Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38668631

RESUMO

Two Gram-negative bacterial strains designated MMS20-SJTN17T and MMS20-SJTR3T were isolated from a grassland soil sample, and taxonomically characterized using a polyphasic approach. The 16S rRNA gene sequence analysis indicates that both strains belong to the genus Paraburkholderia of the class Betaproteobacteria, with strain MMS20-SJTN17T being mostly related to Paraburkholderia sprentiae WSM5005T (96.45 % sequence similarity) and strain MMS20-SJTR3T to Paraburkholderia tuberum STM678T (98.59 % sequence similarity). MMS20-SJTN17T could grow at 15-40 °C (optimum, 25-30 °C) and at pH 6.0-8.0 (optimum, pH 6.0-7.0), whereas MMS20-SJTR3T could grow at 10-40 °C (optimum, 30-37 °C) and at pH 6.0-8.0 (optimum, pH 6.0). Both strains tolerated up to 1 % (w/v) NaCl (optimum, 0 %). The major fatty acids of MMS20-SJTN17T were C16 : 0 and C19 : 0 cyclo ω8c, and those of MMS20-SJTR3T were C17 : 0 cyclo and a summed feature comprising C18 : 1 ω7c and/or C18 : 1 ω6c. The major isoprenoid quinone of both strains was ubiquinone-8 and the diagnostic polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Regarding plant growth promoting potential, both strains were capable of producing indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylic acid deaminase, and also showed phosphate-solubilizing activity. A genome-based comparison using orthologous average nucleotide identity and digital DNA-DNA hybridization values indicates that strain MMS20-SJTN17T shares highest relatedness with Paraburkholderia monticola JC2948T and MMS20-SJTR3T with Paraburkholderia antibiotica G-4-1-8T, with values clearly below the cutoffs for species distinction. Examination of biosynthetic gene clusters responsible for secondary metabolite production reveals unique characteristics distinguishing each strain from closely related Paraburkholderia species. On the basis of genotypic, phenotypic, chemotaxonomic and phylogenomic data, each strain should be classified as a novel species of the genus Paraburkholderia, for which the names Paraburkholderia translucens sp. nov. (=MMS20-SJTN17T=LMG 32366T=KCTC 82783T) and Paraburkholderia sejongensis sp. nov. (=MMS20-SJTR3T=LMG 32367T=KCTC 82784T) are proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Pradaria , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Fosfolipídeos , Burkholderiaceae/isolamento & purificação , Burkholderiaceae/genética , Burkholderiaceae/classificação , Ubiquinona , Reguladores de Crescimento de Plantas/metabolismo
2.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34694983

RESUMO

Two white colony-forming, Gram-stain-negative, non-sporulating and motile bacteria, designated G-4-1-8T and RP-4-7T, were isolated from forest soil and Arctic soil, respectively. Both strains showed antimicrobial activity against Gram-negative pathogens (Pseudomonas aeruginosa and Escherichia coli) and could grow at a pH range of pH 4.0-11.0 (optimum, pH 7.0-9.0). Phylogenetic analyses based on their 16S rRNA gene sequences indicated that strains G-4-1-8T and RP-4-7T formed a lineage within the family Burkholderiaceae and were clustered as members of the genus Paraburkholderia. Strain G-4-1-8T showed the highest 16S rRNA sequence similarity to Paraburkholderia monticola JC2948T (98.1 %), while strain RP-4-7T showed the highest similarity to Paraburkholderia metrosideri DNBP6-1T (98.8 %). The only respiratory quinone in both strains was ubiquinone Q-8. Their principal cellular fatty acids were C16 : 0, cyclo-C17 : 0, summed feature 3 (iso-C15 :0 2-OH and/or C16 :1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). Their major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. The DNA G+C content of strains G-4-1-8T and RP-4-7T were 63.7 and 61.3 mol%, respectively, while their genome lengths were 7.44 and 9.67 Mb, respectively. The genomes of both strains showed at least 12 putative biosynthetic gene clusters. The average nucleotide identity and in silico DNA-DNA hybridization relatedness values between both strains and most closely related Paraburkholderia species were below the species threshold values. Based on a polyphasic study, these isolated strains represent novel species belonging to the genus Paraburkholderia, for which the names Paraburkholderia antibiotica sp. nov. (G-4-1-8T= KACC 21617T=NBRC 114603T) and Paraburkholderia polaris sp. nov. (RP-4-7T=KACC 21621T=NBRC 114605T) are proposed.


Assuntos
Antibacterianos , Burkholderiaceae , Filogenia , Microbiologia do Solo , Antibacterianos/biossíntese , Regiões Árticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Florestas , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Artigo em Inglês | MEDLINE | ID: mdl-34287117

RESUMO

An intracellular bacterium, strain IAST, was observed to infect several species of the plant-parasitic nematode genus Xiphinema (Xiphinema astaregiense, Xiphinema incertum, Xiphinema madeirense, Xiphinema pachtaicum, Xiphinema parapachydermum and Xiphinema vallense). The bacterium could not be recovered on axenic medium. The 16S rRNA gene sequence of IAST was found to be new, being related to the family Burkholderiaceae, class Betaproteobacteria. Fungal endosymbionts Mycoavidus cysteinexigens B1-EBT (92.9 % sequence identity) and 'Candidatus Glomeribacter gigasporarum' BEG34 (89.8 % identity) are the closest taxa and form a separate phylogenetic clade inside Burkholderiaceae. Other genes (atpD, lepA and recA) also separated this species from its closest relatives using a multilocus sequence analysis approach. These genes were obtained using a partial genome of this bacterium. The localization of the bacterium (via light and fluorescence in situ hybridization microscopy) is in the X. pachtaicum females clustered around the developing oocytes, primarily found embedded inside the epithelial wall cells of the ovaries, from where they are dispersed in the intestine. Transmission electron microscopy (TEM) observations supported the presence of bacteria inside the nematode body, where they occupy ovaries and occur inside the intestinal epithelium. Ultrastructural analysis of the bacterium showed cells that appear as mostly irregular, slightly curved rods with rounded ends, 0.8-1.2 µm wide and 2.5-6.0 µm long, possessing a typical Gram-negative cell wall. The peptidoglycan layer is, however, evident only occasionally and not detectable by TEM in most cells. Another irregularly occurring shell surrounding the endosymbiont cells or the cell clusters was also revealed, probably originating from the host cell membrane. Flagella or spore-like cells do not occur and the nucleoid is diffusely distributed throughout the cell. This endosymbiont is transmitted vertically through nematode generations. These results support the proposal of IAST as a new species, although its obligate intracellular and obligate endosymbiont nature prevented isolation of a definitive type strain. Strain IAST is therefore proposed as representing 'Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov.


Assuntos
Burkholderiaceae/classificação , Nematoides/microbiologia , Filogenia , Simbiose , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , Citrus/parasitologia , DNA Bacteriano/genética , Ácidos Graxos/química , Feminino , Genes Bacterianos , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Espanha
4.
Syst Appl Microbiol ; 44(1): 126152, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33276286

RESUMO

Previous studies have recognized South and Central/Latin American mimosoid legumes in the genera Mimosa, Piptadenia and Calliandra as hosts for various nodulating Paraburkholderia species. Several of these species have been validly named in the last two decades, e.g., P. nodosa, P. phymatum, P. diazotrophica, P. piptadeniae, P. ribeironis, P. sabiae and P. mimosarum. There are still, however, a number of diverse Paraburkholderia strains associated with these legumes that have an unclear taxonomic status. In this study, we focus on 30 of these strains which originate from the root nodules of Brazilian and Mexican Mimosa species. They were initially identified as P. tuberum and subsequently placed into a symbiovar (sv. mimosae) based on their host preferences. A polyphasic approach for the delineation of these strains was used, consisting of genealogical concordance analysis (using atpD, gyrB, acnA, pab and 16S rRNA gene sequences), together with comparisons of Average Nucleotide Identity (ANI), DNA G+C content ratios and phenotypic characteristics with those of the type strains of validly named Paraburkholderia species. Accordingly, these 30 strains were delineated into two distinct groups, of which one is conspecific with 'P. atlantica' CNPSo 3155T and the other new to Science. We propose the name Paraburkholderia youngii sp. nov. with type strain JPY169T (= LMG 31411T; SARCC751T) for this novel species.


Assuntos
Burkholderiaceae/classificação , Mimosa/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , México , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
5.
Syst Appl Microbiol ; 43(6): 126133, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32998072

RESUMO

A survey of our in-house bacterial collection identified a group of six strains isolated from the tomato rhizoplane that possessed 16S rRNA gene sequences with 98.2% sequence similarity to Paraburkholderia pallida, suggesting that these strains represented a novel species. Multilocus sequence analysis using gltB, lepA and recA gene sequences showed the clustering of the strains and the BOX-PCR patterns were similar among these strains. The average nucleotide identity and the DNA-DNA virtual hybridization of strain TNe-862T was <89% and <34%, respectively, to the genomes of any sequenced Paraburkholderia species. The genome of strain TNe-862T possessed all the genes necessary for nitrogen fixation and biosynthesis of indoleacetic acid and antimicrobials terpenes, phosphonates and bacteriocins. It also contained genes for metal resistance, xenobiotic degradation, and hydrolytic enzymes such as a putative chitinase and isoamylase. Even though the strain contained potential genes for degradation of cellulose and starch, the bacterium was unable to utilize these substrates in culture medium. The genome encoded flagella and pili as well as multiple chemotaxis systems. In addition, genes encoding for the type I, II, IV, V and VI secretion systems were also present. The strains grow up to 42°C and 5% NaCl. The optimum growth pH was 8. The major cellular fatty acids were C16:0 and C18:1 ω7c. Based on this polyphasic analysis, these strains represent a novel species in the genus Paraburkholderia, for which the name Paraburkholderia lycopersici sp. nov. is proposed. The type strain is TNe-862T (=LMG 26415T=CIP 110323T).


Assuntos
Burkholderiaceae/classificação , Fixação de Nitrogênio , Filogenia , Microbiologia do Solo , Solanum lycopersicum/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , México , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Antonie Van Leeuwenhoek ; 113(11): 1689-1698, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32955707

RESUMO

A novel Gram-negative, aerobic, motile and short rod-shaped bacterium with exopolysaccharides production, designated as LZ-4T, was isolated from cultivable phycosphere microbiota of harmful algal blooms-causing marine dinoflagellate Alexandrium catenella LZT09 which produces paralytic shellfish poisoning toxins. Strain LZ-4T was able to use thiosulfate (optimum concentration 10 mM) as energy source for bacterial growth. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain LZ-4T belonged to the genus Limnobacter, showing high 16S rRNA gene sequences similarities with L. thiooxidans DSM 13612T (99.4%), L. humi NBRC 11650T (98.2%) and L. litoralis NBRC 105857T (97.2%), respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between LZ-4T and L. thiooxidans DSM 13612T were 78.9 and 21.9%, respectively. Both values were far lower than the thresholds (95-96% for ANI and 70% for dDDH) generally accepted for new species delineation. The respiratory quinone of strain LZ-4T was Q-8. The dominant cellular fatty acids were determined as summed feature 3 (C16:1 ω6c/ω7c), summed feature 8 (C18:1 ω6c/ω7c) and C16:0. Polar lipids profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids and three unidentified polar lipids. The genomic DNA G+C content of strain LZ-4T was 52.5 mol%. Based on polyphasic characterization, strain LZ-4T represents a novel species of the genus Limnobacter, for which the name Limnobacter alexandrii sp. nov. is proposed. The type strain is LZ-4T (=CCTCC AB 2019004T =KCTC 72281T).


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Dinoflagellida/microbiologia , Processos Heterotróficos , Microbiota , Tiossulfatos/metabolismo , Técnicas de Tipagem Bacteriana , Burkholderiaceae/genética , Burkholderiaceae/metabolismo , DNA Bacteriano/genética , Dinoflagellida/genética , Dinoflagellida/patogenicidade , Ácidos Graxos/análise , Oxirredução , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Int J Syst Evol Microbiol ; 70(9): 5093-5105, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32809929

RESUMO

Two bacterial strains, 1NT and 5NT, were isolated from hemlock forest soil using a soluble organic matter enrichment. Cells of 1NT (0.65×1.85 µm) and 5NT (0.6×1.85 µm) are Gram-stain-negative, aerobic, motile, non-sporulating and exist as single rods, diplobacilli or in chains of varying length. During growth in dilute media (≤0.1× tryptic soy broth; TSB), cells are primarily motile with flagella. At higher concentrations (≥0.3× TSB), cells of both strains increasingly form non-motile chains, and cells of 5NT elongate (0.57×~7 µm) and form especially long filaments. Optimum growth of 1NT and 5NT occurred at 25-30 °C, pH 6.5-7.0 and <0.5% salinity. Results of comparative chemotaxonomic, genomic and phylogenetic analyses revealed that 1NT and 5NT were distinct from one another and their closest related type strains: Paraburkholderia madseniana RP11T, Paraburkholderia aspalathi LMG 27731T and Paraburkholderia caffeinilytica CF1T. The genomes of 1NT and 5NT had an average nucleotide identity (91.6 and 91.3%) and in silico DNA-DNA hybridization values (45.8%±2.6 and 45.5%±2.5) and differed in functional gene content from their closest related type strains. The composition of fatty acids and patterns of substrate use, including the catabolism of phenolic acids, also differentiated strains 1NT and 5NT from each other and their closest relatives. The only ubiquinone present in strains 1NT and 5NT was Q-8. The major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed features 2 (3OH-C14 : 0 / C16 : 1 iso I), 3 (C16 : 1 ω6c/ω7c) and 8 (C18 : 1 ω7c/ω6c). A third bacterium, strain RL16-012-BIC-B, was isolated from soil associated with shallow roots and was determined to be a strain of P. madseniana (ANI, 98.8%; 16S rRNA gene similarity, 100%). Characterizations of strain RL16-012-BIC-B (DSM 110723=LMG 31706) led to proposed emendments to the species description of P. madseniana. Our polyphasic approach demonstrated that strains 1NT and 5NT represent novel species from the genus Paraburkholderia for which the names Paraburkholderia solitsugae sp. nov. (type strain 1NT=DSM 110721T=LMG 31704T) and Paraburkholderia elongata sp. nov. (type strain 5NT=DSM 110722T=LMG 31705T) are proposed.


Assuntos
Burkholderiaceae/classificação , Florestas , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hidroxibenzoatos , New York , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
8.
Arch Microbiol ; 202(6): 1341-1347, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32152645

RESUMO

A new bacterium, designated DCY113T, was isolated from ginseng cultivation soil in Gochang-gun, South Korea, and its taxonomic position identified by the polyphasic approach. 16S rRNA gene sequence analysis determined that this isolate belongs to the genus Paraburkholderia, and was closest to P. dipogonis DL7T (98.6%), P. phytofirmans PsJNT (98.5%), P. kirstenboschensis Kb15T (98.4%) and P. aromaticivorans BNT (98.1%). Strain DCY113T is Gram-reaction negative, strictly aerobic, rod-shaped, non-motile, and catalase and oxidase positive. The predominant isoprenoid quinone of DCY113T was ubiquinone Q-8. The major cellular fatty acids were C16:0, cyclo-C17:0 and the Summed feature 8 (C18:1ω7c and/or C18:1ω6c). The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and an unknown amino lipid (AL1). The G+C content of the genomic DNA was 62.2 mol%. Average nucleotide identity (ANI) between strain DCY113T and the related Paraburkholderia type strains were below the threshold value for species delineation. This low DNA relatedness in combination with phylogenetic and phenotypic tests indicates that strain DCY113T cannot be assigned to any recognized species. Strain DCY113T was also found to have antifungal activity against the pathogenic fungi Cylindrocarpon destructans. In conclusion, this study found DCY113T to be a novel species within the genus Paraburkholderia, for which the name P. panacisoli is proposed. The type strain is DCY113T (= KCTC 52951T = JCM 32098T).


Assuntos
Antibiose , Burkholderiaceae/classificação , Burkholderiaceae/fisiologia , Hypocreales/fisiologia , Panax/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
9.
Arch Microbiol ; 202(6): 1369-1380, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166359

RESUMO

A polyphasic study was conducted with 11 strains trapped by Mimosa pudica and Phaseolus vulgaris grown in soils of the Brazilian Atlantic Forest. In the phylogenetic analysis of the 16S rRNA gene, one clade of strains (Psp1) showed higher similarity with Paraburkholderia piptadeniae STM7183T (99.6%), whereas the second (Psp6) was closely related to Paraburkholderia tuberum STM678T (99%). An MLSA (multilocus sequence analysis) with four (recA, gyrB, trpB and gltB) housekeeping genes placed both Psp1 and Psp6 strains in new clades, and BOX-PCR profiles indicated high intraspecific genetic diversity within each clade. Values of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) of the whole genome sequences were of 56.9 and 94.4% between the Psp1 strain CNPSo 3157T and P. piptadeniae; and of 49.7% and 92.7% between the Psp6 strain CNPSo 3155T and P. tuberum, below the threshold for species delimitation. In the nodC analysis, Psp1 strains clustered together with P. piptadeniae, while Psp6 did not group with any symbiotic Paraburkholderia. Other phenotypic, genotypic and symbiotic properties were evaluated. The polyphasic analysis supports that the strains represent two novel species, for which the names Paraburkholderia franconis sp. nov. with type strain CNPSo 3157T (= ABIP 241, = LMG 31644) and Paraburkholderia atlantica sp. nov. with type strain CNPSo 3155T (= ABIP 236, = LMG 31643) are proposed.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Mimosa/microbiologia , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Phaseolus/microbiologia , Composição de Bases/genética , Brasil , Burkholderiaceae/genética , DNA Bacteriano/genética , Florestas , Genes Essenciais/genética , Tipagem de Sequências Multilocus , Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
10.
Int J Syst Evol Microbiol ; 70(4): 2640-2647, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32202992

RESUMO

A Gram-stain-negative, aerobic, rod-shaped, leaf-associated bacterium, designated JS23T, was isolated from surface-sterilized leaf tissue of an oil palm grown in Singapore and was investigated by polyphasic taxonomy. Phylogenetic analyses based on 16S rRNA gene sequences and 180 conserved genes in the genome of several members of Burkholderiaceae revealed that strain JS23T formed a distinct evolutionary lineage independent of other taxa within the family Burkholderiaceae. The predominant ubiquinone was Q-8. The primary polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified aminophospholipid. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c /C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c /C18 : 1 ω6c). The size of the genome is 5.36 Mbp with a DNA G+C content of 66.2 mol%. Genomic relatedness measurements such as average nucleotide identity, genome-to-genome distance and digital DNA-DNA hybridization clearly distinguished strain JS23T from the closely related genera Burkholderia, Caballeronia, Mycetohabitans, Mycoavidus, Pandoraea, Paraburkholderia, Robbsia and Trinickia. Furthermore, average amino acid identity values and the percentages of conserved proteins, 56.0-68.4 and 28.2-45.5, respectively, were well below threshold values for genus delineation and supported the assignment of JS23T to a novel genus. On the basis of the phylogenetic, biochemical, chemotaxonomic and phylogenomic evidence, strain JS23T is proposed to represent a novel species of a new genus within the family Burkholderiaceae, for which the name Chitinasiproducens palmae gen. nov., sp. nov., is proposed with the type strain of JS23T (= DSM 27307T=KACC 17592T).


Assuntos
Arecaceae/microbiologia , Burkholderiaceae/classificação , Filogenia , Folhas de Planta/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Singapura , Ubiquinona/química
11.
Int J Syst Evol Microbiol ; 70(3): 2137-2146, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32027304

RESUMO

RP11T was isolated from forest soil following enrichment with 4-hydroxybenzoic acid. Cells of RP11T are aerobic, non-sporulating, exhibit swimming motility, and are rods (0.8 µm by 1.4 µm) that often occur as diplobacillus or in short chains (3-4 cells). Optimal growth on minimal media containing 4-hydroxybenzoic acid (µ=0.216 hr-1) occurred at 30 °C, pH 6.5 or 7.0 and 0% salinity. Comparative chemotaxonomic, genomic and phylogenetic analyses revealed the isolate was distinct from its closest relative type strains identified as Paraburkholderia aspalathi LMG 27731T, Paraburkholderia fungorum LMG 16225T and Paraburkholderia caffeinilytica CF1T. Strain RP11T is genetically distinct from P. aspalathi, its closest relative, in terms of 16S rRNA gene sequence similarity (98.7%), genomic average nucleotide identity (94%) and in silico DNA-DNA hybridization (56.7 %±2.8). The composition of fatty acids and substrate utilization pattern differentiated strain RP11T from its closest relatives, including growth on phthalic acid. Strain RP11T encoded the greatest number of aromatic degradation genes of all eleven closely related type strains and uniquely encoded a phthalic acid dioxygenase and paralog of the 3-hydroxybenzoate 4-monooxygenase. The only ubiquinone detected in strain RP11T was Q-8, and the major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω7c/ω6c). On the basis of this polyphasic approach, it was determined that strain RP11T represents a novel species from the genus Paraburkholderia for which the name Paraburkholderia madseniana sp. nov. is proposed. The type strain is RP11T (=DSM 110123T=LMG 31517T).


Assuntos
Burkholderiaceae/classificação , Florestas , Hidroxibenzoatos/metabolismo , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , New York , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
12.
Future Microbiol ; 14: 1357-1367, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31762328

RESUMO

Aim: Genetic characterization of Pandoraea strains recovered from cystic fibrosis patients. Materials & methods: The whole-genome sequence of 12 Pandoraea strains was determined using Illumina technology. The position of the strains within the genus Pandoraea was analyzed using selected partial gene sequences, core genome multi-locus sequence typing and average nucleotide identity analysis. Furthermore, the sequences were annotated. Results: The results show that some strains previously identified as Pandoraea pnomenusa, Pandoraea sputorum, Pandoraea oxalativorans and Pandoraea pulmonicola belong to novel species. The strains did not harbor acquired antibiotic resistance genes but encoded an OXA-type ß-lactamase. Conclusion: The taxonomy of the genus Pandoraea needs to be revised.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/genética , Fibrose Cística/microbiologia , Genoma Bacteriano , Técnicas de Tipagem Bacteriana , Burkholderiaceae/enzimologia , DNA Ribossômico/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma , beta-Lactamases/genética
13.
Arch Microbiol ; 201(10): 1435-1446, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31428824

RESUMO

A polyphasic approach was used to infer the phylogenetic position of six nitrogen-fixing symbiotic bacteria isolated from Mimosa gymnas nodules grown in an ecotone between the Brazilian biomes of Atlantic Forest and Cerrado, considered as a hotspot of biodiversity. The 16S rRNA gene phylogeny indicated the highest similarity with Paraburkholderia oxyphila (98.7-98.9%), but similar values were found with other Paraburkholderia species. The multilocus sequence analysis (MLSA) of five (recA, gyrB, trpB, gltB, and atpD) housekeeping genes indicated that the CNPSo strains represent a novel lineage, sharing less than 95.7% of nucleotide identity (NI) with other Paraburkholderia species, being more closely related to P. nodosa. Genome parameters were analyzed for strain CNPSo 3008T, and DNA-DNA hybridization revealed a maximum of 55.9% of DNA-DNA relatedness with P. nodosa, while average nucleotide identity with the two closest species was of 93.84% with P. nodosa and of 87.93% with P. mimosarum, both parameters confirming that the strain represents a new species. In the analysis of the nodulation nodC gene, all CNPSo strains showed the highest similarity with P. nodosa, and nodulation tests indicated host specificity with Mimosa. Other phylogenetic, physiological, and chemotaxonomic properties were evaluated. All data obtained support the description of the novel species Paraburkholderia guartelaensis sp. nov., with CNPSo 3008T (= U13000T = G29.01T) indicated as the type strain.


Assuntos
Burkholderiaceae/classificação , Mimosa/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Composição de Bases , Brasil , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Genes Bacterianos/genética , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
14.
Int J Syst Evol Microbiol ; 69(3): 645-651, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30676309

RESUMO

Pandoraea species have been isolated from diverse environmental samples and are emerging important respiratory pathogens, particularly in people with cystic fibrosis (CF). In the present study, two bacterial isolates initially recovered from consecutive sputum samples collected from a CF patient and identified as Pandoraea pnomenusa underwent a polyphasic taxonomic analysis. The isolates were found to be Gram-negative, facultative anaerobic motile bacilli and subsequently designated as strains 6399T (=LMG29626T=DSM103228T) and 7641 (=LMG29627=DSM103229), respectively. Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that 6399T and 7641 formed a distinct phylogenetic lineage within the genus Pandoraea. Genome sequence comparison analysis indicated that strains 6399T and 7641 are clonal and share 100 % similarity, however, similarity to other type strains (ANIb 73.2-88.8 %, ANIm 83.5-89.9 % and OrthoANI 83.2-89.3 %) indicates that 6399T and 7641 do not belong to any of the reported type species. The major cellular fatty acids of 6399T were C16 : 0 (32.1 %) C17 : 0cyclo (18.7 %) and C18 : 1ω7c (14.5 %), while Q-8 was the only respiratory quinone detected. The major polar lipids identified were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of 6399T was 62.9 (mol%). Strain 6399T can be differentiated from other members of Pandoraea by the absence of C19 : 0ω8c cyclo and by the presence of C17 : 0ω8c cyclo. Together our data show that the bacterial strains 6399T and 7641 represent a novel species of the genus Pandoraea, for which the name Pandoraea fibrosis sp. nov. is proposed (type strain 6399T).


Assuntos
Burkholderiaceae/classificação , Filogenia , Escarro/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , Fibrose Cística , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Humanos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tasmânia , Ubiquinona/química
15.
J Microbiol ; 57(2): 107-112, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30456756

RESUMO

The novel Gram-stain-negative, rod-shaped, aerobic bacterial strain DCR-13T was isolated from a native plant belonging to the genus Campanula on Dokdo, an island in the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence indicated that this strain is closely related to Paraburkholderia peleae PP52-1T (98.43% 16S rRNA gene sequence similarity), Paraburkholderia oxyphila NBRC 105797T (98.42%), Paraburkholderia sacchari IPT 101T (98.28%), Paraburkholderia mimosarum NBRC 106338T (97.80%), Paraburkholderia denitrificans KIS30-44T (97.46%), and Paraburkholderia paradise WAT (97.45%). This analysis of the 16S rRNA gene sequence also suggested that DCR-13T and the six closely related strains formed a clade within the genus Paraburkholderia, but that DCR-13T was clearly separated from the established species. DCR-13T had ubiquinone 8 as its predominant respiratory quinone, and its genomic DNA G + C content was 63.9 mol%. The isolated strain grew at a pH of 6.0-8.0 (with an optimal pH of 6.5), 0-4% w/v NaCl (with an optimal level of 0%), and a temperature of 18-42°C (with an optimal temperature of 30°C). The predominant fatty acids were C16:0, summed feature 8 (C18:1ω7c/C18:1ω6c), C17:0 cyclo, C19:0 cyclo ω8c, summed feature 3 (C16:1ω6c/C16:1ω7c) and summed feature 2 (C12:0 aldehyde), and the major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. On the basis of polyphasic evidence, it is proposed that strain DCR-13T (= KCTC 62811T = LMG 30889T) represents the type strain of a novel species, Paraburkholderia dokdonella sp. nov.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Campanulaceae/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Benzoquinonas , Burkholderiaceae/genética , Burkholderiaceae/fisiologia , DNA Bacteriano/análise , Ácidos Graxos/análise , Ilhas , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/análise , Fosfatidilgliceróis/análise , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Microbiologia do Solo , Especificidade da Espécie , Temperatura , Ubiquinona
16.
Arch Microbiol ; 201(4): 443-449, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30288561

RESUMO

A Gram-stain-negative, strictly aerobic, non-motile, ivory colored and rod-shaped bacterium (designated Gsoil 652T) isolated from ginseng cultivating soil, was characterized using a polyphasic approach to clarify its taxonomic position. Strain Gsoil 652T was observed to grow optimally at 30 °C and at pH 7.0 on R2A agar medium. Phylogenetic analysis, based on 16S rRNA gene sequences similarities, indicated that Gsoil 652T belongs to the genus Caballeronia of the family Burkholderiaceae and was most closely related to Caballeronia choica LMG 22940T (98.9%), Caballeronia udeis LMG 27134T (98.9%), Caballeronia sordidicola LMG 22029T (98.2%) and Caballeronia humi LMG 22934T (98.1%). The DNA G+C content was 62.1 mol% and Q-8 was the major isoprenoid quinone. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminophospholipid, and unidentified phospholipid. The predominant fatty acids were C16:0, C17:0 cyclo and C19:0 cyclo ω8c. The DNA-DNA relatedness value between strain Gsoil 652T and closely related type strains of Caballeronia species were less than 36.0%. Moreover, strain Gsoil 652T could be distinguished phenotypically from the recognized species of the genus Caballeronia. The novel isolate, therefore, represents a novel species, for which the name Caballeronia ginsengisoli sp. nov. is proposed, with the type strain Gsoil 652T (= KACC 19441T = LMG 30326T).


Assuntos
Burkholderiaceae/classificação , Microbiologia do Solo , Composição de Bases , Burkholderiaceae/química , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/química , Ácidos Graxos/análise , Panax , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Solo
17.
Microbes Environ ; 33(4): 417-427, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30531154

RESUMO

Endofungal bacteria are widespread within the phylum Mucoromycota, and these include Burkholderiaceae-related endobacteria (BRE). However, the prevalence of BRE in Mortierellomycotinan fungi and their phylogenetic divergence remain unclear. Therefore, we examined the prevalence of BRE in diverse species of Mortierella. We surveyed 238 isolates of Mortierella spp. mainly obtained in Japan that were phylogenetically classified into 59 species. BRE were found in 53 isolates consisting of 22 species of Mortierella. Among them, 20 species of Mortierella were newly reported as the fungal hosts of BRE. BRE in a Glomeribacter-Mycoavidus clade in the family Burkholderiaceae were separated phylogenetically into three groups. These groups consisted of a group containing Mycoavidus cysteinexigens, which is known to be associated with M. elongata, and two other newly distinguishable groups. Our results demonstrated that BRE were harbored by many species of Mortierella and those that associated with isolates of Mortierella spp. were more phylogenetically divergent than previously reported.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Mortierella/classificação , Mortierella/fisiologia , Filogenia , Simbiose , Burkholderiaceae/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Japão , Mortierella/genética , Mortierella/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
ISME J ; 12(9): 2307-2321, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29899517

RESUMO

Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.


Assuntos
Burkholderiaceae/metabolismo , Doenças das Plantas/microbiologia , Microbiologia do Solo , Enxofre/metabolismo , Antibiose , Burkholderiaceae/classificação , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , Liases de Carbono-Enxofre/genética , Ecossistema , Fungos/fisiologia , Proteínas Ferro-Enxofre/genética , Consórcios Microbianos , Oxirredutases/genética , Filogenia , Solo
19.
Int J Syst Evol Microbiol ; 68(1): 310-316, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29185955

RESUMO

A Gram-stain-negative, aerobic, non-motile and rod-shaped bacterial strain, designated NF2-5-3T, was isolated from a paddy soil in Anseong city, Republic of Korea. This bacterium was characterized to determine its taxonomic position using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain NF2-5-3T had a close relationship with, and was related most closely to, members of the genus Paraburkholderia, namely Paraburkholderia caribensis MWAP64T (98.8 % similarity), P. sabiae Br3407T (98.8 %), P. hospita LMG 20598T (98.5 %), P. terrae NBRC 100964T (98.3 %) and P. phymatum STM815T (98.1 %). Growth of strain NF2-5-3T occurred at 15-37 °C, at pH 6.0-8.0 and at NaCl concentrations of 0-2 % (w/v). The major respiratory quinone was ubiquinone 8 (Q-8) and the major fatty acids were C16 : 0, summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c), C17 : 0 cyclo and C16 : 0 3-OH. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, unidentified aminophospholipids, unidentified aminolipids and unidentified polar lipids. The G+C content of the genomic DNA was 64.2 mol%. DNA-DNA relatedness values between strain NF2-5-3T and its closest phylogenetic neighbours were much lower than 70 %. Strain NF2-5-3T could be differentiated phylogenetically and phenotypically from recognized species of the genus Paraburkholderia. The isolate therefore represents a novel species, for which the name Paraburkholderia azotifigens sp. nov. is proposed, with NF2-5-3T (=KACC 18968T=LMG 29961T) as the type strain.


Assuntos
Burkholderiaceae/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , Oryza , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
20.
Int J Syst Evol Microbiol ; 67(11): 4323-4327, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28984551

RESUMO

A gram-negative, rod shaped bacterium designated as strain H2T was isolated from an artificial pond in Korea. The strain H2T was able to grow aerobically and anaerobically with optimal growth occurring at 30 °C and pH 7.0 under aerobic conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain H2T belonged to the genus Chitinimonas of the family Burkholderiaceae. Phylogenetic similarity calculated from 16S rRNA gene sequences of strain H2T and valid species belongs to the genus Chitinimonas ranged from 93.2 % (for Chitinimonas taiwanensis cfT) to 94.4 % (for Chitinimonas prasina LY03T), and strain H2T formed a tight monophyletic group with them. Predominant fatty acids were C16 : 0 and summed feature 3, which consisted of C16 : 1ω6c and/or C16 : 1ω7c. The major respiratory quinone of the strain H2T was ubiquinone-8, and DNA G+C content was 60.2 %. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, unidentified aminolipid, and unidentified phospholipid. The biochemical characteristics that distinguished strain H2T from other Chitinimonas species included positive cystine arylamidase activity and lacked α-chymotrypsin and ß-glucosidase (aesculin hydrolysis) activity. In addition, reciprocal DNA-DNA relatedness between H2T and three Chitinimonas strains ranged from 32.0 to 43.7 %. On the basis of its phylogenetic, chemotaxonomic, and genotypic characteristics, strain H2T represents a novel species of the genus Chitinimonas. Chitinimonas lacunae sp. nov. is proposed with the type strain H2T (=KCTC 52574T=LMG 29894T).


Assuntos
Burkholderiaceae/classificação , Filogenia , Lagoas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA