Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Commun Biol ; 4(1): 569, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980979

RESUMO

Following the FDA-approval of the hematopoietic stem cell (HSC) mobilizer plerixafor, orally available and potent CXCR4 antagonists were pursued. One such proposition was AMD11070, which was orally active and had superior antagonism in vitro; however, it did not appear as effective for HSC mobilization in vivo. Here we show that while AMD11070 acts as a full antagonist, plerixafor acts biased by stimulating ß-arrestin recruitment while fully antagonizing G protein. Consequently, while AMD11070 prevents the constitutive receptor internalization, plerixafor allows it and thereby decreases receptor expression. These findings are confirmed by the successful transfer of both ligands' binding sites and action to the related CXCR3 receptor. In vivo, plerixafor exhibits superior HSC mobilization associated with a dramatic reversal of the CXCL12 gradient across the bone marrow endothelium, which is not seen for AMD11070. We propose that the biased action of plerixafor is central for its superior therapeutic effect in HSC mobilization.


Assuntos
Benzilaminas/farmacologia , Ciclamos/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Receptores CXCR4/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Benzilaminas/metabolismo , Butilaminas/metabolismo , Butilaminas/farmacologia , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Ciclamos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Feminino , Fator Estimulador de Colônias de Granulócitos , Células HEK293 , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Preparações Farmacêuticas/metabolismo , Receptores CXCR3/efeitos dos fármacos , Receptores CXCR3/metabolismo , Receptores CXCR4/efeitos dos fármacos , beta-Arrestinas/efeitos dos fármacos , beta-Arrestinas/metabolismo
2.
Oxid Med Cell Longev ; 2021: 6492879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833850

RESUMO

Inflammation plays a key role in intervertebral disc degeneration (IDD). The association between inflammation and endoplasmic reticulum (ER) stress has been observed in many diseases. However, whether ER stress plays an important role in IDD remains unclear. Therefore, this study is aimed at investigating the expression of ER stress in IDD and at exploring the underlying mechanisms of IDD, ER stress, and inflammation. The expression of ER stress was activated in nucleus pulposus cells from patients who had IDD (D-NPCs) compared with patients without IDD (N-NPCs); and both the proliferation and synthesis capacity were decreased by inducer tunicamycin (Tm) and proinflammatory cytokines. Pretreatment of NPCs with 4-phenyl butyric acid (4-PBA) prevented the inflammatory cytokine-induced upregulation of unfolded protein response- (UPR-) related proteins and recovered cell synthetic ability. Furthermore, proinflammatory cytokine treatment significantly upregulated the expression of inositol-requiring protein 1 (IRE1-α) and protein kinase RNA-like ER kinase (PERK), but not activating transcription factor 6 (ATF6). Finally, knockdown of IRE1-α and PERK also restored the biological activity of NPCs. Our findings identified that IRE1-α and PERK might be the potential targets for IDD treatment, which may help illustrate the underlying mechanism of ER stress in IDD.


Assuntos
Endorribonucleases/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo , Adolescente , Adulto , Anti-Inflamatórios/farmacologia , Butilaminas/farmacologia , Células Cultivadas , Feminino , Humanos , Interleucina-1beta/farmacologia , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Tunicamicina/farmacologia
3.
Aging (Albany NY) ; 13(8): 11135-11149, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33819187

RESUMO

Myocardial infarction (MI) is one of the leading causes of death. Wilms' tumor 1-associating protein (WTAP), one of the components of the m6A methyltransferase complex, has been shown to affect gene expression via regulating mRNA modification. Although WTAP has been implicated in various diseases, its role in MI is unclear. In this study, we found that hypoxia/reoxygenation (H/R) time-dependently increased WTAP expression, which in turn promoted endoplasmic reticulum (ER) stress and apoptosis, in human cardiomyocytes (AC16). H/R effects on ER stress and apoptosis were all blocked by silencing of WTAP, promoted by WTAP overexpression, and ameliorated by administration of ER stress inhibitor, 4-PBA. We then investigated the underlying molecular mechanism and found that WTAP affected m6A methylation of ATF4 mRNA to regulate its expression, and that the inhibitory effects of WTAP on ER stress and apoptosis were ATF4 dependent. Finally, WTAP's effects on myocardial I/R injury were confirmed in vivo. WTAP promoted myocardial I/R injury through promoting ER stress and cell apoptosis by regulating m6A modification of ATF4 mRNA. These findings highlight the importance of WTAP in I/R injury and provide new insights into therapeutic strategies for MI.


Assuntos
Fator 4 Ativador da Transcrição/genética , Proteínas de Ciclo Celular/metabolismo , Infarto do Miocárdio/complicações , Traumatismo por Reperfusão Miocárdica/genética , Fatores de Processamento de RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Butilaminas/farmacologia , Butilaminas/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Técnicas de Silenciamento de Genes , Humanos , Masculino , Metilação , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-32793111

RESUMO

Gender differences in esophageal cancer patients indicate that estradiol may have antitumor effects on esophageal cancer. The initiation of endoplasmic reticulum stress (ERS) can induce apoptosis in esophageal cancer cells. However, it is still unknown whether estradiol inhibits the development of esophageal cancer by activating ERS pathway. In this study, the gender difference in the development of esophageal cancer was observed by analyzing clinical data and the experimental tumor xenografts in mice. Meanwhile, we investigated the mechanism of ERS in estradiol-mediated inhibition of esophageal cancer using esophageal squamous cell carcinoma cell line EC109. The proportion of male patients with esophageal cancer was significantly higher than female patients. Meanwhile, male patients were prone to have adventitial invasion. The weight of transplanted tumors in female mice was significantly smaller than that in male mice. In vitro experiments showed estradiol inhibits the viability and migration of EC109 cells by increasing the expression of ERS-related proteins, whereas ERS inhibitor 4-PBA abolished the effects of estradiol. In conclusion, our data demonstrate that sex difference exists in the occurrence of esophageal cancer. Estradiol can inhibit the viability and migration of esophageal cancer cells through the activation of ERS, providing a novel insight for esophageal cancer development, treatment, and prevention.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Estradiol/farmacologia , Animais , Apoptose , Butilaminas/farmacologia , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/etiologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/etiologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nanotechnology ; 31(24): 245102, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32155591

RESUMO

To construct targeted nanobubbles carrying both small-molecule CXCR4 antagonist AMD070 and light-absorbing material indocyanine green (ICG), and to study their in vitro multimodal imaging, as well as their mechanism and efficacy of inhibition of breast cancer cell growth. Nanobubbles carrying AMD070 and ICG (ICG-TNBs) were constructed by carbodiimide reaction and mechanical oscillation. The physical characteristics and in vitro multimodal imaging were determined. The binding potential of ICG-TNBs to human breast cancer cells were observed by laser confocal microscopy. CCK-8 and flow cytometry were used to analyze the role of ICG-TNBs + US in inhibiting proliferation and inducing apoptosis of tumor cells. Flow cytometry and Western blotting are used to analyse the ROS generation and molecular mechanisms. ICG-TNBs had a particle size of 497.0 ± 29.2 nm and a Zeta potential of -8.05 ± 0.73 mV. In vitro multimodal imaging showed that the image signal intensity of ICG-TNBs increased with concentration. Targeted binding assay confirmed that ICG-TNBs could specifically bind to MCF-7 cells (CXCR4 positive), but not to MDA-MB-468 cells (CXCR4 negative). CCK-8 assay and flow cytometry analysis showed that ICG-TNBs + US could significantly inhibit the growth of MCF-7 breast cancer cells and promote their apoptosis. Flow cytometry and Western blotting showed that ICG-TNBs + US could significantly raise generation of ROS, reduce the expression of CXCR4, inhibit phosphorylation of Akt, and increase the expression of Caspase3 and Cleaved-caspase3. This indicated that ICG-TNBs could effectively inhibit and block the SDF-1/CXCR4 pathway, thus leading to the apoptosis of MCF-7 cells. ICG-TNBs can specifically bind to CXCR4 positive breast cancer cells, furthermore inhibit growth and promote apoptosis of breast cancer cells combined with ultrasonic irradiation by blocking the SDF-1/CXCR4 pathway. This study introduces a novel concept, method and mechanism for integration of targeted diagnosis and treatment of breast cancer.


Assuntos
Aminoquinolinas/farmacologia , Benzimidazóis/farmacologia , Neoplasias da Mama/metabolismo , Butilaminas/farmacologia , Verde de Indocianina/química , Aminoquinolinas/química , Benzimidazóis/química , Neoplasias da Mama/tratamento farmacológico , Butilaminas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Imagem Multimodal , Nanopartículas , Tamanho da Partícula , Técnicas Fotoacústicas , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR4
6.
Curr Mol Med ; 20(2): 157-166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31530264

RESUMO

BACKGROUND: Stearic acid (SA), a saturated long-chain fatty acid consisting of 18 carbon atoms, is widely found in feed ingredients, such as corn, soybeans, and wheat. However, the roles of SA in the renewal of intestinal epithelial cells remain unclear. METHODS AND RESULTS: In the present study, we found that 0.01-0.1 mM SA promoted IPEC-J2 cell differentiation and did not affect IPEC-J2 cell viability. In addition, the results showed that the viability of IPEC-J2 cells was inhibited by SA in a time- and dose-dependent manner at high concentrations. Flow cytometry and western blot analysis suggested that SA induced apoptosis, autophagy and ER stress in cells. In addition, the amounts of triglyceride were significantly increased upon challenge with SA. Moreover, the decrease in the viability of cells induced by SA could be attenuated by 4-PBA, an inhibitor of ER stress. CONCLUSION: In summary, SA accelerated IPEC-J2 cell differentiation at 0.01-0.1 mM. Furthermore, SA induced IPEC-J2 cell apoptosis and autophagy by causing ER stress.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Ácidos Esteáricos/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Butilaminas/farmacologia , Caspase 3/fisiologia , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Jejuno/citologia , L-Lactato Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos , Triglicerídeos/metabolismo
8.
Int J Biochem Cell Biol ; 116: 105612, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31546020

RESUMO

BACKGROUND/AIMS: Epigallocatechin-3-gallate (EGCG), a major catechin found in green tea, plays an important anti-tumor role and is involved in various other biological processes, such as, neuroprotection by prevention of aggregation of misfolded proteins generated because of genetic defects. Surfactant protein A2 mutations (G231V and F198S) have been identified to be associated with pulmonary fibrosis and lung cancer, and these mutations cause protein aggregation, instability as well as secretion deficiency. The present study focused on investigating the inhibitory effects of EGCG on aggregation of mutant SP-A2 and elucidating the potential mechanisms underlying this action. METHODS: Wild-type and mutant SP-A2 were transiently expressed in CHO-K1 cells. The aggregated and soluble proteins were separated into NP-40-insoluble and NP-40-soluble fractions. Protein stability was validated by chymotrypsin limited proteolysis assay. Western blot and RT-PCR were used to determine the protein and mRNA expression level, respectively. RESULTS: Mutant SP-A2 alone or wild-type SP-A2 co-expressed with G231V formed NP-40-insoluble aggregates in CHO-K1 cells. EGCG significantly suppressed this aggregation and alleviated mutant SP-A2 accumulation in the ER. When combined with 4-PBA, EGCG treatment completely blocked mutant SP-A2 aggregate formation. Though secretion of mutant protein was not affected, EGCG facilitated protein instability in both wild-type and mutant protein. Importantly, MG132, a proteasome inhibitor, reversed EGCG-induced aggregate reduction. CONCLUSIONS: EGCG inhibits aggregation of misfolded SP-A2 via induction of protein instability and activation of proteasomal pathway for aggregate degradation.


Assuntos
Catequina/análogos & derivados , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteína A Associada a Surfactante Pulmonar/química , Animais , Butilaminas/farmacologia , Células CHO , Catequina/farmacologia , Cricetulus , Inibidores de Cisteína Proteinase/farmacologia , Detergentes/farmacologia , Expressão Gênica , Leupeptinas/farmacologia , Mutação , Octoxinol/farmacologia , Estabilidade Proteica , Fibrose Pulmonar/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
9.
J Reprod Dev ; 65(5): 459-465, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31406023

RESUMO

The decrease in the level of estradiol (E2) in granulosa cells caused by lipopolysaccharide (LPS) is one of the major causes of infertility underlying postpartum uterine infections; the precise molecular mechanism of which remains elusive. This study investigated the role of endoplasmic reticulum (ER) stress in LPS-induced E2 decrease in mouse granulosa cells. Our results showed that LPS increased the pro-inflammatory cytokines [(interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor (TNF)-α)], activated ER stress marker protein expression [(glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)], and decreased cytochrome P450 family 19 subfamily A member 1 (Cyp19a1) expression and E2 production. Moreover, inhibition of ER stress by 4-phenylbutyrate (4-PBA) attenuated thapsigargin-(TG, ER stress agonist) or LPS-induced reduction of Cyp19a1 and E2, pro-inflammatory cytokines expression (IL-1ß, IL-6, IL-8, and TNF-α), and the expression of CHOP and GRP78. Additionally, inhibition of toll-like receptor 4 (TLR4) by resatorvid (TAK-242) reversed the inhibitory effects of LPS on Cyp19a1 expression and E2 production, activation of GRP78 and CHOP, and expression of IL-1ß, IL-6, IL-8, and TNF-α. In summary, our study suggests that ER stress is involved in LPS-inhibited E2 production in mouse granulosa cells.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estradiol/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Animais , Butilaminas/farmacologia , Células Cultivadas , Citocinas/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estrogênios/farmacologia , Feminino , Inflamação , Lipopolissacarídeos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/metabolismo
10.
Bioorg Chem ; 88: 102937, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048120

RESUMO

Naturally occurring polyamines like Putrescine, Spermidine, and Spermine are polycations which bind to the DNA, hence stabilizing it and promoting the essential cellular processes. Many synthetic polyamine analogues have been synthesized in the past few years, which have shown cytotoxic effects on different tumours. In the present study, we evaluated the antiproliferative effect of a novel, acylspermidine derivative, (N-(4-aminobutyl)-N-(3-aminopropyl)-8-hydroxy-dodecanamide) (AAHD) on HepG2 cells. Fluorescence staining was performed with nuclear stain (Hoechst 33342) and acridine orange/ethidium bromide double staining. Dose and the time-dependent antiproliferative effect were observed by WST-1 assays, and radical scavenging activity was measured by ROS. Morphological changes such as cell shrinkage & blebbing were analyzed by fluorescent microscopy. It was found that AAHD markedly suppressed the growth of HepG2 cells in a dose- and time-dependent manner. It was also noted that the modulation of ROS levels confirmed the radical scavenging activity. In the near future, AAHD can be a promising drug candidate in chalking out a neoplastic strategy to control the proliferation of tumour cells. This study indicated that AAHD induced anti-proliferative and pro-apoptotic activities on HCC. Since AAHD was active at micromolar concentrations without any adverse effects on the healthy cells (Fibroblasts), it is worthy of further clinical investigations.


Assuntos
Antineoplásicos/farmacologia , Butilaminas/farmacologia , Espermidina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Butilaminas/síntese química , Butilaminas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetinae , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Estrutura Molecular , Espermidina/síntese química , Espermidina/química , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacos
11.
Pharmacol Res ; 143: 48-57, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844536

RESUMO

Agonist-induced internalization of G protein-coupled receptors (GPCRs) is a significant step in receptor kinetics and is known to be involved in receptor down-regulation. However, the dopamine D3 receptor (D3R) has been an exception wherein agonist induces D3Rs to undergo desensitization followed by pharmacological sequestration - which is defined as the sequestration of cell surface receptors into a more hydrophobic fraction within the plasma membrane without undergoing the process of receptor internalization. Pharmacological sequestration renders the receptor in an inactive state on the membrane. In our previous study we demonstrated that a novel class of D3R agonists exemplified by SK608 have biased signaling properties via the G-protein dependent pathway and do not induce D3R desensitization. In this study, using radioligand binding assay, immunoblot or immunocytochemistry methods, we observed that SK608 induced internalization of human D3R stably expressed in CHO, HEK and SH-SY5Y cells which are derived from neuroblastoma cells, suggesting that it is not a cell-type specific event. Further, we have evaluated the potential mechanism of D3R internalization induced by these biased signaling agonists. SK608-induced D3R internalization was time- and concentration-dependent. In comparison, dopamine induced D3R upregulation and pharmacological sequestration in the same assays. GRK2 and clathrin/dynamin I/II are the key molecular players in the SK608-induced D3R internalization process, while ß-arrestin 1/2 and GRK-interacting protein 1(GIT1) are not involved. These results suggest that SK608-promoted D3R internalization is similar to the type II internalization observed among peptide binding GPCRs.


Assuntos
Butilaminas/farmacologia , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D3/agonistas , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Dopamina/farmacologia , Células HEK293 , Humanos , Transporte Proteico/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Transdução de Sinais , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
12.
Mol Cells ; 41(5): 401-412, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29754474

RESUMO

Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.


Assuntos
Alcaloides/toxicidade , Antivirais/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Quinolizinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Alcaloides/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Antracenos/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Butilaminas/farmacologia , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Chaperona BiP do Retículo Endoplasmático , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Fosforilação/efeitos dos fármacos , Quinolizinas/farmacologia
13.
Sci Rep ; 7(1): 17498, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29235576

RESUMO

The mechanisms hallmarking melanoma progression are insufficiently understood. Here we studied the impact of the unfolded protein response (UPR) - a signalling cascade playing ambiguous roles in carcinogenesis - in melanoma malignancy. We identified isogenic patient-derived melanoma cell lines harboring BRAFV600E-mutations as a model system to study the role of intrinsic UPR in melanoma progression. We show that the activity of the three effector pathways of the UPR (ATF6, PERK and IRE1) was increased in metastatic compared to non-metastatic cells. Increased UPR-activity was associated with increased flexibility to cope with ER stress. The activity of the ATF6- and the PERK-, but not the IRE-pathway, correlated with poor survival in melanoma patients. Using whole-genome expression analysis, we show that the UPR is an inducer of FGF1 and FGF2 expression and cell migration. Antagonization of the UPR using the chemical chaperone 4-phenylbutyric acid (4-PBA) reduced FGF expression and inhibited cell migration and viability. Consistently, FGF expression positively correlated with the activity of ATF6 and PERK in human melanomas. We conclude that chronic UPR stimulates the FGF/FGF-receptor signalling axis and promotes melanoma progression. Hence, the development of potent chemical chaperones to antagonize the UPR might be a therapeutic approach to target melanoma.


Assuntos
Antineoplásicos/farmacologia , Butilaminas/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Progressão da Doença , Estresse do Retículo Endoplasmático/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanoma/genética , Camundongos , Mutação , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
14.
Life Sci ; 181: 17-22, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465244

RESUMO

AIMS: Obstructive sleep apnea hypopnea syndrome (OSAHS) is associated with abnormal glucose metabolism. Nowadays, endoplasmic reticulum (ER) stress emerges as an important mechanism underlying the development of type 2 diabetes mellitus (T2DM). However, it remains unclear that intermittent hypoxia (IH) could induce ER stress, resulting in abnormality of glucose metabolism. Thus, in the current study we explore the changes of insulin signaling under IH and the role of ER stress underlying these changes. MAIN METHODS: HepG2 cells were exposed to room air (RA) or IH for 8h, 16h and 24h respectively. Oxygen concentration in IH groups was in a dynamic cycle from 21% to 1% every 5min, while it remained at 21% in RA groups. Insulin was added into cell culture medium for AKT and p-AKT measurement. In another experiment set, HepG2 cells were pre-cultured with 4-PBA prior to IH or RA exposure. Expression of AKT, p-AKT, p-JNK, p-IRE1, p-PERK and p-eIF2α was examined by Western Blot. KEY FINDINGS: Compared with RA, p-AKT expression in HepG2 cells under IH for 24h was significantly lower even with insulin treatment. Expression of p-JNK, p-IRE1, ATF6, p-PERK and p-eIF2α were upregulated. p-AKT level in HepG2 with 4-PBA preculture under IH was restored. p-PERK and p-eIF2α expression in HepG2 cells in IH groups with 4-PBA preculture were inhibited while levels of p-JNK and p-IRE1 remained unchanged. SIGNIFICANCE: IH, the hallmarker of OSAHS, could disturb insulin signaling via activating PERK/eIF2α.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Hipóxia/complicações , Insulina/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia , eIF-2 Quinase/metabolismo , Western Blotting , Butilaminas/farmacologia , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Células Hep G2 , Humanos , Insulina/administração & dosagem , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Fatores de Tempo , Regulação para Cima/genética
15.
Osteoarthritis Cartilage ; 25(6): 952-963, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28043938

RESUMO

OBJECTIVE: Articular chondrocyte activation, involving aberrant proliferation and prehypertrophic differentiation, is essential for osteoarthritis (OA) initiation and progression. Disruption of mechanistic target of rapamycin complex 1 (mTORC1) promotes chondrocyte autophagy and survival, and decreases the severity of experimental OA. However, the role of cartilage mTORC1 activation in OA initiation is unknown. In this study, we elucidated the specific role of mTORC1 activation in OA initiation, and identify the underlying mechanisms. METHOD: Expression of mTORC1 in articular cartilage of OA patients and OA mice was assessed by immunostaining. Cartilage-specific tuberous sclerosis complex 1 (Tsc1, mTORC1 upstream inhibitor) knockout (TSC1CKO) and inducible Tsc1 KO (TSC1CKOER) mice were generated. The functional effects of mTORC1 in OA initiation and development on its downstream targets were examined by immunostaining, western blotting and qPCR. RESULTS: Articular chondrocyte mTORC1 was activated in early-stage OA and in aged mice. TSC1CKO mice exhibited spontaneous OA, and TSC1CKOER mice (from 2 months) exhibited accelerated age-related and DMM-induced OA phenotypes, with aberrant chondrocyte proliferation and hypertrophic differentiation. This was associated with hyperactivation of mTORC1 and dramatic downregulation of FGFR3 and PPR, two receptors critical for preventing chondrocyte proliferation and differentiation. Rapamycin treatment reversed these phenotypes in KO mice. Furthermore, in vitro rescue experiments demonstrated that p73 and ERK1/2 may mediate the negative regulation of FGFR3 and PPR by mTORC1. CONCLUSION: mTORC1 activation stimulates articular chondrocyte proliferation and differentiation to initiate OA, in part by downregulating FGFR3 and PPR.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Animais , Butilaminas/farmacologia , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Proliferação de Células/genética , Condrócitos/efeitos dos fármacos , Regulação para Baixo , Feminino , Humanos , Hipertrofia , Imunossupressores/farmacologia , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/patologia , Masculino , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/efeitos dos fármacos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/efeitos dos fármacos , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-28018864

RESUMO

Mycobacterium bovis (M. bovis) is highly adapted to macrophages and has developed multiple mechanisms to resist intracellular assaults. However, the host cells in turn deploy a multipronged defense mechanism to control bacterial infection. Endoplasmic reticulum (ER) stress-mediated apoptosis is one such primary defense mechanism. However, the role of interferon regulatory factor 3 (IRF3) between ER stress and apoptosis during M. bovis infection is unknown. Here, we demonstrate that M. bovis effectively induced apoptosis in murine macrophages. Caspase-12, caspase-9, and caspase-3 were activated over a 48 h infection period. The splicing of XBP-1 mRNA and the level of phosphorylation of eIF2α, indicators of ER stress, significantly increased at early time points after M. bovis infection. The expansion of the ER compartment, a morphological hallmark of ER stress, was observed at 6 h. Pre-treatment of Raw 264.7 cells with 4-PBA (an ER stress-inhibitor) reduced the activation of the ER stress indicators, caspase activation and its downstream poly (ADP-ribose) polymerase (PARP) cleavage, phosphorylation of TBK1 and IRF3 and cytoplasmic co-localization of STING and TBK1. M. bovis infection led to the interaction of activated IRF3 and cytoplasmic Bax leading to mitochondrial damage. Role of IRF3 in apoptosis was further confirmed by blocking this molecule with BX-795 that showed significant reduction expression of caspase-8 and caspase-3. Intracellular survival of M. bovis increased in response to 4-PBA and BX-795. These findings indicate that STING-TBK1-IRF3 pathway mediates a crosstalk between ER stress and apoptosis during M. bovis infection, which can effectively control intracellular bacteria.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/metabolismo , Mycobacterium bovis/fisiologia , Tuberculose/microbiologia , Animais , Apoptose/fisiologia , Butilaminas/farmacologia , Caspases/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Camundongos , Mitofagia/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/farmacologia , Células RAW 264.7 , Tiofenos/farmacologia , Tuberculose/metabolismo , Tuberculose/patologia , Proteína 1 de Ligação a X-Box/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Reprod Toxicol ; 65: 187-193, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27449334

RESUMO

Endocrine disruptor 2,2',4,4'-tetrabromodiphenylether (PBDE-47) can harm the female reproductive system. Recent studies showed that PBDE-47 neurotoxicity is associated with endoplasmic reticulum stress (ERS); however, the role of ERS in PBDE-47-induced ovarian injury is unclear. New-born female Sprague-Dawley rats were orally exposed to PBDE-47 (1, 5, or 10mg/kg bw) on postnatal day 10. An additional 10mg/kg bw PBDE-47 group was given the ERS inhibitor 4-PBA intraperitoneally for three weeks beginning on postnatal day 8. At 2 months of age, PBDE-47 exposure significantly reduced the ovarian coefficients, increased the expression of ERS and autophagy markers, including GRP78, IRE1, Caspase-12, Beclin1, LC3 and P62. In the 10mg/kg bw PBDE-47 group, PARP and Caspase-3 were markedly activated, indicative of apoptosis. These were accompanied by histopathological damage. Intriguingly, 4-PBA attenuated all these effects. Thus, these results suggest that ERS plays a vital role in PBDE-47-induced ovarian injury by regulating autophagy and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Ovário/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Butilaminas/farmacologia , Feminino , Ovário/patologia , Ratos Sprague-Dawley
18.
Int J Oncol ; 49(2): 529-38, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27277821

RESUMO

Castration-resistant prostate cancer (CRPC) is a major cause of prostate cancer (Pca) death. Chemotherapy is able to improve the survival of CRPC patients. We previously found that NSC606985 (NSC), a highly water-soluble camptothecin analog, induced cell death in Pca cells via interaction with topoisomerase 1 and activation of the mitochondrial apoptotic pathway. To further elucidate the role of NSC, we studied the effect of NSC on ER-stress and its association with NSC-induced cell death in Pca cells. NSC produced a time- and dose-dependent induction of GRP78, CHOP and XBP1s mRNA, and CHOP protein expression in Pca cells including DU145, indicating an activation of ER-stress. However, unlike conventional ER-stress in which GRP78 protein is increased, NSC produced a time- and dose-dependent U-shape change in GRP78 protein in DU145 cells. The NSC-induced decrease in GRP78 protein was blocked by protease inhibitors, N-acetyl-L-leucyl-L-leucylnorleucinal (ALLN), a lysosomal protease inhibitor, and epoxomicin (EPO), a ubiquitin-protease inhibitor. ALLN, but not EPO, also partially inhibited NSC-induced cell death. However, both 4-PBA and TUDCA, two chemical chaperons that effectively reduced tunicamycin-induced ER-stress, failed to attenuate NSC-induced GRP78, CHOP and XBP1s mRNA expression and cell death. Moreover, knockdown of NSC induction of CHOP expression using a specific siRNA had no effect on NSC-induced cytochrome c release and NSC-induced cell death. These results suggest that NSC produced an atypical ER-stress that is dissociated from NSC-induced activation of the mitochondrial apoptotic pathway and NSC-induced cell death in DU145 prostate cancer cells.


Assuntos
Camptotecina/análogos & derivados , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Apoptose/efeitos dos fármacos , Butilaminas/farmacologia , Camptotecina/farmacologia , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Inibidores de Proteases/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia
19.
Aging (Albany NY) ; 8(12): 3552-3567, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28039491

RESUMO

At present, there are no reports on the relationship between fluoride-induced apoptosis and endoplasmic reticulum (ER) stress (ER stress) in the spleen of human and animals in vivo and in vitro. Therefore, the aim of this study was to define sodium fluoride (NaF)-induced apoptosis mediated by ER stress in the spleen of mice in vivo and in vitro. Apoptosis and expression levels of the ER stress-related proteins were detected by flow cytometry and western blot, respectively. The results showed that NaF treatment increased lymphocytes apoptosis, which was consistent with NaF-caused ER Stress. NaF-caused ER stress was characterized by up-regulating protein expression levels of glucose-regulated protein 78 (BiP) and glucose-regulated protein 94 (GRP94), and by activating unfolded protein response (UPR). The signaling pathway of ER stress-associated apoptosis was activated by up-regulating protein expression levels of cleaved cysteine aspartate specific protease-12 (cleaved caspase-12), growth arrest and DNA damage-inducible gene 153 (Gadd153/CHOP) and phosphorylation of JUN N-terminal kinase (p-JNK). Additionally, our in vitro study found that apoptotic rate was decreased with remarkable down-regulation of the cleaved caspase-12, CHOP, p-JNK after ER stress was inhibited by 4-Phenylbutyric acid (4-PBA) treatment. In conclusion, NaF-induced apoptosis may mediated by ER stress in the spleen.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Fluoreto de Sódio/farmacologia , Baço/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Butilaminas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Chaperonas Moleculares , Transdução de Sinais/efeitos dos fármacos , Baço/citologia
20.
Neuropharmacology ; 101: 179-87, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26386152

RESUMO

Benzonatate was FDA-approved in 1958 as an antitussive. Its mechanism of action is thought to be anesthesia of vagal sensory nerve fibers that mediate cough. Vagal sensory neurons highly express the Nav1.7 subtype of voltage-gated sodium channels, and inhibition of this channel inhibits the cough reflex. Local anesthetics inhibit voltage-gated sodium channels, but there are no reports of whether benzonatate affects these channels. Our hypothesis is that benzonatate inhibits Nav1.7 voltage-gated sodium channels. We used whole cell voltage clamp recording to test the effects of benzonatate on voltage-gated sodium (Na(+)) currents in two murine cell lines, catecholamine A differentiated (CAD) cells, which express primarily Nav1.7, and N1E-115, which express primarily Nav1.3. We found that, like local anesthetics, benzonatate strongly and reversibly inhibits voltage-gated Na(+) channels. Benzonatate causes both tonic and phasic inhibition. It has greater effects on channel inactivation than on activation, and its potency is much greater at depolarized potentials, indicating inactivated-state-specific effects. Na(+) currents in CAD cells and N1E-115 cells are similarly affected, indicating that benzonatate is not Na(+) channel subtype-specific. Benzonatate is a mixture of polyethoxy esters of 4-(butylamino) benzoic acid having varying degrees of hydrophobicity. We found that Na(+) currents are inhibited most potently by a benzonatate fraction containing the 9-ethoxy component. Detectable effects of benzonatate occur at concentrations as low as 0.3 µM, which has been reported in humans. We conclude that benzonatate has local anesthetic-like effects on voltage-gated sodium channels, including Nav1.7, which is a possible mechanism for cough suppression by the drug.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antitussígenos/farmacologia , Fenômenos Biofísicos/efeitos dos fármacos , Butilaminas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Análise de Variância , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Estimulação Elétrica , Camundongos , Neuroblastoma/patologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Sódio/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA