colorretais/tratamento farmacológico , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Drug Des Devel Ther ; 18: 375-394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347958

RESUMO

Background: Gastric cancer (GC) is a common fatal malignancy. The aim of this study was to explore and validate the tumor-suppressive role and mechanism of Radix Bupleuri in GC. Methods: The active constituents of Radix Bupleuri were screened using TCMSP database. SwissTargetPrediction database was used to predict potential target genes of the compounds. GeneCards, TTD, DisGeNET, OMIM, and PharmGKB databases were used to search for GC-related targets. STRING database and Cytoscape 3.10 software were used for protein-protein interaction network construction and screening of core targets. DAVID database was used for GO and KEGG analyses. Core targets were validated using molecular docking. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry after GC cells were treated with isorhamnetin. The mRNA and protein expression levels of genes were detected using qRT PCR and Western blot. The metastasis potential of GC cells was evaluated in a nude mouse model. Results: A total of 371 potential targets were retrieved by searching the intersection of Radix Bupleuri and GC targets. Petunidin, 3',4',5',3,5,6,7-Heptamethoxyflavone, quercetin, kaempferol, and isorhamnetin were identified as the main bioactive compounds in Radix Bupleuri. SRC, HSP90AA1, AKT1, and EGFR, were core targets through which Radix Bupleuri suppressed GC. The tumor-suppressive effect of Radix Bupleuri on GC was mediated by multiple pathways, including PI3K-AKT, cAMP, and TNF signaling. The key compounds of Radix Bupleuri had good binding affinity with the core target. Isorhamnetin, a key component of Radix Bupleuri, could inhibit proliferation and metastasis, and induces apoptosis of GC cells. In addition, isorhamnetin could also reduce the mRNA expression of core targets, and the activation of PI3K/AKT pathway. Conclusion: This study identified potential targets and pathways of Radix Bupleuri against GC through network pharmacology and molecular docking, providing new insights into the pharmacological mechanisms of Radix Bupleuri in GC treatment.


Assuntos
Bupleurum , Medicamentos de Ervas Chinesas , Extratos Vegetais , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro , Medicamentos de Ervas Chinesas/farmacologia
4.
Biomed Pharmacother ; 172: 116267, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364739

RESUMO

Schizophrenia (SCZ) is a psychotic mental disorder characterized by cognitive, behavioral, and social impairments. However, current pharmacological treatment regimens are subpar in terms of effectiveness. This study aimed to investigate the function of Radix Bupleuri aqueous extract in SCZ in mouse models. The SCZ mouse model was established by MK-801 injection and feeding of Radix Bupleuri aqueous extract or combined antibiotics. Radix Bupleuri aqueous extract significantly improved the aberrant behaviors and neuronal damage in SCZ mice, upregulated SYP and PSD-95 expression and BDNF levels in hippocampal homogenates, down-regulated DA and 5-HT levels, and suppressed microglial activation in SCZ mice. Moreover, Radix Bupleuri aqueous extract improved the integrity of the intestinal tract barrier. The 16 S rRNA sequencing of feces showed that Radix Bupleuri extract modulated the composition of gut flora. Lactobacillus abundance was decreased in SCZ mice and reversed by Radix Bupleuri aqueous extract administration which exhibited a significant negative correlation with IL-6, IL-1ß, DA, and 5-HT, and a significant positive correlation with BDNF levels in hippocampal tissues. The abundance of Parabacteroides and Alloprevotella was increased in SCZ mice. It was reversed by Radix Bupleuri aqueous extract administration, which exhibited a positive correlation with IL-6, IL-1ß, and 5-HT and a negative correlation with BDNF. In conclusion, Radix Bupleuri aqueous extract attenuates the inflammatory response in hippocampal tissues and modulates neurotransmitter levels, exerting its neuroprotective effect in SCZ. Meanwhile, the alteration of intestinal flora may be involved in this process, which is expected to be an underlying therapeutic option in treating SCZ.


Assuntos
Bupleurum , Microbioma Gastrointestinal , Extratos Vegetais , Esquizofrenia , Humanos , Animais , Camundongos , Maleato de Dizocilpina , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo , Interleucina-6 , Serotonina , Modelos Animais de Doenças , Interleucina-1beta
5.
Nutr Cancer ; 76(1): 63-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37909316

RESUMO

OBJECTIVE: This study investigated how Radix Bupleuri-Radix Paeoniae Alba (BP) was active against hepatocellular carcinoma (HCC). METHODS: Traditional Chinese medicine systems pharmacology (TCMSP) database was employed to determine the active ingredients of BP and potential targets against HCC. Molecular docking analysis verified the binding activity of PTEN with BP ingredients. H22 cells were used to establish an HCC model in male balb/c mice. Immunofluorescence staining, immunohistochemistry, flow cytometry, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative PCR were used to study changes in proliferation, apoptosis, PTEN levels, inflammation, and T-cell differentiation in male balb/c mice. RESULTS: The major active ingredients in BP were found to be quercetin, kaempferol, isorhamnetin, stigmasterol, and beta-sitosterol. Molecular docking demonstrated that these five active BP ingredients formed a stable complex with PTEN. BP exhibited an anti-tumor effect in our HCC mouse model. BP was found to increase the CD8+ and IFN-γ+/CD4+ T cell levels while decreasing the PD-1+/CD8+ T and Treg cell levels in HCC mice. BP up-regulated the IL-6, IFN-γ, and TNF-α levels but down-regulated the IL-10 levels in HCC mice. After PTEN knockdown, BP-induced effects were abrogated. CONCLUSION: BP influenced the immune microenvironment through activation of the PTEN/PD-L1 axis, protecting against HCC.


Assuntos
Bupleurum , Carcinoma Hepatocelular , Neoplasias Hepáticas , Extratos Vegetais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Medicina Tradicional Chinesa , Microambiente Tumoral/efeitos dos fármacos , Humanos , Animais , Camundongos , Camundongos Endogâmicos BALB C , Bupleurum/química , Extratos Vegetais/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas , Espectrometria de Massa com Cromatografia Líquida , Linfócitos T/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia
6.
Biochem Biophys Res Commun ; 691: 149322, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38039833

RESUMO

BACKGROUND: Bupleurum (Bup), is a traditional effective medicine to treat colds and fevers in clinics. Multiple studies have demonstrated that Bup exhibites various biological activities, including cardioprotective effects, anti-inflammatory, anticancer, antipyretic, antimicrobial, and antiviral effects, etc. Currently, the effects of Bup on cardiac electrophysiology have not been reported yet. METHODS: Electrocardiogram recordings were used to investigate the effects of Bup on aconitine-induced arrhythmias. Patch-clamp techniques were used to explore the effects of Bup on APs and ion currents. RESULTS: Bup reduced the incidence of ventricular fibrillation (VF) and delayed the onset time of ventricular tachycardia (VT) in mice. Additionally, Bup (40 mg/mL) suppressed DADs induced by high-Ca2+ and shortened action potential duration at 50 % completion of repolarization (APD50) and action potential duration at 90 % completion of repolarization (APD90) to 60.89 % ± 8.40 % and 68.94 % ± 3.24 % of the control, respectively. Moreover, Bup inhibited L-type calcium currents (ICa.L) in a dose-dependent manner, with an IC50 value of 25.36 mg/mL. Furthermore, Bup affected the gated kinetics of L-type calcium channels by slowing down steady-state activation, accelerating the steady-state inactivation, and delaying the inactivation-recovery process. However, Bup had no effects on the Transient sodium current (INa.T), ATX II-increased late sodium current (INa.L), transient outward current (Ito), delayed rectifier potassium current (IK), or inward rectifier potassium current (IK1). CONCLUSION: Bup is an antiarrhythmic agent that may exert its antiarrhythmic effects by inhibiting L-type calcium channels.


Assuntos
Bupleurum , Canais de Cálcio Tipo L , Camundongos , Animais , Bupleurum/metabolismo , Miócitos Cardíacos/metabolismo , Antiarrítmicos/efeitos adversos , Arritmias Cardíacas , Sódio/metabolismo , Potássio/farmacologia , Potenciais de Ação
7.
Phytomedicine ; 116: 154840, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37172477

RESUMO

BACKGROUND: Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor lesion of pancreatic ductal adenocarcinoma (PDAC), which is a highly malignant tumor and lack of effective treatment. Although Xiao Chai Hu Tang (XCHT) has a good therapeutic effect on pancreatic cancer patients with advanced stage, the effect and mechanism of XCHT remains unclear in pancreatic tumorigenesis. PURPOSE: To assess the therapeutic effects of XCHT on the malignant transformation from PanIN to PDAC and to reveal its mechanisms of pancreatic tumorigenesis. METHODS: Syrian golden hamster were induced by N-Nitrosobis (2-oxopropyl) amine (BOP) to establish the pancreatic tumorigenesis model. The morphological changes of pancreatic tissue were observed by H&E and Masson staining; the Gene ontology (GO) analysis the transcriptional profiling changes; the mitochondrial ATP generation, mitochondrial redox status, mitochondrial DNA (mtDNA) N6-methyladenine (6mA) level and relative mtDNA genes expressions were examined. In addition, immunofluorescence detect the cell localization of 6mA in human pancreatic cancer PANC1 cell. Using the TCGA database, the prognostic effect of mtDNA 6mA demethylation ALKBH1 expression on pancreatic cancer patients was analyzed. RESULTS: We confirmed the mtDNA 6mA levels were gradually increased with the mitochondrial dysfunction in PanINs progression. XCHT showed the effect to inhibit the occurrence and development of pancreatic cancer in Syrian hamster pancreatic tumorigenesis model. In addition, the lack of ALKBH1 mediated mtDNA 6mA increase, mtDNA coded genes down-expression and abnormal redox status were rescued by XCHT. CONCLUSIONS: ALKBH1/mtDNA 6mA mediated mitochondrial dysfunction to induce the occurrence and progression of pancreatic cancer. XCHT can improve ALKBH1 expression and mtDNA 6mA level, regulate the oxidative stress and expression of mtDNA coded genes. This study investigated a new molecular mechanism of pancreatic tumorigenesis, and revealed the therapeutic efficacy of XCHT in pancreatic tumorigenesis for the first time.


Assuntos
Bupleurum , Neoplasias Pancreáticas , Animais , Cricetinae , Humanos , DNA Mitocondrial/genética , Mesocricetus , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Mitocôndrias , Homólogo AlkB 1 da Histona H2a Dioxigenase , Neoplasias Pancreáticas
8.
J Ethnopharmacol ; 310: 116375, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36934787

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleuri Radix, the dried roots of Bupleurum chinense DC. (BC) or Bupleurum scorzonerifolium Willd., is one of the most frequently used traditional Chinese medicines. As the species in Xiao-Chai-Hu decoction, BC has been used as an antipyretic medicine with a long history. However, its antipyretic characteristics and underlying mechanism(s) remain unclear. AIM OF THE STUDY: To elucidate the antipyretic characteristics and mechanism(s) of BC used in its traditional way. METHODS: The water extract of BC (BCE) was prepared according to the traditional decocting mode. Murine fever and endotoxemia models were induced by intravenous injection of lipopolysaccharide (LPS). In vitro complement activation assay and the levels of TNF-α, IL-6, IL-1ß, and C5a were determined by ELISA. RESULTS: BCE exerted a confirmed but mild antipyretic effect on LPS-induced fever of rat. In vitro, it significantly lowered LPS-elevated TNF-α in the supernatant of rat complete blood cells and THP-1 cells, but failed to decrease IL-6 and IL-1ß. In murine endotoxemia models, BCE markedly decreased serum TNF-α, but had no impact on IL-6 and IL-1ß. BCE also restricted complement activation in vitro and in vivo. Nevertheless, the mixture of saikosaponin A and D could not suppress supernatant TNF-α of monocytes and serum TNF-α of endotoxemia mice. CONCLUSIONS: The present study dissects the peripheral mechanism for the antipyretic effect of BC used in the traditional way. Our findings indicate that BCE directly suppresses monocyte-produced TNF-α, thus decreasing circulating TNF-α, which may be responsible for its mild but confirmed antipyretic action.


Assuntos
Antipiréticos , Bupleurum , Endotoxemia , Ratos , Camundongos , Animais , Antipiréticos/farmacologia , Antipiréticos/uso terapêutico , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa , Interleucina-6 , Febre/induzido quimicamente , Febre/tratamento farmacológico
9.
Int J Biol Macromol ; 237: 124146, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965565

RESUMO

Bupleuri Radix (BR), as a well-known plant medicine of relieving exterior syndrome, has a long history of usage in China. Bupleuri Radix Polysaccharide (BRP), as the main component and an important bioactive substance of BR, has a variety of pharmacological activities, including immunoregulation, antioxidant, antitumor, anti-diabetic and anti-aging, etc. In this review, the advancements on extraction, purification, structure characteristics, biological activities and pharmaceutical application of BRP from different sources (Bupleurum chinense DC., Bupleurum scorzonerifolium Willd., Bupleurum falcatum L. and Bupleurum smithii Woiff. var. Parvifolium Shan et Y. Li.) are summarized. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research on BRP, and new valuable insights for the future researches of BRP are proposed.


Assuntos
Bupleurum , Medicamentos de Ervas Chinesas , Raízes de Plantas/química , Bupleurum/química , Fatores Imunológicos/análise , Preparações Farmacêuticas , Medicamentos de Ervas Chinesas/química
10.
J Ethnopharmacol ; 306: 116129, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36638855

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Bupleurum (family Apiaceae), comprising approximately 248 accepted species, is widely distributed and used in China, Japan, India, Central Asia, North Africa and some European countries as traditional herbal medicines. Certain species have been reported to have significant therapeutic effects in fever, inflammatory disorders, cancer, gastric ulcer, virus infection and other diseases. AIM OF THE REVIEW: we performed a comprehensive review of the ten-year research progress in phytochemistry, pharmacology, toxicity, along with bibliometrics research of the genus Bupleurum, aiming to identify knowledge gaps for future research. MATERIALS AND METHODS: All the literatures are retrieved from library and electronic sources including Web of Science, PubMed, Elsevier, Google Scholar, CNKI and Baidu Scholar. These papers cover studies of the traditional use, phytochemistry, pharmacology, and toxicology of the genus Bupleurum. RESULTS: There is a long history of using the genus Bupleurum in traditional herbal medicine that dated back to over 2000 years ago. Twenty-five species and 8 varieties with 3 variants within this genus have been reported to be effective to treat fever, pain, liver disease, inflammation, thoracolumbar pain, irregular menstruation and rectal prolapse. The main phytochemicals found in these plants are triterpene saponins, volatile oil, flavonoid, lignans, and polysaccharides. Many of these compounds have also been shown to have anti-inflammatory, anti-tumor, antimicrobial, immunoregulation, neuroregulation, hepatoprotective and antidiabetic activities. Meanwhile, improper usage of Bupleurum may induce cytotoxic effects, and polyacetylenes may be the main poisonous compounds. CONCLUSIONS: This article summarized recent findings about Bupleurum research from many different aspects. While a small number of Bupleurum species have been investigated through modern pharmacology methods, there are still major knowledge gaps due to inadequate studies and ambiguous findings. Future research could focus on more specific phytochemistry studies combined with mechanistic analysis to provide better guidance to utilize Bupleurum as medicinal resources.


Assuntos
Apiaceae , Bupleurum , Plantas Medicinais , Etnofarmacologia/métodos , Fitoterapia/métodos , Bupleurum/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos/farmacologia
11.
Medicine (Baltimore) ; 101(48): e31835, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482557

RESUMO

Viral hepatitis B is caused by the hepatitis B virus, which is characterized by liver lesions. Bupleuri Radix and Scutellariae Radix are the main traditional medicine pairs with remarkable efficacy in hepatitis B. However, their molecular mechanisms are incompletely understood. The main active components of Bupleuri Radix and Scutellariae Radix, as well as therapeutic targets for the treatment of hepatitis B, were identified through network pharmacology techniques. We identified viral hepatitis B targets using the GeneCards, online mendelian inheritance in man, and therapeutic target databases. We discovered the active components of Bupleuri Radix and Scutellariae Radix as well as therapeutic targets using the encyclopedia of traditional Chinese medicine, HERB, traditional Chinese medicine systems pharmacology database, and a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine databases. VENNY obtained the intersections. Cytoscape and STRING were used to create the "active ingredient-potential target" network and protein interaction network. The DAVID database was used to enrich GO and KEGG pathways. The results were confirmed using the molecular docking method. There were 1827 viral hepatitis B targets, and 37 active ingredients for Bupleuri and Scutellariae Radix, with the main components being quercetin, wogonin, baicalein, and kaempferol. Tumor necrosis factor (TNF), mitogen-activated protein kinase 3 (MAPK3), interleukin-6 (IL-6), vascular endothelial growth factor A, cysteinyl aspartate specific proteinase 3, transcription factor AP-1 (JUN), RAC-alpha serine/threonine-protein kinase, and cellular tumor antigen p53 are among the 78 common targets of Bupleuri Radix and Scutellariae Radix intervention in viral hepatitis B. KEGG enrichment resulted in 107 pathways, including cancer, hepatitis B, and TNF signaling pathways. According to the molecular docking technique, quercetin, wogonin, baicalein, and kaempferol had strong binding activities with TNF, MAPK3, and IL-6. In this study, we initially identified various molecular targets and multiple pathways involved in hepatitis B treatment with Bupleuri Radix and Scutellariae Radix.


Assuntos
Hepatite B , Extratos Vegetais , Humanos , Hepatite B/tratamento farmacológico , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Quercetina , Scutellaria , Fator A de Crescimento do Endotélio Vascular , Bupleurum , Extratos Vegetais/farmacologia
12.
World J Microbiol Biotechnol ; 38(12): 242, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36280622

RESUMO

Saikosaponin d (SSd) is an important bioactive compound of traditional Chinese medicinal plant Bupleurum scorzonerifolium Willd. and exhibits many effects, such as anti-tumor, anti-inflammation and immunomodulatory. Since endophytic fungi possess the natural capacity to produce the similar secondary metabolite to that of their host plants, they are promising as alternative sources of plant bioactive natural products. In this study, in order to search for SSd-producing strains, endophytes were isolated from B. scorzonerifolium and were authenticated by the ITS sequence and the translation elongation factor-1alpha gene (TEF-1α) sequence analysis. The profile of metabolites present in the crude exacts was carried out by ultra performance liquid chromatography time-of-flight mass spectrometry (UPLC/Q-TOF-MS) analysis. The results showed that two strains, CHS2 and CHS3 from B. scorzonerifolium could produce SSd by UPLC/Q-TOF-MS analysis, and the amount of SSd produced by strain CHS2 and CHS3 were about 2.17 and 2.40 µg/mL, respectively. CHS2 and CHS3 showed a close phylogenetic relationship to Fusarium oxysporum and Fusarium acuminatum, respectively. According to our concern, no endophytic fungi capable of producing SSd from B. scorzonerifolium have been found before. Our clear intention was to isolate and identify these endophytic fungi that produce important active secondary metabolites, and then study the strains that produce this compound on a large scale through fermentation or even genetic study, to provide a feasible and more convenient way for the production of SSd.


Assuntos
Produtos Biológicos , Bupleurum , Plantas Medicinais , Bupleurum/química , Bupleurum/genética , Filogenia , Fungos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Produtos Biológicos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3597-3608, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850814

RESUMO

This study aimed to decipher the pharmacodynamic material basis and mechanism of herbal pair Bupleurum scorzonerifolium-Paeonia lactiflora(BS-PL) against liver cancer based on UPLC-Q-TOF-MS and network pharmacology. MTT assay and human hepatocellular carcinoma HepG2 cells were used to screen the effective part of BS-PL, the active components of which were further analyzed and identified by UPLC-Q-TOF-MS. Next, we applied Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) to screen the active ingredients with OB≥30%. Then TCMSP and SwissTargetPrediction were used to collect and predict component targets, followed by the search of liver cancer-related targets with GeneCards and DisGeNET. The intersection targets were obtained using Venny 2.1.0. Protein-protein interaction(PPI) network was constructed using STRING to uncover the core targets, which were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis based on DAVID. Finally, the effects of active ingredients on the expression of main proteins enriched in the key pathways of HepG2 cells were verified by Western blot. The results indicated that compared with 30%, 50%, and 70% ethanol extracts of BS-PL, the n-butanol extraction part(CSYZ) from 95% ethanol extract of BS-PL exhibited the best anti-tumor effect. UPLC-Q-TOF-MS revealed 31 ingredients, 14 of which showed OB≥30%. A total of 220 intersection targets were obtained, from which 35 were selected as the key targets under the condition of two times the median of degree. Among the 215 items with P<0.05 obtained through GO enrichment analysis, 154 were classified into biological processes, 22 into cell components and 39 into molecular functions. KEGG enrichment analysis revealed 95 significantly affected signaling pathways, and the ones(sorted in a descending order by P value) closely related to the anti-liver cancer effect of herbal pair were PI3 K-AKT signaling pathway, TNF signaling pathway, MAPK signaling pathway, HIF-1 signaling pathway, and ErbB signaling pathway. Finally, the PI3 K/AKT signaling pathway involving the largest number of targets was extrapolated, and it was found that this pathway contained 15 core targets and 8 active components. Experimental verification showed that the effective components of BS-PL significantly inhibited the expression of p-PI3 K and p-AKT, consistent with the prediction results of network pharmacology. In conclusion, the main pharmacodynamic substances of BS-PL against liver cancer are 14 components like saikosaponin a, saikosaponin d, and paeoniflorin, which exert the anti-liver cancer effect by regulating PI3 K/AKT pathway.


Assuntos
Bupleurum , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Paeonia , Medicamentos de Ervas Chinesas/farmacologia , Etanol , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt
14.
Oxid Med Cell Longev ; 2022: 7907814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432728

RESUMO

Bupleurum chinense DC. is a traditional Chinese medicine with a long medicinal history and is often used as the main ingredient in prescription drugs for epilepsy. The aerial parts of B. chinense DC. have similar efficacy and composition to B. chinense DC. Therefore, we speculated that the aerial parts of B. chinense DC. could be used in the treatment of epilepsy. Polysaccharides from the aerial parts of B. chinense DC. were selected to explore their therapeutic effects on epilepsy and their potential mechanism of action. The study is aimed at clarifying the antiepileptic effects of the polysaccharides from the aerial parts of B. chinense DC. and their potential underlying mechanisms. The chemical profile of the aerial parts of B. chinense DC. polysaccharides (ABP) was characterized by FT-IR spectrum and HPLC chromatogram. To determine the therapeutic effects of ABPs on epilepsy, we established a kainic acid- (KA-) induced rat model of epilepsy, and through H&E staining, Nissl staining, immunohistochemistry, biochemical analysis, ELISA, and Western blot analysis, we explored the mechanisms underlying the therapeutic effects of ABPs on epilepsy. The monosaccharide content of ABP included galacturonic acid (45.19%), galactose (36.63%), arabinose rhamnose (12.13%), and mannose (6.05%). Moreover, the average molecular weight of ABP was 1.38 × 103 kDa. ABP could improve hippocampal injuries and neuronal function in the KA-induced epilepsy rat model. ABP significantly inhibited oxidative stress in the hippocampus of KA-induced rats. More importantly, ABP could regulate TREM2 activation in the PI3K/Akt/GSK-3ß pathway to inhibit neuronal apoptosis, including increasing the expression of superoxide dismutase and lactate dehydrogenase and decreasing the expression of malondialdehyde. The current study defined the potential role of ABP in inhibiting the development of epilepsy, indicating that ABP could upregulate TREM2 to alleviate neuronal apoptosis, by activating the PI3K/Akt/GSK-3ß pathway and oxidative stress in epilepsy.


Assuntos
Bupleurum , Epilepsia , Animais , Bupleurum/química , Bupleurum/metabolismo , Epilepsia/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Biomed Res Int ; 2022: 1234612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445130

RESUMO

The aerial parts of Bupleurum Chinense DC. aromatic oil (BAO) were a well-known Chinese herbal medicine plant extract used to treat epilepsy. This study aimed to explore the therapeutic effect of BAO on kainic acid- (KA-) induced epileptic rats and the possible mechanism of its antiepileptic effect. The composition and content of BAO were analyzed by GC-MS, and BAO was administered orally to alleviate the epileptic behavior induced by KA brain injection. The behavior of epileptic rats was determined by Racine grading criteria. And hematoxylin-eosin staining (HE), Nissl staining, immunohistochemistry, Elisa, Western blot, and other methods were used to study the antiepileptic mechanism of BAO, and the possible mechanism was verified by the epileptic cell model of hippocampal neurons induced by the low-Mg2+ extracellular fluid. BAO was mainly composed of terpenoids and aliphatic compounds. And BAO could improve KA-induced epilepsy-like behavior, neuroinflammation, and neurotransmitter abnormalities in the hippocampus. Furthermore, BAO could regulate the expression of GABA, NMDAR1, Notch1, and MAP2 to improve the symptoms of epilepsy. These results were also validated at the cellular level. These results indicated that BAO could alleviate the epilepsy-like behavior through the action of the Notch/NMDAR/GABA pathway.


Assuntos
Bupleurum , Epilepsia , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Hipocampo/metabolismo , Ácido Caínico/farmacologia , Componentes Aéreos da Planta , Ratos , Ácido gama-Aminobutírico/metabolismo
16.
FEBS Open Bio ; 12(7): 1344-1352, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429231

RESUMO

Chaihu, the dried roots of some species of Bupleurum L., is a famous Chinese herbal medicine for treatment of liver- and cold-related diseases, in which saikosaponins (SSs) are the major active compounds. Many of the genetic components upstream of SS biosynthetic pathways have been characterized; however, the regulatory mechanisms remain elusive. In this study we identified the APETALA2/Ethylene Responsive Factor family transcription factor gene BcERF3 from B. chinense. The expression of BcERF3 was induced in methyl-jasmonate-treated adventitious root of B. chinense; it was also expressed at higher levels in roots than in other tissues (stem, leaf, flower, and tender fruit of early fruiting plants). Transient expression of BcERF3 in the leaves of Nicotiana benthamiana resulted in intracellular localization of the protein in the nucleus. It was also demonstrated that the number of SSs was greater in BcERF3-overexpressing hairy roots of B. chinense than in plants treated with empty vector controls. This coincided with upregulation of ß-AS, which encodes a key enzyme involved with triterpenoid biosynthesis. In conclusion, BcERF3 plays a positive regulatory role in the biosynthesis of SSs.


Assuntos
Bupleurum , Ácido Oleanólico , Bupleurum/genética , Bupleurum/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Raízes de Plantas/genética , Saponinas
17.
Nat Prod Res ; 36(23): 6137-6142, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35337224

RESUMO

The present study aimed to assess the effects of epileptic treatment of the aerial part of Bupleurum chinense DC. in kainic acid (KA)-induced epilepsy rats and LPS-induced BV2 cells, as well as to identify the active chemical constituents. The in vivo and vitro results showed that 20% ethanol elution fractions of the aerial part of B. chinense DC. (BCE-20) and 70% ethanol elution fractions of the aerial part of B. chinense DC. (BCE-70) could improve the epileptic state of the rats and status epilepticus (SE%). Moreover, ultra-high-performance liquid chromatography (UPLC)-Orbitrap- mass spectrometry (MS) analysis identified BCE-20 and 70 as flavonoids and phenylpropanoids, respectively. The mechanistic analysis also showed that BCE-20 and 70 could regulate neurotransmitter abnormalities and suppresses the expression and secretion of pro-inflammatory cytokines. Notably, BCE-20 and 70 could regulate the Triggering receptor expressed on myeloid cells 2 (TREM2)/nuclear factor-k-gene binding (NF-κB)/inhibitor of NF-κB α (IκBα) pathway to inhibit the neuroinflammation. Our findings support the ethnopharmacological use of the constituent polyphenols and flavonoids from the aerial part of B. chinense DC., as the strong anti-epileptic agents.


Assuntos
Bupleurum , Epilepsia , Ratos , Animais , Bupleurum/química , NF-kappa B/metabolismo , Flavonoides/farmacologia , Componentes Aéreos da Planta/metabolismo , Etanol , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico
18.
J Ethnopharmacol ; 289: 115034, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35092825

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleurum chinense DC. (B. chinense) is the dried root of B. chinense, belonging to the Umbelliferae family. B. chinense has been reported since ancient times for its effect of soothing the liver and relieving depression. Additionally, its important role in treating depression, depressed mood disorders and anti-inflammation has been proven in previous studies. However, its specific mechanism of action remains unknown. AIM OF THE STUDY: The key targets and metabolites of the antidepressant effect of B. chinense were investigated based on the cAMP signalling pathway. The study examined the mechanism for the antidepressant effect of B. chinense by target prediction, analysis of related metabolites and potential metabolic pathways. MATERIALS AND METHODS: A network pharmacology approach was used to predict the antidepressant targets and pathways of B. chinense. A depression rat model was established through the CUMS (chronic unpredictable mild stress) procedure. The depression model was assessed by body weight, sugar-water preference, water maze and enzyme-linked immunosorbent assay (ELISA) indicators (5hydroxytryptamine, etc.). The key metabolic pathways were screened by correlations between metabolites and key targets. Finally, a quantitative analysis of key targets and metabolites was experimentally validated. RESULTS: B. chinense significantly ameliorated the reduction in body weight, sugar-water preference rate and cognitive performance in the water maze experiment in rats with depression induced by CUMS. ELISA, Western blotting (WB) and reverse transcription-polymerase chain reaction (RT-PCR) assays showed that B. chinense significantly improves the expression of protein kinase cyclic adenylic acid (cAMP)-activated catalytic subunit alpha (PRKACA), cAMP-response element-binding protein (CREB) and cAMP activation in the rat brain induced by CUMS. According to metabolic pathway analysis, B. chinense shows an antidepressant effect primarily by regulating the cAMP metabolic pathway. CONCLUSION: B. chinense upregulated PRKACA and CREB expression and the level of the key metabolite cAMP in the cAMP/PKA/CREB pathway while reducing the inflammatory response to depression treatment. These new findings support future research on the antidepressant effects of B. chinense.


Assuntos
Antidepressivos/farmacologia , Bupleurum/química , Depressão/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos
19.
J Ethnopharmacol ; 283: 114742, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34655668

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleurum chinense DC has a history of using herb in China for more than 2000 years, which can be traced back to the Classic of Shennong Materia Medica in the Han Dynasty. Although Saikosaponin, the main active ingredient of Bupleurum, has the effects of anti-tumor, yet we still do not know the mechanism by total Bupleurum saponin extracts (TBSE) produces this effect on colon cancer. AIM OF THE STUDY: It is predicted by network pharmacology that TBSE may play an anti-colon cancer role by regulating the PI3K-Akt-mTOR pathway. The purpose of this study is to investigate whether TBSE inhibits proliferation and promote apoptosis of colon cancer cells by regulating PI3K/Akt/mTOR pathway. MATERIALS AND METHODS: The effect of saikosaponins on the proliferation of SW480 and SW620 cells was detected by CCK-8, apoptosis was determined by flow cytometry, morphological changes of cells were observed by microscope, nuclear morphological changes were observed after immunofluorescence staining, the expression of apoptosis-related proteins Bax, Bcl2, Caspase3, Caspase9, Cleaved Caspase3 and Cleaved Caspase9 were detected by Western Blot, and the expression of apoptosis-related genes Bax, Bcl2, Caspase3 and Caspase9 were detected by RT-PCR. According to the theory of network pharmacology, the potential targets of saikosaponins and colon cancer were predicted by database Pharmmapper and Genecards database respectively. The intersection of saikosaponins and colon cancer was enriched and analyzed on the Metascape platform. Then, the expression of PI3K/Akt/mTOR pathway related protein PI3K, Akt, Mtor, p-PI3K, p-Akt, p-mTOR were detected by Western Blot, and the corresponding amount of RNA expressions in the pathway was confirmed by RT-PCR. RESULTS: The results of CCK-8 demonstrated that the survival rate of SW480 and SW620 cells decreased significantly when the concentration of TBSE was in the range of 25-200 µg/ml. The morphological observation showed that the cells lost normal cell morphology, cytoplasmic condensation, and partial loss of adhesion after treatment with TBSE. Flow cytometry indicated that the apoptosis rates of SW480 cells and SW620 cells treated with TBSE (50 µg/ml) were 48.47% ± 1.20% and 36.13% ± 1.76%, respectively. Western Blot firstly confirmed that TBSE significantly up-regulated the expression of pro-apoptotic proteins Bax, Caspase3, Caspase9, Cleaved Caspase3 and Cleaved Caspase9, and down-regulated the expression of anti-apoptotic protein Bcl2. And RT-PCR results implied that TBSE significantly up-regulated the gene expression of apoptotic factors Bax, Caspase3 and Caspase9, and significantly decreased the gene expression of Bcl2. It was predicted that the PI3K/Akt/mTOR pathway may be the main regulatory object of the antitumor effect of TBSE by network pharmacology. Subsequent WB experiment also revealed that TBSE could significantly down-regulate (P < 0.01) the expressions of PI3K, Akt, mTOR and phosphorylated proteins P-PI3K, P-Akt, P-MTOR. Meanwhile, RT-PCR results also indicated that TBSE could significantly down-regulate (P < 0.01) the gene expression levels of PI3K, Akt and mTOR. CONCLUSIONS: TBSE activated Bax/Bcl2 and caspase-9/caspase-3 cascade to induced apoptosis of human colon cancer SW480 and SW60 cells in a dose-dependent manner, which was obviously related to the inhibition of PI3K/Akt/mTOR signaling pathway.


Assuntos
Bupleurum/química , Neoplasias do Colo/tratamento farmacológico , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Farmacologia em Rede , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/administração & dosagem , Saponinas/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768840

RESUMO

Obesity is a lipid metabolism disorder caused by genetic, medicinal, nutritional, and other environmental factors. It is characterized by a complex condition of excess lipid accumulation in adipocytes. Adipogenesis is a differentiation process that converts preadipocytes into mature adipocytes and contributes to excessive fat deposition. Saikosaponin A (SSA) and saikosaponin D (SSD) are triterpenoid saponins separated from the root of the Bupleurum chinensis, which has long been used to treat inflammation, fever, and liver diseases. However, the effects of these constituents on lipid accumulation and obesity are poorly understood. We investigated the anti-obesity effects of SSA and SSD in mouse 3T3-L1 adipocytes. The MTT assay was performed to measure cell viability, and Oil Red O staining was conducted to determine lipid accumulation. Various adipogenic transcription factors were evaluated at the protein and mRNA levels by Western blot assay and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Here, we showed that SSA and SSD significantly inhibited lipid accumulation without affecting cell viability within the range of the tested concentrations (0.938-15 µM). SSA and SSD also dose-dependently suppressed the expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c (SREBP-1c), and adiponectin. Furthermore, the decrease of these transcriptional factors resulted in the repressed expression of several lipogenic genes including fatty acid binding protein (FABP4), fatty acid synthase (FAS), and lipoprotein lipase (LPL). In addition, SSA and SSD enhanced the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase (ACC), and inhibited the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) and p38, but not c-Jun-N-terminal kinase (JNK). These results suggest that SSA and SSD inhibit adipogenesis through the AMPK or mitogen-activated protein kinase (MAPK) pathways in the early stages of adipocyte differentiation. This is the first study on the anti-adipogenic effects of SSA and SSD, and further research in animals and humans is necessary to confirm the potential of saikosaponins as therapeutic agents for obesity.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilato Quinase/efeitos dos fármacos , Adenilato Quinase/metabolismo , Adipogenia/genética , Adiponectina/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Fármacos Antiobesidade/farmacologia , Bupleurum , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Lipogênese/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/tratamento farmacológico , Ácido Oleanólico/farmacologia , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA