Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61.188
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726925

RESUMO

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Assuntos
Angiotensina II , Encéfalo , Cálcio , Hipertensão , Rim , Microvasos , Óxido Nítrico , Vasoconstrição , Animais , Óxido Nítrico/metabolismo , Angiotensina II/farmacologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/tratamento farmacológico , Rim/irrigação sanguínea , Rim/metabolismo , Cálcio/metabolismo , Vasoconstrição/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/patologia , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Camundongos , Modelos Animais de Doenças , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Sinalização do Cálcio/efeitos dos fármacos
2.
Nat Commun ; 15(1): 3994, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734761

RESUMO

NADPH oxidase 5 (NOX5) catalyzes the production of superoxide free radicals and regulates physiological processes from sperm motility to cardiac rhythm. Overexpression of NOX5 leads to cancers, diabetes, and cardiovascular diseases. NOX5 is activated by intracellular calcium signaling, but the underlying molecular mechanism of which - in particular, how calcium triggers electron transfer from NADPH to FAD - is still unclear. Here we capture motions of full-length human NOX5 upon calcium binding using single-particle cryogenic electron microscopy (cryo-EM). By combining biochemistry, mutagenesis analyses, and molecular dynamics (MD) simulations, we decode the molecular basis of NOX5 activation and electron transfer. We find that calcium binding to the EF-hand domain increases NADPH dynamics, permitting electron transfer between NADPH and FAD and superoxide production. Our structural findings also uncover a zinc-binding motif that is important for NOX5 stability and enzymatic activity, revealing modulation mechanisms of reactive oxygen species (ROS) production.


Assuntos
Cálcio , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , NADPH Oxidase 5 , NADP , Humanos , NADPH Oxidase 5/metabolismo , NADPH Oxidase 5/genética , NADPH Oxidase 5/química , Cálcio/metabolismo , NADP/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Superóxidos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo , Transporte de Elétrons , Ativação Enzimática , Sítios de Ligação
3.
Food Res Int ; 186: 114321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729691

RESUMO

Biogenic nanoparticles are promising carriers to deliver essential minerals. Here, calcium-enriched polyphosphate nanoparticles (CaPNPs) with a Ca/P molar ratio > 0.5 were produced by Synechococcus sp. PCC 7002 in the growth medium containing 1.08 g/L CaCl2, and had nearly spherical morphologies with a wide size distribution of 5-75 nm and strongly anionic surface properties with an average ζ-potential of -39 mV, according to dynamic light-scattering analysis, transmission and scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The ex-vivo ligated mouse ileal loop assays found that calcium in CaPNPs was readily available to intestinal absorption via both ion channel-mediated and endocytic pathways, specifically invoking macropinocytic internalization, lysosomal degradation, and transcytosis. Rat oral pharmacokinetics revealed that CaPNPs had a calcium bioavailability approximately 100 % relative to that of CaCl2 and more than 1.6 times of that of CaCO3. CaPNPs corrected the retinoic acid-induced increase in serum calcium, phosphorus, and bone-specific alkaline phosphatase, and decrease in serum osteocalcin, bone mineral content/density, and femoral geometric parameters with an efficacy equivalent to CaCl2 and markedly greater than CaCO3. In contrast to CaCl2, CaPNPs possessed desirable resistance against phytate's antagonistic action on calcium absorption in these ex vivo and in vivo studies. Overall, CaPNPs are attractive as a candidate agent for calcium supplementation, especially to populations on high-phytate diets.


Assuntos
Disponibilidade Biológica , Cálcio , Microalgas , Nanopartículas , Ácido Fítico , Polifosfatos , Animais , Polifosfatos/química , Camundongos , Ácido Fítico/química , Cálcio/metabolismo , Masculino , Ratos , Absorção Intestinal/efeitos dos fármacos , Ratos Sprague-Dawley
4.
Cell Commun Signal ; 22(1): 258, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711131

RESUMO

Although bortezomib (BTZ) is the cornerstone of anti-multiple myeloma (MM) therapy, the inevitable primary and secondary drug resistance still seriously affects the prognosis of patients. New treatment strategies are in need. Sodium-calcium exchanger 1 (NCX1) is a calcium-permeable ion transporter on the membrane, and our previous studies showed that low NCX1 confers inferior viability in MM cells and suppressed osteoclast differentiation. However, the effect of NCX1 on BTZ sensitivity of MM and its possible mechanism remain unclear. In this study, we investigated the effect of NCX1 on BTZ sensitivity in MM, focusing on cellular processes of autophagy and cell viability. Our results provide evidence that NCX1 expression correlates with MM disease progression and low NCX1 expression increases BTZ sensitivity. NCX1/Ca2+ triggered autophagic flux through non-canonical NFκB pathway in MM cells, leading to attenuated the sensitivity of BTZ. Knockdown or inhibition of NCX1 could potentiate the anti-MM activity of BTZ in vitro and vivo, and inhibition of autophagy sensitized NCX1-overexpressing MM cells to BTZ. In general, this work implicates NCX1 as a potential therapeutic target in MM with BTZ resistance and provides novel mechanistic insights into its vital role in combating BTZ resistance.


Assuntos
Autofagia , Bortezomib , Mieloma Múltiplo , Trocador de Sódio e Cálcio , Trocador de Sódio e Cálcio/metabolismo , Trocador de Sódio e Cálcio/genética , Humanos , Autofagia/efeitos dos fármacos , Animais , Bortezomib/farmacologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Linhagem Celular Tumoral , Camundongos , Cálcio/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , NF-kappa B/metabolismo , Sobrevivência Celular/efeitos dos fármacos
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732146

RESUMO

The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.


Assuntos
Arritmias Cardíacas , Cálcio , Miócitos Cardíacos , Complexo de Endopeptidases do Proteassoma , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos , Cálcio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/etiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estresse Fisiológico , Transporte Proteico , Ratos , Aminoácidos/metabolismo
6.
Cell Mol Life Sci ; 81(1): 213, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727814

RESUMO

Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.


Assuntos
Homeostase , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Homeostase/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Cálcio/metabolismo , Rim/metabolismo , Magnésio/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731963

RESUMO

Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.


Assuntos
Canais de Cálcio Tipo T , Modelos Animais de Doenças , Hiperalgesia , Dor Pós-Operatória , Venenos de Escorpião , Animais , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/química , Camundongos , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo , Cálcio/metabolismo , Masculino , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/química
9.
Nat Commun ; 15(1): 3682, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693121

RESUMO

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Assuntos
Dieta Hiperlipídica , Galectina 3 , Secreção de Insulina , Células Secretoras de Insulina , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Galectina 3/metabolismo , Galectina 3/genética , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
ACS Chem Neurosci ; 15(10): 1951-1966, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696478

RESUMO

Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.


Assuntos
Cálcio , Glutamato Descarboxilase , Ácido Glutâmico , Ácido Caínico , Camundongos Transgênicos , Parvalbuminas , Estado Epiléptico , Ácido gama-Aminobutírico , Animais , Parvalbuminas/metabolismo , Glutamato Descarboxilase/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/induzido quimicamente , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Cálcio/metabolismo , Camundongos , Hipocampo/metabolismo , Modelos Animais de Doenças
11.
J Phys Chem B ; 128(19): 4670-4684, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38717304

RESUMO

Ryanodine receptor type 1 (RyR1) is a Ca2+-release channel central to skeletal muscle excitation-contraction (EC) coupling. RyR1's cryo-EM structures reveal a zinc-finger motif positioned within the cytoplasmic C-terminal domain (CTD). Yet, owing to limitations in cryo-EM resolution, RyR1 structures lack precision in detailing the metal coordination structure, prompting the need for an accurate model. In this study, we employed molecular dynamics (MD) simulations and the density functional theory (DFT) method to refine the binding characteristics of Zn2+ in the zinc-finger site of the RyR1 channel. Our findings also highlight substantial conformational changes in simulations conducted in the absence of Zn2+. Notably, we observed a loss of contact at the interface between protein domains proximal to the zinc-finger site, indicating a crucial role of Zn2+ in maintaining structural integrity and interdomain interactions within RyR1. Furthermore, this study provides valuable insights into the modulation of ATP, Ca2+, and caffeine binding, shedding light on the intricate relationship between Zn2+ coordination and the dynamic behavior of RyR1. Our integrative approach combining MD simulations and DFT calculations enhances our understanding of the molecular mechanisms governing ligand binding in RyR1.


Assuntos
Simulação de Dinâmica Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina , Zinco , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Zinco/química , Zinco/metabolismo , Ligantes , Cálcio/química , Cálcio/metabolismo , Teoria da Densidade Funcional , Sítios de Ligação , Ligação Proteica , Dedos de Zinco , Cafeína/química , Cafeína/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Humanos
12.
ACS Nano ; 18(20): 12830-12844, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709246

RESUMO

The immunosuppressive microenvironment of cervical cancer significantly hampers the effectiveness of immunotherapy. Herein, PEGylated manganese-doped calcium sulfide nanoparticles (MCSP) were developed to effectively enhance the antitumor immune response of the cervical cancer through gas-amplified metalloimmunotherapy with dual activation of pyroptosis and STING pathway. The bioactive MCSP exhibited the ability to rapidly release Ca2+, Mn2+, and H2S in response to the tumor microenvironment. H2S disrupted the calcium buffer system of cancer cells by interfering with the oxidative phosphorylation pathway, leading to calcium overload-triggered pyroptosis. On the other hand, H2S-mediated mitochondrial dysfunction further promoted the release of mitochondrial DNA (mtDNA), enhancing the activation effect of Mn2+ on the cGAS-STING signaling axis and thereby activating immunosuppressed dendritic cells. The released H2S acted as an important synergist between Mn2+ and Ca2+ by modulating dual signaling mechanisms to bridge innate and adaptive immune responses. The combination of MCSP NPs and PD-1 immunotherapy achieved synergistic antitumor effects and effectively inhibited tumor growth. This study reveals the potential collaboration between H2S gas therapy and metalloimmunotherapy and provides an idea for the design of nanoimmunomodulators for rational regulation of the immunosuppressive tumor microenvironment.


Assuntos
Imunoterapia , Proteínas de Membrana , Piroptose , Microambiente Tumoral , Neoplasias do Colo do Útero , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/terapia , Feminino , Humanos , Camundongos , Animais , Piroptose/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Manganês/química , Manganês/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cálcio/metabolismo , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais
13.
Nat Commun ; 15(1): 4115, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750013

RESUMO

RyR1 is an intracellular Ca2+ channel important in excitable cells such as neurons and muscle fibers. Ca2+ activates it at low concentrations and inhibits it at high concentrations. Mg2+ is the main physiological RyR1 inhibitor, an effect that is overridden upon activation. Despite the significance of Mg2+-mediated inhibition, the molecular-level mechanisms remain unclear. In this work we determined two cryo-EM structures of RyR1 with Mg2+ up to 2.8 Å resolution, identifying multiple Mg2+ binding sites. Mg2+ inhibits at the known Ca2+ activating site and we propose that the EF hand domain is an inhibitory divalent cation sensor. Both divalent cations bind to ATP within a crevice, contributing to the precise transmission of allosteric changes within the enormous channel protein. Notably, Mg2+ inhibits RyR1 by interacting with the gating helices as validated by molecular dynamics. This structural insight enhances our understanding of how Mg2+ inhibition is overcome during excitation.


Assuntos
Cálcio , Microscopia Crioeletrônica , Magnésio , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Magnésio/metabolismo , Cálcio/metabolismo , Sítios de Ligação , Animais , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/metabolismo , Humanos , Coelhos
14.
Curr Protoc ; 4(5): e1048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752255

RESUMO

Both Ca2+ and protein kinase A (PKA) are multifaceted and ubiquitous signaling molecules, essential for regulating the intricate network of signaling pathways. However, their dynamics within specialized membrane regions are still not well characterized. By using genetically encoded fluorescent indicators specifically targeted to distinct plasma membrane microdomains, we have established a protocol that permits observing Ca2+/PKA dynamics in discrete neuronal microdomains with high spatial and temporal resolution. The approach employs a fluorescence microscope with a sensitive camera and a dedicated CFP/YFP/mCherry filter set, enabling the simultaneous detection of donor-acceptor emission and red fluorescence signal. In this detailed step-by-step guide, we outline the experimental procedure, including isolation of rat primary neurons and their transfection with biosensors targeted to lipid rafts or non-raft regions of plasma membrane. We provide information on the necessary equipment and imaging setup required for recording, along with highlighting critical parameters and troubleshooting guidelines for real-time measurements. Finally, we provide examples of the observed Ca2+ and PKA changes in specific cellular compartments. The application of this technique may have significant implications for studying cross-talk between second messengers and their alterations in various pathological conditions. © 2024 Wiley Periodicals LLC.


Assuntos
Cálcio , Proteínas Quinases Dependentes de AMP Cíclico , Transferência Ressonante de Energia de Fluorescência , Hipocampo , Microdomínios da Membrana , Neurônios , Animais , Neurônios/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Ratos , Cálcio/metabolismo , Microdomínios da Membrana/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Cultivadas , Microscopia de Fluorescência/métodos , Técnicas Biossensoriais/métodos
15.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753510

RESUMO

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Assuntos
Cálcio , Retículo Endoplasmático , Simulação de Dinâmica Molecular , Proteínas de Neoplasias , Proteína ORAI1 , Multimerização Proteica , Molécula 1 de Interação Estromal , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/química , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Domínios Proteicos , Células HEK293 , Sítios de Ligação , Ligação Proteica
16.
J Agric Food Chem ; 72(15): 8569-8580, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563891

RESUMO

Rice protein peptides (RPP) are a potentially valuable source of high-quality calcium chelating properties. However, there is a lack of information regarding the calcium-absorption-promoting effect of RPP and its underlying mechanism. The present study adopted molecular docking methodologies to analyze the 10 most potent peptide segments from RPP. Results revealed that the peptide AHVGMSGEEPE (AHV) displayed optimal calcium binding properties (calcium-chelating capacity 55.69 ± 0.66 mg/g). Quantum chemistry analysis revealed that the AHV peptide effectively binds and forms stable complexes with calcium via the carbonyl oxygen atoms in valine at position 3 and the carbonyl of the C-terminal carboxyl group of glutamate at position 11. The spectral analysis results indicated that AHV may bind to calcium through carboxyl oxygen atoms, resulting in a transition from a smooth surface block-like structure to a dense granular structure. Furthermore, this study demonstrated that the 4 mmol/L AHV-Ca chelate (61.75 ± 13.23 µg/well) significantly increases calcium absorption compared to 1 mM CaCl2 (28.57 ± 8.59 µg/well) in the Caco-2 cell monolayer. In terms of mechanisms, the novel peptide-calcium chelate AHV-Ca derived from RPP exerts a cell-level effect by upregulating the expression of TRPV6 calcium-ion-channel-related genes and proteins (TRPV6 and Calbindin-D9k). This study provides a theoretical basis for developing functional foods with the AHV peptide as ingredients to improve calcium absorption.


Assuntos
Cálcio , Oryza , Humanos , Cálcio/metabolismo , Células CACO-2 , Oryza/metabolismo , Simulação de Acoplamento Molecular , Cálcio da Dieta/metabolismo , Peptídeos/química , Oxigênio
17.
PLoS One ; 19(4): e0301495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630767

RESUMO

The purpose of this study was to examine transient plasma membrane disruptions (TPMDs) and TPMD-induced Ca++ waves (TPMD Ca++ Wvs) in human and mouse corneal epithelium (HCEC and MCEC). A multi-photon microscope was used to create laser-induced TPMDs in single cultured cells and in intact ex vivo and in vivo MCECs and ex vivo human cornea rim HCECs. Eye rubbing-induced TPMDs were studied by gentle rubbing with a cotton tipped applicator over a closed eyelid in ex vivo and in vivo MCECs. Ca++ sources for TPMD-induced Ca++ waves were explored using Ca++ channel inhibitors and Ca++-free media. TPMDs and TPMD Ca++ Wvs were observed in all cornea epithelial models examined, often times showing oscillating Ca++ levels. The sarcoplasmic reticulum Ca++ ATPase inhibitors thapsigargin and CPA reduced TPMD Ca++ Wvs. TRP V1 antagonists reduced TPMD Ca++ Wvs in MCECs but not HCECs. Ca++-free medium, 18α-GA (gap junction inhibitor), apyrase (hydrolyzes ATP), and AMTB (TRPM8 inhibitor) did not affect TPMD Ca++ Wvs. These results provide a direct demonstration of corneal epithelial cell TPMDs and TPMDs in in vivo cells from a live animal. TPMDs were observed following gentle eye rubbing, a routine corneal epithelial cell mechanical stress, indicating TPMDs and TPMD Ca++ Wvs are common features in corneal epithelial cells that likely play a role in corneal homeostasis and possibly pathophysiological conditions. Intracellular Ca++ stores are the primary Ca++ source for corneal epithelial cell TPMD Ca++ Wvs, with TRPV1 Ca++ channels providing Ca++ in MCECs but not HCECs. Corneal epithelial cell TPMD Ca++ Wv propagation is not influenced by gap junctions or ATP.


Assuntos
Cálcio , Epitélio Corneano , Humanos , Camundongos , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Cálcio da Dieta/metabolismo , Epitélio Corneano/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Trifosfato de Adenosina/metabolismo
18.
Cells ; 13(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38607049

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) occurs when the proteins Polycystin-1 (PC1, PKD1) and Polycystin-2 (PC2, PKD2) contain mutations. PC1 is a large membrane receptor that can interact and form a complex with the calcium-permeable cation channel PC2. This complex localizes to the plasma membrane, primary cilia and ER. Dysregulated calcium signalling and consequential alterations in downstream signalling pathways in ADPKD are linked to cyst formation and expansion; however, it is not completely understood how PC1 and PC2 regulate calcium signalling. We have studied Polycystin-2 mediated calcium signalling in the model organism Dictyostelium discoideum by overexpressing and knocking down the expression of the endogenous Polycystin-2 homologue, Polycystin-2. Chemoattractant-stimulated cytosolic calcium response magnitudes increased and decreased in overexpression and knockdown strains, respectively, and analysis of the response kinetics indicates that Polycystin-2 is a significant contributor to the control of Ca2+ responses. Furthermore, basal cytosolic calcium levels were reduced in Polycystin-2 knockdown transformants. These alterations in Ca2+ signalling also impacted other downstream Ca2+-sensitive processes including growth rates, endocytosis, stalk cell differentiation and spore viability, indicating that Dictyostelium is a useful model to study Polycystin-2 mediated calcium signalling.


Assuntos
Dictyostelium , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/genética , Dictyostelium/metabolismo , Canais de Cátion TRPP/genética , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Canais de Cálcio/metabolismo
19.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607058

RESUMO

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.


Assuntos
Cálcio , Artéria Uterina , Ratos , Gravidez , Feminino , Animais , Artéria Uterina/metabolismo , Cálcio/metabolismo , Azeite de Oliva/farmacologia , Óxido Nítrico/metabolismo , Placenta/metabolismo , Rianodina , Fenóis/farmacologia , Dilatação , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Endotélio/metabolismo
20.
J Endocrinol ; 261(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593829

RESUMO

Pancreatic alpha cell activity and glucagon secretion lower as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose. Additionally, urocortin 3 (UCN3) is a hormone that is co-released from beta cells with insulin and acts locally to potentiate somatostatin secretion from delta cells. UCN3 thus inhibits insulin secretion via a negative feedback loop with delta cells, but its role with respect to alpha cells and glucagon secretion is not understood. We hypothesize that the somatostatin-driven glucagon inhibition at high glucose is regulated in part by UCN3 from beta cells. Here, we use a combination of live functional Ca2+ and cAMP imaging as well as direct glucagon secretion measurement, all from alpha cells in intact mouse islets, to determine the contributions of UCN3 to alpha cell behavior. Exogenous UCN3 treatment decreased alpha cell Ca2+ and cAMP levels and inhibited glucagon release. Blocking endogenous UCN3 signaling increased alpha cell Ca2+ by 26.8 ± 7.6%, but this did not result in increased glucagon release at high glucose. Furthermore, constitutive deletion of Ucn3 did not increase Ca2+ activity or glucagon secretion relative to controls. UCN3 is thus capable of inhibiting mouse alpha cells, but, given the subtle effects of endogenous UCN3 signaling on alpha cells, we propose that UCN3-driven somatostatin may serve to regulate local paracrine glucagon levels in the islet instead of inhibiting gross systemic glucagon release.


Assuntos
Células Secretoras de Glucagon , Glucagon , Comunicação Parácrina , Urocortinas , Animais , Urocortinas/metabolismo , Urocortinas/genética , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Camundongos , Glucagon/metabolismo , Glucose/metabolismo , Cálcio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , AMP Cíclico/metabolismo , Somatostatina/farmacologia , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA