Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hypertens ; 41(5): 775-793, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883465

RESUMO

OBJECTIVES: Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme in the fatty acid oxidation process, is not only involved in ATP synthesis but also regulates the production of mitochondrial reactive oxygen species (ROS) and nitric oxide synthesis. The purpose of this study was to investigate the possible role of SCAD in hypertension-associated vascular remodelling. METHODS: In-vivo experiments were performed on spontaneously hypertensive rats (SHRs, ages of 4 weeks to 20 months) and SCAD knockout mice. The aorta sections of hypertensive patients were used for measurement of SCAD expression. In-vitro experiments with t-butylhydroperoxide (tBHP), SCAD siRNA, adenovirus-SCAD (MOI 90) or shear stress (4, 15 dynes/cm 2 ) were performed using human umbilical vein endothelial cells (HUVECs). RESULTS: Compared with age-matched Wistar rats, aortic SCAD expression decreased gradually in SHRs with age. In addition, aerobic exercise training for 8 weeks could significantly increase SCAD expression and enzyme activity in the aortas of SHRs while decreasing vascular remodelling in SHRs. SCAD knockout mice also exhibited aggravated vascular remodelling and cardiovascular dysfunction. Likewise, SCAD expression was also decreased in tBHP-induced endothelial cell apoptosis models and the aortas of hypertensive patients. SCAD siRNA caused HUVEC apoptosis in vitro , whereas adenovirus-mediated SCAD overexpression (Ad-SCAD) protected against HUVEC apoptosis. Furthermore, SCAD expression was decreased in HUVECs exposed to low shear stress (4 dynes/cm 2 ) and increased in HUVECs exposed to 15 dynes/cm 2 compared with those under static conditions. CONCLUSION: SCAD is a negative regulator of vascular remodelling and may represent a novel therapeutic target for vascular remodelling.


Assuntos
Butiril-CoA Desidrogenase , Hipertensão , Ratos , Animais , Camundongos , Humanos , Recém-Nascido , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Remodelação Vascular , Ratos Endogâmicos SHR , Ratos Wistar , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Interferente Pequeno/metabolismo , Camundongos Knockout
2.
Int J Med Sci ; 18(16): 3631-3643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790035

RESUMO

Background: Acyl-CoA dehydrogenase short-chain (ACADS) is a crucial enzyme in the fatty acid metabolism pathway located in mitochondria. However, the expression level and prognostic value of ACADS in colorectal cancer (CRC) remain unclear. Methods: The mRNA and protein expression data of ACADS was obtained from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Oncomine. Prognostic values of ACADS were calculated using Kaplan-Meier survival analysis. Correlations between ACADS and immune infiltration were estimated using TIMER, CIBERSORT, EPIC, quanTIseq, and xCell. The UALCAN and MEXPRESS databases were utilized for Methylation analysis. The co-expression analysis based on mRNA expression and interaction network of ACADS were performed via several online tools. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on ACADS co-expressed genes were performed using the Metascape. Results: The expression analysis demonstrated that ACADS was down-regulated in CRC tissues compared with paired normal tissue. Expression of ACADS was found to be significantly associated with clinical cancer stages and the consensus molecular subgroups (CMS) constituent ratio in CRC patients. Besides, lower ACADS expression was found to predict poor prognosis and be significantly associated with common immune checkpoint genes and MMR genes in CRC. ACADS expression levels were positively related to B cells, CD4+ T cells, CD8+ T cells, M1 macrophages, neutrophils, and Tregs, while negatively correlated with M0 macrophages, M2 macrophages. The methylation level of ACADS in normal tissues was significantly higher than that in tumor tissues, and several methylation sites were identified. The enrichment analysis suggested the co-expressed genes mainly enriched in cell mitochondrial metabolism. Conclusions: The present study provided multilevel evidences for expression of ACADS in CRC and the function of ACADS in prognostic prediction, immune infiltration, and methylation. ACADS might have the potential as the novel biomarker and therapeutic target in CRC patients.


Assuntos
Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Neoplasias Colorretais/diagnóstico , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma/diagnóstico , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/mortalidade , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Valor Preditivo dos Testes , Prognóstico , Proteômica , Análise de Sobrevida , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
3.
Biochem Pharmacol ; 178: 114100, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32540485

RESUMO

Short-chain acyl-CoA dehydrogenase (SCAD), the rate-limiting enzyme for fatty acid ß-oxidation, has a negative regulatory effect on pathological cardiac hypertrophy and fibrosis. Furthermore, flavin adenine dinucleotide (FAD) can enhance the expression and enzyme activity of SCAD. However, whether FAD can inhibit pathological cardiac hypertrophy and fibrosis remains unclear. Therefore, we observed the effect of FAD on pathological cardiac hypertrophy and fibrosis. FAD significantly inhibited PE-induced cardiomyocyte hypertrophy and AngII-induced cardiac fibroblast proliferation. In addition, FAD ameliorated pathological cardiac hypertrophy and fibrosis in SHR. FAD significantly increased the expression and enzyme activity of SCAD. Meanwhile, ATP content was increased, the content of free fatty acids and reactive oxygen species were decreased by FAD in vivo and in vitro. In addition, molecular dynamics simulations were also used to provide insights into the structural stability and dynamic behavior of SCAD. The results demonstrated that FAD may play an important structural role on the SCAD dimer stability and maintenance of substrate catalytic pocket to increase the expression and enzyme activity of SCAD. In conclusion, FAD can inhibit pathological cardiac hypertrophy and fibrosis through activating SCAD, which may be a novel effective treatment for pathological cardiac hypertrophy and fibrosis, thus prevent them from developing into heart failure.


Assuntos
Butiril-CoA Desidrogenase/genética , Cardiomegalia/prevenção & controle , Cardiotônicos/farmacologia , Fibroblastos/efeitos dos fármacos , Flavina-Adenina Dinucleotídeo/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Animais , Sítios de Ligação , Butiril-CoA Desidrogenase/metabolismo , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Estabilidade Enzimática , Ácidos Graxos não Esterificados/antagonistas & inibidores , Ácidos Graxos não Esterificados/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/prevenção & controle , Masculino , Simulação de Dinâmica Molecular , Miocárdio/enzimologia , Miocárdio/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
4.
Br J Nutr ; 122(3): 241-251, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31475655

RESUMO

For the same BMI, South Asians have a higher body fat percentage than Caucasians. There might be differences in the fatty acid (FA) handling in adipose tissue when both ethnicities are exposed to high-fat overfeeding. The objective of the present study was to investigate the molecular adaptation in relation to FA metabolism in response to overfeeding with a high-fat diet (OHFD) in South Asian and Caucasian men. Ten South Asian men (BMI 18-29 kg/m2) and ten Caucasian men (BMI 22-33 kg/m2), matched for body fat percentage, aged 20-40 years were included. A weight-maintenance diet (30 % fat, 55 % carbohydrate and 15 % protein) was given for 3 d followed by 3 d of overfeeding (150 % energy requirement) with a high-fat diet (60 % fat, 25 % carbohydrate and 15 % protein) while staying in a respiration chamber. Before and after overfeeding, abdominal subcutaneous fat biopsies were taken. Proteins were isolated, analysed and quantified for short-chain 3-hydroxyacyl-CoA dehydrogenase (HADH), carnitine palmitoyl-transferase 1α (CPT1a), adipose TAG lipase, perilipin A (PLINA), perilipin B, lipoprotein lipase and fatty acid binding protein 4 using Western blotting. OHFD decreased the HADH level (P < 0·05) in Caucasians more than in Asians (P < 0·05), but the baseline and after intervention HADH level was relatively higher in Caucasians. The level of CPT1a decreased in South Asians and increased in Caucasians (P < 0·05). PLINA did not change with diet but the level was higher in South Asians (P < 0·05). The observed differences in HADH and PLINA levels as well as in CPT1a response may be important for differences in the long-term regulation of energy (fat) metabolism in these populations.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade , Dieta Hiperlipídica , Ingestão de Energia , Adaptação Fisiológica , Adulto , Povo Asiático , Biópsia , Composição Corporal , Índice de Massa Corporal , Peso Corporal , Butiril-CoA Desidrogenase/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Carboidratos da Dieta , Gorduras na Dieta , Proteínas Alimentares , Metabolismo Energético , Exercício Físico , Ácidos Graxos/metabolismo , Humanos , Lipase/metabolismo , Masculino , Mitocôndrias/metabolismo , Nutrientes , Perilipina-1/metabolismo , População Branca , Adulto Jovem
5.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 31(2): 172-177, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30827304

RESUMO

OBJECTIVE: To Study the changes of short-chain acyl-CoA dehydrogenase (SCAD) in heart failure (HF) after myocardial infarction (MI), and the effect of aerobic exercise on SCAD. METHODS: Healthy male Sprague-Dawley (SD) rats were divided into sham operation group (Sham group), sham operation swimming group (Sham+swim group), HF model group (LAD group) and HF swimming group (LAD+swim group) by random number table method, with 9 rats in each group. The left anterior descending branch of coronary artery (LAD) was ligated to establish a rat model of HF after MI. In Sham group, only one loose knot was threaded under the left coronary artery, and the rest operations were the same as those in LAD group. Rats in Sham+swim group and LAD+swim group were given swimming test for 1 week after operation (from 15 minutes on the 1st day to 60 minutes on the 5th day). Then they were given swimming endurance training (from the 2nd week onwards, 60 minutes daily, 6 times weekly, 10 weeks in a row). Tail artery systolic pressure (SBP) was measured before swimming endurance training and every 2 weeks until the end of the 10th week. Ten weeks after swimming training, echocardiography was performed to measure cardiac output (CO), stroke volume (SV), left ventricular ejection fraction (LVEF), shortening fraction (FS), left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic volume (LVESV), and left ventricular end-diastolic volume (LVEDV). Morphological changes of heart were observed by Masson staining. Apoptosis of myocardial cells was detected by transferase-mediated deoxyuridine triphosphate-biotin nick end labeling stain (TUNEL) and apoptosis index (AI) was calculated. Reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot were used to detect the mRNA and protein expression of myocardial SCAD respectively. In addition, the enzyme activity of SCAD, the content of adenosine triphosphate (ATP) and free fatty acid (FFA) in serum and myocardium were detected according to the kit instruction steps. RESULTS: Compared with Sham group, Sham+swim group showed SBP did not change significantly, with obvious eccentric hypertrophy and increased myocardial contractility, and LAD group showed persistent hypotension, obvious MI, thinning of left ventricle, and decreased myocardial systolic/diastolic function. Compared with LAD group, SBP, systolic/diastolic function and MI in LAD+swim group were significantly improved [SBP (mmHg, 1 mmHg = 0.133 kPa): 119.5±4.4 vs. 113.2±4.5 at 4 weeks, 120.3±4.0 vs. 106.5±3.7 at 6 weeks, 117.4±1.3 vs. 111.0±2.3 at 8 weeks, 126.1±1.6 vs. 119.4±1.9 at 10 weeks; CO (mL/min): 59.10±6.31 vs. 33.19±4.76, SV (µL): 139.42±17.32 vs. 84.02±14.26, LVEF: 0.523±0.039 vs. 0.309±0.011, FS: (28.17±2.57)% vs. (15.93±3.64)%, LVEDD (mm): 8.80±0.19 vs. 9.35±0.30, LVESD (mm): 5.90±0.77 vs. 7.97±0.60, LVEDV (µL): 426.57±20.84 vs. 476.24±25.18, LVESV (µL): 209.50±25.18 vs. 318.60±16.10; AI: (20.4±1.4)% vs. (31.2±4.6)%; all P < 0.05]. Compared with Sham group, the mRNA and protein expression of myocardium SCAD, the activity of SCAD in Sham+swim group were significantly increased, the content of ATP was slightly increased, the content of serum FFA was significantly decreased, and the content of myocardial FFA was slightly decreased; conversely, the mRNA and protein expression of myocardium SCAD, the activity of SCAD and the content of ATP in LAD group were significantly decreased, the content of serum and myocardial FFA were significantly increased. Compared with LAD group, the mRNA and protein expression of myocardium SCAD, the content of ATP were significantly increased in LAD+swim group [SCAD mRNA (2-ΔΔCt): 0.52±0.16 vs. 0.15±0.01, SCAD/GAPDH (fold increase from Sham group): 0.94±0.08 vs. 0.60±0.11, ATP content (µmol/g): 52.8±10.1 vs. 14.7±6.1, all P < 0.05], the content of serum and myocardial FFA were significantly decreased [serum FFA (nmol/L): 0.11±0.03 vs. 0.29±0.04, myocardial FFA (nmol/g): 32.7±8.2 vs. 59.7±10.7, both P < 0.05], and the activity of SCAD was slightly increased (kU/g: 12.3±4.3 vs. 8.9±5.8, P > 0.05). CONCLUSIONS: The expression of SCAD in HF was significantly down-regulated, and the expression was significantly up-regulated after aerobic exercise intervention, indicating that swimming may improve the severity of HF by up-regulating the expression of SCAD.


Assuntos
Butiril-CoA Desidrogenase/metabolismo , Insuficiência Cardíaca/metabolismo , Animais , Insuficiência Cardíaca/etiologia , Masculino , Infarto do Miocárdio/complicações , Condicionamento Físico Animal , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
6.
Appl Environ Microbiol ; 81(14): 4782-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956767

RESUMO

Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the reduction of ferredoxin. Oxidation of reduced ferredoxin is catalyzed by the Rnf complex and Na(+) dependent. Consistent with the finding of a Na(+)-dependent Rnf complex is the presence of a conserved Na(+)-binding motif in the c subunit of the ATP synthase. Butyrate formation is from acetyl-CoA via acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA and is consistent with the finding of a gene cluster that encodes the enzymes for this pathway. The activity of the butyryl-CoA dehydrogenase was demonstrated. Reduction of crotonyl-CoA to butyryl-CoA with NADH as the reductant was coupled to reduction of ferredoxin. We postulate that the butyryl-CoA dehydrogenase uses flavin-based electron bifurcation to reduce ferredoxin, which is consistent with the finding of etfA and etfB genes next to it. The overall ATP yield was calculated and is significantly higher than the one obtained with H2 + CO2. The energetic benefit may be one reason that butyrate is formed only from CO but not from H2 + CO2.


Assuntos
Butiratos/metabolismo , Monóxido de Carbono/metabolismo , Eubacterium/metabolismo , Acil Coenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Metabolismo Energético , Eubacterium/enzimologia , Eubacterium/genética , Flavinas/metabolismo , Genômica , Oxirredução
7.
Appl Biochem Biotechnol ; 169(3): 950-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23292245

RESUMO

Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60% CO and 40% H2 in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p < 0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.


Assuntos
1-Butanol/metabolismo , Clostridium/enzimologia , Clostridium/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Fermentação , Oxirredutases/genética , Oxirredutases/metabolismo
8.
J Proteomics ; 75(9): 2563-75, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22402057

RESUMO

Squalene, a hydrocarbon involved in cholesterol biosynthesis, is an abundant component in virgin olive oil. Previous studies showed that its administration decreased atherosclerosis and steatosis in male apoE knock-out mice. To study the effect of squalene on mitochondrial proteins in fatty liver, 1 g/kg/day of this isoprenoid was administered to those mice. After 10 weeks, hepatic fat was assessed and protein extracts from mitochondria enriched fractions from control and squalene-treated animals were analyzed by 2D-DIGE. Spots exhibiting significant differences were identified by MS analysis. Squalene administration modified the expression of eighteen proteins involved in different metabolic processes, 12 associated with hepatic fat content. Methionine adenosyltransferase I alpha (Mat1a) and short-chain specific acyl-CoA dehydrogenase (Acads) showed significant increased and decreased transcripts, respectively, consistent with their protein changes. These mRNAs were also studied in wild-type mice receiving squalene, where Mat1a was found increased and Acads decreased. However, this mRNA was significantly increased in the absence of apolipoprotein E. These results suggest that squalene action may be executed through a complex regulation of mitochondrial protein expression, including changes in Mat1a and Acads levels. Indeed, Mat1a is a target of squalene administration while Acads reflects the anti-steatotic properties of squalene.


Assuntos
Apolipoproteínas E/deficiência , Butiril-CoA Desidrogenase/metabolismo , Fígado Gorduroso/metabolismo , Metionina Adenosiltransferase/metabolismo , Animais , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica , Proteômica , RNA Mensageiro/metabolismo , Esqualeno/farmacologia , Eletroforese em Gel Diferencial Bidimensional
9.
Gut ; 56(11): 1543-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17483192

RESUMO

BACKGROUND AND AIMS: Butyrate oxidation by colonocytes is impaired in ulcerative colitis. This study examined the activity of enzymes involved in butyrate oxidation in ulcerative colitis. METHODS: Activities of mitochondrial acetoacetyl coenzyme A (CoA) thiolase, crotonase and beta-hydroxy butyryl CoA dehydrogenase were estimated spectrophotometrically in rectosigmoid mucosal biopsies from patients with ulcerative colitis and Crohn's colitis, and control subjects undergoing colonoscopy for colon cancer or rectal bleeding. RESULTS: The activity of mitochondrial acetoacetyl CoA thiolase was decreased by 80% in ulcerative colitis (3.4 (0.58) mumol/min/g wet weight, n = 30) compared with control (16.9 (3.5), n = 18) and with Crohn's colitis (17.6 (3.1), n = 12) (p<0.0001). The activity of two other mitochondrial butyrate oxidation enzymes--crotonase and beta-hydroxy butyryl CoA dehydrogenase--as well as of cytoplasmic thiolase was normal in ulcerative colitis. Mitochondrial thiolase activity in ulcerative colitis did not correlate with clinical, endoscopic or histological indices of disease severity. Mitochondrial thiolase activity was reduced in the normal right colon mucosa of patients with left-sided ulcerative colitis. Enzyme kinetic studies revealed a lowered V(max), suggesting inhibition at a site distinct from the catalytic site. Reduced thiolase activity in ulcerative colitis was returned to normal by exposure to 0.3 mM beta-mercaptoethanol, a reductant. Using normal colon mucosal biopsies, redox modulation of thiolase activity by hydrogen peroxide, a mitochondrial oxidant, could be shown. A significant increase in hydrogen peroxide formation was observed in ulcerative colitis biopsies. CONCLUSION: A defect of mitochondrial acetoacetyl CoA thiolase occurs in ulcerative colitis. Increased reactive oxygen species generation in mitochondria of epithelial cells in ulcerative colitis may underlie this defect.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Colite Ulcerativa/enzimologia , Mucosa Intestinal/enzimologia , Mitocôndrias/enzimologia , Doenças Mitocondriais/enzimologia , Adolescente , Adulto , Butiril-CoA Desidrogenase/metabolismo , Colite Ulcerativa/etiologia , Enoil-CoA Hidratase/metabolismo , Feminino , Humanos , Masculino , Mercaptoetanol/farmacologia , Pessoa de Meia-Idade , Oxirredução
10.
Hum Gene Ther ; 17(1): 71-80, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16409126

RESUMO

Mitochondrial beta-oxidation of fatty acids is required to meet physiologic energy requirements during illness and periods of fasting or physiologic stress, and is most active in liver and striated muscle. Acyl-CoA dehydrogenases of varying chain-length specificities represent the first step in the mitochondria for each round of beta-oxidation, each of which removes two-carbon units as acetyl-CoA for entry into the tricarboxylic acid cycle. We have used recombinant adeno-associated virus (rAAV) vectors expressing short-chain acyl-CoA dehydrogenase (SCAD) to correct the accumulation of fatty acyl-CoA intermediates in deficient cell lines. The rAAV-SCAD vector was then packaged into either rAAV serotype 1 or 2 capsids and injected intramuscularly into SCAD-deficient mice. A systemic effect was observed as judged by restoration of circulating butyryl- carnitine levels to normal. Total lipid content at the injection site was also decreased as demonstrated by noninvasive magnetic resonance spectroscopy (MRS). SCAD enzyme activity in the injected muscle was found at necropsy to be above the normal control mouse level. This study is the first to demonstrate the systemic correction of a fatty acid oxidation disorder with rAAV and the utility of MRS as a noninvasive method to monitor SCAD correction after in vivo gene therapy.


Assuntos
Dependovirus/fisiologia , Ácidos Graxos/metabolismo , Terapia Genética/métodos , Vetores Genéticos/fisiologia , Erros Inatos do Metabolismo Lipídico/terapia , Animais , Butiril-CoA Desidrogenase/deficiência , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Carnitina/análogos & derivados , Carnitina/análise , Carnitina/sangue , Linhagem Celular , DNA Recombinante , Dependovirus/enzimologia , Ácidos Graxos/análise , Feminino , Fibroblastos/metabolismo , Humanos , Injeções Intramusculares , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculos/química , Músculos/enzimologia , Oxirredução , Reprodutibilidade dos Testes , Transdução Genética
11.
Endocr Pathol ; 15(3): 233-40, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15640549

RESUMO

Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous entity and causes severe hypoglycemia in neonates and infants. The clinical heterogeneity is manifested by severity ranging from extremely severe, life-threatening disease to very mild clinical symptoms, which may even be difficult to identify. Furthermore, clinical responsiveness to medical and surgical management is extremely variable. Recent discoveries have begun to clarify the molecular etiology of this disease in about 50% of cases. Mutations in five different genes have been identified in patients with this clinical syndrome. Most cases are caused by mutations in the genes ABCC8 and KCNJ11 coding for either of the two subunits of the beta-cell KATP channel (SUR1 and Kir6.2). Recessive mutations of the beta-cell K(ATP) channel genes cause diffuse HI, whereas loss of heterozygosity together with inheritance of a paternal mutation causes focal adenomatous HI. In other cases, CHI is caused by mutations in genes coding for the beta-cell enzymes glucokinase (GK), glutamate dehydrogenase (GDH), and SCHAD. However, for as many as 50% of the cases, no genetic etiology has yet been determined. The study of the genetics of this disease has provided important new information regarding beta-cell physiology.


Assuntos
Hiperinsulinismo Congênito/genética , Mutação , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Hiperinsulinismo Congênito/metabolismo , Hiperinsulinismo Congênito/patologia , Glucoquinase/genética , Glucoquinase/metabolismo , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Humanos , Lactente , Recém-Nascido , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/genética , Receptores de Droga/metabolismo , Receptores de Sulfonilureias
12.
J Biol Chem ; 278(48): 47449-58, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-14506246

RESUMO

Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding, and preliminary experiments suggested that the variant protein displayed prolonged association with chaperonins and delayed formation of active enzyme. Accordingly, the molecular pathogenesis of SCAD deficiency may rely on intramitochondrial protein quality control mechanisms, including degradation and aggregation of variant SCAD proteins. In this study we investigated the processing of a set of disease-causing variant SCAD proteins (R22W, G68C, W153R, R359C, and Q341H) and two common variant proteins (R147W and G185S) that lead to reduced SCAD activity. All SCAD proteins, including the wild type, associate with mitochondrial hsp60 chaperonins; however, the variant SCAD proteins remained associated with hsp60 for prolonged periods of time. Biogenesis experiments at two temperatures revealed that some of the variant proteins (R22W, G68C, W153R, and R359C) caused severe misfolding, whereas others (R147W, G185S, and Q341H) exhibited a less severe temperature-sensitive folding defect. Based on the magnitude of in vitro defects, these SCAD proteins are characterized as folding-defective variants and mild folding variants, respectively. Pulse-chase experiments demonstrated that the variant SCAD proteins either triggered proteolytic degradation by mitochondrial proteases or, especially at elevated temperature, aggregation of non-native conformers. The latter finding may indicate that accumulation of aggregated SCAD proteins may play a role in the pathogenesis of SCAD deficiency.


Assuntos
Butiril-CoA Desidrogenase/química , Butiril-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo Lipídico/genética , Animais , Apirase/química , Western Blotting , Butiril-CoA Desidrogenase/metabolismo , Chaperonina 60/metabolismo , DNA Complementar/metabolismo , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Variação Genética , Genótipo , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Modelos Biológicos , Modelos Moleculares , Octoxinol/farmacologia , Oligomicinas/farmacologia , Plasmídeos/metabolismo , Biossíntese de Proteínas , Conformação Proteica , Dobramento de Proteína , Temperatura , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA