Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hypertens ; 41(5): 775-793, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883465

RESUMO

OBJECTIVES: Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme in the fatty acid oxidation process, is not only involved in ATP synthesis but also regulates the production of mitochondrial reactive oxygen species (ROS) and nitric oxide synthesis. The purpose of this study was to investigate the possible role of SCAD in hypertension-associated vascular remodelling. METHODS: In-vivo experiments were performed on spontaneously hypertensive rats (SHRs, ages of 4 weeks to 20 months) and SCAD knockout mice. The aorta sections of hypertensive patients were used for measurement of SCAD expression. In-vitro experiments with t-butylhydroperoxide (tBHP), SCAD siRNA, adenovirus-SCAD (MOI 90) or shear stress (4, 15 dynes/cm 2 ) were performed using human umbilical vein endothelial cells (HUVECs). RESULTS: Compared with age-matched Wistar rats, aortic SCAD expression decreased gradually in SHRs with age. In addition, aerobic exercise training for 8 weeks could significantly increase SCAD expression and enzyme activity in the aortas of SHRs while decreasing vascular remodelling in SHRs. SCAD knockout mice also exhibited aggravated vascular remodelling and cardiovascular dysfunction. Likewise, SCAD expression was also decreased in tBHP-induced endothelial cell apoptosis models and the aortas of hypertensive patients. SCAD siRNA caused HUVEC apoptosis in vitro , whereas adenovirus-mediated SCAD overexpression (Ad-SCAD) protected against HUVEC apoptosis. Furthermore, SCAD expression was decreased in HUVECs exposed to low shear stress (4 dynes/cm 2 ) and increased in HUVECs exposed to 15 dynes/cm 2 compared with those under static conditions. CONCLUSION: SCAD is a negative regulator of vascular remodelling and may represent a novel therapeutic target for vascular remodelling.


Assuntos
Butiril-CoA Desidrogenase , Hipertensão , Ratos , Animais , Camundongos , Humanos , Recém-Nascido , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Remodelação Vascular , Ratos Endogâmicos SHR , Ratos Wistar , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Interferente Pequeno/metabolismo , Camundongos Knockout
2.
Int J Med Sci ; 18(16): 3631-3643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790035

RESUMO

Background: Acyl-CoA dehydrogenase short-chain (ACADS) is a crucial enzyme in the fatty acid metabolism pathway located in mitochondria. However, the expression level and prognostic value of ACADS in colorectal cancer (CRC) remain unclear. Methods: The mRNA and protein expression data of ACADS was obtained from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Oncomine. Prognostic values of ACADS were calculated using Kaplan-Meier survival analysis. Correlations between ACADS and immune infiltration were estimated using TIMER, CIBERSORT, EPIC, quanTIseq, and xCell. The UALCAN and MEXPRESS databases were utilized for Methylation analysis. The co-expression analysis based on mRNA expression and interaction network of ACADS were performed via several online tools. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on ACADS co-expressed genes were performed using the Metascape. Results: The expression analysis demonstrated that ACADS was down-regulated in CRC tissues compared with paired normal tissue. Expression of ACADS was found to be significantly associated with clinical cancer stages and the consensus molecular subgroups (CMS) constituent ratio in CRC patients. Besides, lower ACADS expression was found to predict poor prognosis and be significantly associated with common immune checkpoint genes and MMR genes in CRC. ACADS expression levels were positively related to B cells, CD4+ T cells, CD8+ T cells, M1 macrophages, neutrophils, and Tregs, while negatively correlated with M0 macrophages, M2 macrophages. The methylation level of ACADS in normal tissues was significantly higher than that in tumor tissues, and several methylation sites were identified. The enrichment analysis suggested the co-expressed genes mainly enriched in cell mitochondrial metabolism. Conclusions: The present study provided multilevel evidences for expression of ACADS in CRC and the function of ACADS in prognostic prediction, immune infiltration, and methylation. ACADS might have the potential as the novel biomarker and therapeutic target in CRC patients.


Assuntos
Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Neoplasias Colorretais/diagnóstico , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma/diagnóstico , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/mortalidade , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Valor Preditivo dos Testes , Prognóstico , Proteômica , Análise de Sobrevida , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
3.
Biochem Pharmacol ; 178: 114100, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32540485

RESUMO

Short-chain acyl-CoA dehydrogenase (SCAD), the rate-limiting enzyme for fatty acid ß-oxidation, has a negative regulatory effect on pathological cardiac hypertrophy and fibrosis. Furthermore, flavin adenine dinucleotide (FAD) can enhance the expression and enzyme activity of SCAD. However, whether FAD can inhibit pathological cardiac hypertrophy and fibrosis remains unclear. Therefore, we observed the effect of FAD on pathological cardiac hypertrophy and fibrosis. FAD significantly inhibited PE-induced cardiomyocyte hypertrophy and AngII-induced cardiac fibroblast proliferation. In addition, FAD ameliorated pathological cardiac hypertrophy and fibrosis in SHR. FAD significantly increased the expression and enzyme activity of SCAD. Meanwhile, ATP content was increased, the content of free fatty acids and reactive oxygen species were decreased by FAD in vivo and in vitro. In addition, molecular dynamics simulations were also used to provide insights into the structural stability and dynamic behavior of SCAD. The results demonstrated that FAD may play an important structural role on the SCAD dimer stability and maintenance of substrate catalytic pocket to increase the expression and enzyme activity of SCAD. In conclusion, FAD can inhibit pathological cardiac hypertrophy and fibrosis through activating SCAD, which may be a novel effective treatment for pathological cardiac hypertrophy and fibrosis, thus prevent them from developing into heart failure.


Assuntos
Butiril-CoA Desidrogenase/genética , Cardiomegalia/prevenção & controle , Cardiotônicos/farmacologia , Fibroblastos/efeitos dos fármacos , Flavina-Adenina Dinucleotídeo/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Animais , Sítios de Ligação , Butiril-CoA Desidrogenase/metabolismo , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Estabilidade Enzimática , Ácidos Graxos não Esterificados/antagonistas & inibidores , Ácidos Graxos não Esterificados/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/prevenção & controle , Masculino , Simulação de Dinâmica Molecular , Miocárdio/enzimologia , Miocárdio/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
4.
Appl Environ Microbiol ; 81(14): 4782-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956767

RESUMO

Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the reduction of ferredoxin. Oxidation of reduced ferredoxin is catalyzed by the Rnf complex and Na(+) dependent. Consistent with the finding of a Na(+)-dependent Rnf complex is the presence of a conserved Na(+)-binding motif in the c subunit of the ATP synthase. Butyrate formation is from acetyl-CoA via acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA and is consistent with the finding of a gene cluster that encodes the enzymes for this pathway. The activity of the butyryl-CoA dehydrogenase was demonstrated. Reduction of crotonyl-CoA to butyryl-CoA with NADH as the reductant was coupled to reduction of ferredoxin. We postulate that the butyryl-CoA dehydrogenase uses flavin-based electron bifurcation to reduce ferredoxin, which is consistent with the finding of etfA and etfB genes next to it. The overall ATP yield was calculated and is significantly higher than the one obtained with H2 + CO2. The energetic benefit may be one reason that butyrate is formed only from CO but not from H2 + CO2.


Assuntos
Butiratos/metabolismo , Monóxido de Carbono/metabolismo , Eubacterium/metabolismo , Acil Coenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Metabolismo Energético , Eubacterium/enzimologia , Eubacterium/genética , Flavinas/metabolismo , Genômica , Oxirredução
5.
Appl Biochem Biotechnol ; 169(3): 950-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23292245

RESUMO

Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60% CO and 40% H2 in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p < 0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.


Assuntos
1-Butanol/metabolismo , Clostridium/enzimologia , Clostridium/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Fermentação , Oxirredutases/genética , Oxirredutases/metabolismo
6.
Biochem Biophys Res Commun ; 400(3): 318-22, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20727852

RESUMO

Brown adipose tissue is a highly specialized organ that uses mitochondrial fatty acid oxidation to fuel non-shivering thermogenesis. In mice, mutations in the acyl-CoA dehydrogenase family of fatty acid oxidation genes are associated with sensitivity to cold. Brown adipose tissue function has not previously been characterized in these knockout strains. Short-chain acyl-CoA dehydrogenase (SCAD) deficient mice were found to have increased brown adipose tissue mass as well as modest cardiac hypertrophy. Uncoupling protein-1 was reduced by 70% in brown adipose tissue and this was not due to a change in mitochondrial number, nor was it due to decreased signal transduction through protein kinase A which is known to be a major regulator of uncoupling protein-1 expression. PKA activity and in vitro lipolysis were normal in brown adipose tissue, although in white adipose tissue a modest increase in basal lipolysis was seen in SCAD-/- mice. Finally, an in vivo norepinephrine challenge of brown adipose tissue thermogenesis revealed normal heat production in SCAD-/- mice. These results suggest that reduced brown adipose tissue function is not the major factor causing cold sensitivity in acyl-CoA dehydrogenase knockout strains. We speculate that other mechanisms such as shivering capacity, cardiac function, and reduced hepatic glycogen stores are involved.


Assuntos
Tecido Adiposo Marrom/fisiologia , Butiril-CoA Desidrogenase/genética , Temperatura Baixa , Termogênese/genética , Acil-CoA Desidrogenase de Cadeia Longa/genética , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/enzimologia , Animais , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais Iônicos/metabolismo , Lipólise/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Norepinefrina/farmacologia , Estremecimento/genética , Proteína Desacopladora 1
7.
Hum Gene Ther ; 19(6): 579-88, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18500942

RESUMO

Recombinant adeno-associated viral vectors pseudotyped with serotype 5 and 8 capsids (AAV5 and AAV8) have been shown to be efficient gene transfer reagents for the liver. We have produced AAV5 and AAV8 vectors that express mouse short-chain acyl-CoA dehydrogenase (mSCAD) cDNA under the transcriptional control of the cytomegalovirus-chicken beta-actin hybrid promoter. We hypothesized that these vectors would produce sufficient hepatocyte transduction (after administration via the portal vein) and thus sufficient SCAD enzyme to correct the phenotype observed in the SCAD-deficient (BALB/cByJ) mouse, which includes elevated blood butyrylcarnitine and hepatic steatosis. Ten weeks after portal vein injection into 8-week-old mice, AAV8-treated livers contained acyl-CoA dehydrogenase activity (14.3 mU/mg) toward butyryl-CoA, compared with 7.6 mU/mg in mice that received phosphate-buffered saline. Immunohistochemistry showed expression of mSCAD within rAAV8-mSCAD-transduced hepatocytes, as seen by light microscopy. A significant reduction of circulating butyrylcarnitine was seen in AAV5-mSCAD- and AAV8-mSCAD-injected mice. Magnetic resonance spectroscopy of fasted mice demonstrated a significant reduction in relative lipid content within the livers of AAV8-mSCAD-treated mice. These results demonstrate biochemical correction of SCAD deficiency after AAV8-mediated SCAD gene delivery.


Assuntos
Butiril-CoA Desidrogenase/deficiência , Butiril-CoA Desidrogenase/genética , Dependovirus , Terapia Genética , Fígado , Erros Inatos do Metabolismo/terapia , Actinas/genética , Animais , Carnitina/análogos & derivados , Carnitina/sangue , Citomegalovirus/genética , Vetores Genéticos , Injeções Intravenosas , Fígado/irrigação sanguínea , Camundongos , Camundongos Mutantes , Veia Porta , Regiões Promotoras Genéticas , Transdução Genética/métodos
8.
Nat Clin Pract Endocrinol Metab ; 3(1): 57-68, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17179930

RESUMO

Hyperinsulinism is the single most common mechanism of hypoglycemia in neonates. Dysregulated insulin secretion is responsible for the transient and prolonged forms of neonatal hypoglycemia, and congenital genetic disorders of insulin regulation represent the most common of the permanent disorders of hypoglycemia. Mutations in at least five genes have been associated with congenital hyperinsulinism: they encode glucokinase, glutamate dehydrogenase, the mitochondrial enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase, and the two components (sulfonylurea receptor 1 and potassium inward rectifying channel, subfamily J, member 11) of the ATP-sensitive potassium channels (K(ATP) channels). K(ATP) hyperinsulinism is the most common and severe form of congenital hyperinsulinism. Infants suffering from K(ATP) hyperinsulinism present shortly after birth with severe and persistent hypoglycemia, and the majority are unresponsive to medical therapy, thus requiring pancreatectomy. In up to 40-60% of the children with K(ATP) hyperinsulinism, the defect is limited to a focal lesion in the pancreas. In these children, local resection results in cure with avoidance of the complications inherent to a near-total pancreatectomy. Hyperinsulinism can also be part of other disorders such as Beckwith-Wiedemann syndrome and congenital disorders of glycosylation. The diagnosis and management of children with congenital hyperinsulinism requires a multidisciplinary approach to achieve the goal of therapy: prevention of permanent brain damage due to recurrent hypoglycemia.


Assuntos
Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/terapia , Algoritmos , Butiril-CoA Desidrogenase/genética , Hiperinsulinismo Congênito/classificação , Hiperinsulinismo Congênito/etiologia , Hiperinsulinismo Congênito/genética , Glucoquinase/genética , Glutamato Desidrogenase/genética , Glicosilação , Humanos , Recém-Nascido , Modelos Biológicos , Canais de Potássio/genética , Prognóstico , Resultado do Tratamento
9.
Hum Gene Ther ; 17(1): 71-80, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16409126

RESUMO

Mitochondrial beta-oxidation of fatty acids is required to meet physiologic energy requirements during illness and periods of fasting or physiologic stress, and is most active in liver and striated muscle. Acyl-CoA dehydrogenases of varying chain-length specificities represent the first step in the mitochondria for each round of beta-oxidation, each of which removes two-carbon units as acetyl-CoA for entry into the tricarboxylic acid cycle. We have used recombinant adeno-associated virus (rAAV) vectors expressing short-chain acyl-CoA dehydrogenase (SCAD) to correct the accumulation of fatty acyl-CoA intermediates in deficient cell lines. The rAAV-SCAD vector was then packaged into either rAAV serotype 1 or 2 capsids and injected intramuscularly into SCAD-deficient mice. A systemic effect was observed as judged by restoration of circulating butyryl- carnitine levels to normal. Total lipid content at the injection site was also decreased as demonstrated by noninvasive magnetic resonance spectroscopy (MRS). SCAD enzyme activity in the injected muscle was found at necropsy to be above the normal control mouse level. This study is the first to demonstrate the systemic correction of a fatty acid oxidation disorder with rAAV and the utility of MRS as a noninvasive method to monitor SCAD correction after in vivo gene therapy.


Assuntos
Dependovirus/fisiologia , Ácidos Graxos/metabolismo , Terapia Genética/métodos , Vetores Genéticos/fisiologia , Erros Inatos do Metabolismo Lipídico/terapia , Animais , Butiril-CoA Desidrogenase/deficiência , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Carnitina/análogos & derivados , Carnitina/análise , Carnitina/sangue , Linhagem Celular , DNA Recombinante , Dependovirus/enzimologia , Ácidos Graxos/análise , Feminino , Fibroblastos/metabolismo , Humanos , Injeções Intramusculares , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculos/química , Músculos/enzimologia , Oxirredução , Reprodutibilidade dos Testes , Transdução Genética
10.
Endocr Pathol ; 15(3): 233-40, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15640549

RESUMO

Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous entity and causes severe hypoglycemia in neonates and infants. The clinical heterogeneity is manifested by severity ranging from extremely severe, life-threatening disease to very mild clinical symptoms, which may even be difficult to identify. Furthermore, clinical responsiveness to medical and surgical management is extremely variable. Recent discoveries have begun to clarify the molecular etiology of this disease in about 50% of cases. Mutations in five different genes have been identified in patients with this clinical syndrome. Most cases are caused by mutations in the genes ABCC8 and KCNJ11 coding for either of the two subunits of the beta-cell KATP channel (SUR1 and Kir6.2). Recessive mutations of the beta-cell K(ATP) channel genes cause diffuse HI, whereas loss of heterozygosity together with inheritance of a paternal mutation causes focal adenomatous HI. In other cases, CHI is caused by mutations in genes coding for the beta-cell enzymes glucokinase (GK), glutamate dehydrogenase (GDH), and SCHAD. However, for as many as 50% of the cases, no genetic etiology has yet been determined. The study of the genetics of this disease has provided important new information regarding beta-cell physiology.


Assuntos
Hiperinsulinismo Congênito/genética , Mutação , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Hiperinsulinismo Congênito/metabolismo , Hiperinsulinismo Congênito/patologia , Glucoquinase/genética , Glucoquinase/metabolismo , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Humanos , Lactente , Recém-Nascido , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/genética , Receptores de Droga/metabolismo , Receptores de Sulfonilureias
11.
Mol Genet Metab ; 78(4): 239-46, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12706374

RESUMO

Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a clinically heterogeneous disorder. The clinical phenotype varies from fatal metabolic decompensation in early life to subtle adult onset, some patients remain asymptomatic. Two mutations (511C>T; 625G>A) have been described in exons 5 and 6 of the SCAD gene. Although they alter the structural and catalytic properties of the SCAD protein, these variants are not true disease-causing mutations but confer disease susceptibility. Previous studies found these gene variants to be common in Europeans. We aimed to establish the frequency of these variants in the US population and to determine whether the presence of these variants correlates with elevated butyrylcarnitine (C(4)-acylcarnitine) concentrations in newborn blood spots. Based on the analysis of 694 samples, we found that the allele frequency of the 625G>A variant was significantly higher (22%) than that of the 511C>T variant (3%). These gene variants were detected in either homozygous or compound heterozygous form in 7% of the study population. Additionally, the frequency of the 625G>A allele in the Hispanic population (30%) was significantly higher than that of the African-American (9%) and Asian (13%) subpopulations. A previously unreported variant, IVS 5 (-10) C>T, was identified in three African-American newborns (0.3%). The C(4)-acylcarnitine concentration in blood spots was significantly higher in subjects homozygous for the 625A variant when compared to those homozygous for the wild type (p<0.0001). However, none of the observed genotypes was associated with a concentration of C(4)-acylcarnitine that would be consistent with a biochemical diagnosis of SCAD deficiency.


Assuntos
Butiril-CoA Desidrogenase/genética , Carnitina/análogos & derivados , Variação Genética , Genética Populacional , Alelos , Butiril-CoA Desidrogenase/deficiência , Carnitina/biossíntese , Carnitina/química , Carnitina/metabolismo , Éxons , Ácidos Graxos/metabolismo , Frequência do Gene , Genótipo , Heterozigoto , Homozigoto , Humanos , Recém-Nascido , Programas de Rastreamento , Espectrometria de Massas , Mutação , Fenótipo , Espalhamento de Radiação , Temperatura , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA