Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580352

RESUMO

Gold nanoparticle (GNP) enhanced proton therapy is a promising treatment concept offering increased therapeutic effect. It has been demonstrated in experiments which provided indications that reactive species play a major role. Simulations of the radiolysis yield from GNPs within a cell model were performed using the Geant4 toolkit. The effect of GNP cluster size, distribution and number, cell and nuclear membrane absorption and intercellular yields were evaluated. It was found that clusters distributed near the nucleus increased the nucleus yield by 91% while reducing the cytoplasm yield by 7% relative to a disperse distribution. Smaller cluster sizes increased the yield, 200 nm clusters had nucleus and cytoplasm yields 117% and 35% greater than 500 nm clusters. Nuclear membrane absorption reduced the cytoplasm and nucleus yields by 8% and 35% respectively to a permeable membrane. Intercellular enhancement was negligible. Smaller GNP clusters delivered near sub-cellular targets maximise radiosensitisation. Nuclear membrane absorption reduces the nucleus yield, but can damage the membrane providing another potential pathway for biological effect. The minimal effect on adjacent cells demonstrates that GNPs provide a targeted enhancement for proton therapy, only effecting cells with GNPs internalised. The provided quantitative data will aid further experiments and clinical trials.


Assuntos
Células/efeitos da radiação , Ouro/química , Nanopartículas Metálicas/química , Modelos Biológicos , Terapia com Prótons , Radiólise de Impulso , Radiossensibilizantes/química , Método de Monte Carlo
2.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730852

RESUMO

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Assuntos
Células/metabolismo , Metabolismo Energético , Adaptação Fisiológica/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Células/efeitos da radiação , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusão , Transporte de Elétrons/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Meio Ambiente , Ligação de Hidrogênio , Cinética , Luz , Simulação de Dinâmica Molecular , Fenótipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Eletricidade Estática , Estresse Fisiológico/efeitos da radiação , Temperatura
3.
Electromagn Biol Med ; 38(4): 231-248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31450976

RESUMO

This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.


Assuntos
Células/metabolismo , Células/efeitos da radiação , Campos Eletromagnéticos , Radicais Livres/metabolismo , Animais , Células/citologia , Evolução Molecular , Humanos , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo
4.
Phys Chem Chem Phys ; 21(29): 15917-15931, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31309206

RESUMO

X-ray nanochemistry studies how to use nanomaterials and particularly how to create new nanomaterials to increase the effects of X-rays such as chemical reactivity, damage to cells, tumor destruction, scintillation and more. The increase, also called enhancement, can be categorized into several groups, and the current categorization of enhancement follows a natural division of physical, chemical and biological enhancement based on how nanomaterials behave under X-ray irradiation. In physical enhancement, electrons released from atoms in the nanomaterials upon X-ray ionization interact with the nanomaterials and surrounding media to increase the effects. Scintillation also belongs to this category. Chemical enhancement results when reactive oxygen species (ROS) or reactive radical intermediates (RRI) produced in aqueous solutions under X-ray irradiation interact with the surface of catalytic nanomaterials to increase the effects. When the damage of cells is enhanced through biological pathways beyond the abovementioned physical or chemical enhancement due to the presence of nanomaterials under X-ray irradiation, the enhancement is called biological enhancement. Works supporting this systematic categorization, the reported values of these enhancements, and important aspects of the development of enhancement in the X-ray nanochemistry framework are given and discussed in this perspective.


Assuntos
Técnicas de Química Analítica/métodos , Nanoestruturas/química , Raios X , Células/química , Células/efeitos da radiação , Espécies Reativas de Oxigênio
5.
PLoS One ; 14(3): e0213286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870450

RESUMO

Recent experiments have reported an effect of weak radiofrequency magnetic fields in the MHz-range on the concentrations of reactive oxygen species (ROS) in living cells. Since the energy that could possibly be deposited by the radiation is orders of magnitude smaller than the energy of molecular thermal motion, it was suggested that the effect was caused by the interaction of RF magnetic fields with transient radical pairs within the cells, affecting the ROS formation rates through the radical pair mechanism. It is, however, at present not entirely clear how to predict RF magnetic field effects at certain field frequency and intensity in nanoscale biomolecular systems. We suggest a possible recipe for interpreting the radiofrequency effects in cells by presenting a general workflow for calculation of the reactive perturbations inside a cell as a function of RF magnetic field strength and frequency. To justify the workflow, we discuss the effects of radiofrequency magnetic fields on generic spin systems to particularly illustrate how the reactive radicals could be affected by specific parameters of the experiment. We finally argue that the suggested workflow can be used to predict effects of radiofrequency magnetic fields on radical pairs in biological cells, which is specially important for wireless recharging technologies where one has to know of any harmful effects that exposure to such radiation might cause.


Assuntos
Células/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Modelos Teóricos , Lesões por Radiação/etiologia , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Humanos
6.
PLoS One ; 13(5): e0195479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29718923

RESUMO

Laser-induced cell transfer has been developed in recent years for the flexible and gentle printing of cells. Because of the high transfer rates and the superior cell survival rates, this technique has great potential for tissue engineering applications. However, the fact that material from an inorganic sacrificial layer, which is required for laser energy absorption, is usually transferred to the printed target structure, constitutes a major drawback of laser based cell printing. Therefore alternative approaches using deep UV laser sources and protein based acceptor films for energy absorption, have been introduced. Nevertheless, deep UV radiation can introduce DNA double strand breaks, thereby imposing the risk of carcinogenesis. Here we present a method for the laser-induced transfer of hydrogels and mammalian cells, which neither requires any sacrificial material for energy absorption, nor the use of UV lasers. Instead, we focus a near infrared femtosecond (fs) laser pulse (λ = 1030 nm, 450 fs) directly underneath a thin cell layer, suspended on top of a hydrogel reservoir, to induce a rapidly expanding cavitation bubble in the gel, which generates a jet of material, transferring cells and hydrogel from the gel/cell reservoir to an acceptor stage. By controlling laser pulse energy, well-defined cell-laden droplets can be transferred with high spatial resolution. The transferred human (SCP1) and murine (B16F1) cells show high survival rates, and good cell viability. Time laps microscopy reveals unaffected cell behavior including normal cell proliferation.


Assuntos
Células/citologia , Células/efeitos da radiação , Raios Infravermelhos , Lasers , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Camundongos , Fatores de Tempo
7.
Radiat Res ; 190(1): 5-11, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29697303

RESUMO

Aside from the generally accepted potential to cause DNA damage, it is becoming increasingly recognized that ionizing radiation has the capability to target the cellular epigenome. Epigenetics unifies the chemical marks and molecules that collectively facilitate the proper reading of genetic material. Among the epigenetic mechanisms of regulation, methylation of DNA is known to be the key player in the postirradiation response by controlling the expression of genetic information and activity of transposable elements. Radiation-induced alterations to DNA methylation may lead to cellular epigenetic reprogramming that, in turn, can substantially compromise the genomic integrity and has been proposed as one of the mechanisms of radiation-induced carcinogenesis. DNA methylation is strongly dependent on the one-carbon metabolism. This metabolic pathway is central to the support of DNA methylation by means of providing the donor of methyl groups, as well as for the synthesis of amino acids. To better understand the mechanisms of radiation-induced health effects, we study how exposure to radiation affects DNA methylation and one-carbon metabolism. Also, a tight interaction that exists between DNA methylation and one-carbon metabolism allows us to simultaneously manipulate both cellular epigenetic and metabolic profiles to modulate the normal and cancerous tissue response to radiotherapy.


Assuntos
Células/metabolismo , Células/efeitos da radiação , Epigênese Genética/efeitos da radiação , Animais , DNA/genética , Metilação de DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Metabolômica , Neoplasias/genética , Neoplasias/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-29148897

RESUMO

The exact mechanism that could explain the effects of radiofrequency (RF) radiation exposure at non-thermal level is still unknown. Increasing evidence suggests a possible involvement of reactive oxygen species (ROS) and development of oxidative stress. To test the proposed hypothesis, human neuroblastoma cells (SH-SY5Y) were exposed to 1800 MHz short-term RF exposure for 10, 30 and 60 minutes. Electric field strength within Gigahertz Transverse Electromagnetic cell (GTEM) was 30 V m-1 and specific absorption rate (SAR) was calculated to be 1.6 W kg-1. Cellular viability was measured by MTT assay and level of ROS was determined by fluorescent probe 2',7'-dichlorofluorescin diacetate. Concentrations of malondialdehyde and protein carbonyls were used to assess lipid and protein oxidative damage and antioxidant activity was evaluated by measuring concentrations of total glutathione (GSH). After radiation exposure, viability of irradiated cells remained within normal physiological values. Significantly higher ROS level was observed for every radiation exposure time. After 60 min of exposure, the applied radiation caused significant lipid and protein damage. The highest GSH concentration was detected after 10 minute-exposure. The results of our study showed enhanced susceptibility of SH-SY5Y cells for development of oxidative stress even after short-term RF exposure.


Assuntos
Células/metabolismo , Células/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Células/citologia , Fluoresceínas/química , Glutationa/metabolismo , Humanos , Oxirredução , Estresse Oxidativo/efeitos da radiação , Ondas de Rádio , Espécies Reativas de Oxigênio/metabolismo
9.
J Nucl Med Technol ; 45(4): 259-264, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29203550

RESUMO

The purpose of this paper is to review basic radiation biology and associated terminology to impart a better understanding of the importance of basic concepts of ionizing radiation interactions with living tissue. As health care workers in a field that utilizes ionizing radiation, nuclear medicine technologists are concerned about the possible acute and chronic effects of occupational radiation exposure. Technologists should have a clear understanding of what they are exposed to and how their safety could be affected. Furthermore, technologists should be knowledgeable about radiation effects so that they can adequately assuage possible patient fears about undergoing a nuclear medicine procedure. After reading this article, the nuclear medicine technologist will be familiar with basic radiation biology concepts; types of interactions of radiation with living tissue, and possible effects from that exposure; theoretic dose-response curves and how they are used in radiation biology; stochastic versus nonstochastic effects of radiation exposure, and what these terms mean in relation to both high- and low-dose radiation exposure; and possible acute and chronic radiation exposure effects.


Assuntos
Radiobiologia/métodos , Terminologia como Assunto , Células/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Exposição à Radiação/efeitos adversos
10.
Sci Rep ; 7: 40959, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098222

RESUMO

We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs.


Assuntos
Células/efeitos da radiação , Coração/efeitos da radiação , Miocárdio/citologia , Doses de Radiação , Lesões por Radiação/patologia , Animais , Sobrevivência Celular/efeitos da radiação , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL
11.
Microsc Res Tech ; 80(5): 444-455, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28094894

RESUMO

Several new features of mitochondrial nucleoid and its surroundings in mammalian cells were described previously (Prachar, 2016). Very small details were observed using the improved transmission electron microscopy method, as described in the article. In the meantime, the method has again been improved to 2 Å resolutions in the cell section. The method described in detail in the present work is documented on the same records that were published in lower resolution in the work Prachar (2016), enabling comparison of the achieved resolution with the previous one. New records are also presented, showing extremely high resolution and thus implying the importance of the method. Potential use of this method in different fields is suggested.


Assuntos
Células/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Exposição à Radiação/prevenção & controle , Animais , Linhagem Celular Tumoral , Células/efeitos da radiação , Elétrons , Retículo Endoplasmático/efeitos da radiação , Retículo Endoplasmático/ultraestrutura , Resinas Epóxi , Técnicas Histológicas , Leucemia L1210 , Camundongos , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Inclusão em Plástico/normas , Ribossomos/efeitos da radiação , Ribossomos/ultraestrutura , Fatores de Tempo
12.
Electromagn Biol Med ; 36(2): 115-122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27399207

RESUMO

The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.


Assuntos
Campos Eletromagnéticos , Homeostase/efeitos da radiação , Animais , Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Células/citologia , Células/metabolismo , Células/efeitos da radiação , Estado de Consciência/efeitos da radiação , Humanos
13.
Sci Rep ; 6: 35425, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759054

RESUMO

This in-vitro study introduces residual stress as a third dimension of cell stimulus to modulate the interaction between cells and bio-template, without the addition of either chemical or physical stimuli onto the bio-template surface. Ultrashort Pulsed Laser (USPL) irradiation of silicon-based bio-template causes recrystallization of silicon, which mismatches the original crystal orientation of the virgin silicon. Consequently, subsurface Induced Residual Stress (IRS) is generated. The IRS components demonstrated a strong cytocompatibility, whereas the peripheral of IRS, which is the interface between the IRS component and the virgin silicon surface, a significant directional cell alignment was observed. Fibroblast cells shown to be more sensitive to the stress component than Hela cancer cells. It revealed that cytocompatibility in terms of cell migration and directional cell alignment is directly proportional to the level of the IRS component. Higher stress level results in more cell alignment and border migration width. There is a stress threshold below which the stress component completely loses the functionality. These results pointed to a functionalized bio-template with tunable cytocompatibility. This study may lead to a new tool for the designing and engineering of bio-template.


Assuntos
Comunicação Celular , Fenômenos Fisiológicos Celulares , Células/citologia , Células/ultraestrutura , Estresse Fisiológico , Animais , Adesão Celular , Movimento Celular , Fenômenos Fisiológicos Celulares/efeitos da radiação , Células/efeitos da radiação , Células HeLa , Humanos , Lasers , Camundongos , Células NIH 3T3 , Estresse Fisiológico/efeitos da radiação
14.
Environ Res ; 151: 537-546, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27588948

RESUMO

PURPOSE: To determine whether chronic low-dose α-particle radiation from Ra-226 over multiple cell generations can lead to an adaptive response in CHSE/F fish embryonic cells or HaCaT human epithelial cells receiving subsequent acute high-dose γ-ray radiation. METHODS: CHSE/F and HaCaT cells were exposed to very low doses of Ra-226 in medium for multiple generations prior to being challenged by a higher dose γ-ray radiation. The clonogenic assay was used to test the clonogenic survival of cells with or without being pretreated by radiation from Ra-226. RESULTS: In general, pretreatment with chronic radiation has no significant influence on the reaction of cells to the subsequent challenge radiation. Compared to unprimed cells, the change in clonogenic survival of primed cells after receiving challenge radiation is mainly due to the influence of the chronic exposure, and there's little adaptive response induced. However at several dose points, pretreatment of CHSE/F fish cells with chronic radiation resulted in a radiosensitive response to a challenge dose of γ-ray radiation, and pretreatment of HaCaT cells resulted in no effect except for a slightly radioresistant response to the challenge radiation which was not significant. CONCLUSION: The results suggest that chronic low-dose radiation is not effective enough to induce adaptive response. There was a difference between human and fish cells and it may be important to consider results from multiple species before making conclusions about effects of chronic or low doses of radiation in the environment. The term "radiosensitive" or "adaptive" make no judgment about whether such responses are ultimately beneficial or harmful.


Assuntos
Adaptação Fisiológica , Células/efeitos da radiação , Rádio (Elemento) , Animais , Linhagem Celular , Humanos , Perciformes
15.
Electromagn Biol Med ; 35(3): 265-301, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27053138

RESUMO

The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.


Assuntos
Células/efeitos da radiação , Ondas de Rádio/efeitos adversos , Animais , Barreira Hematoencefálica/efeitos da radiação , Telefone Celular , Células/citologia , Células/metabolismo , Células Cultivadas , Humanos , Temperatura
16.
J Theor Biol ; 394: 93-101, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26807808

RESUMO

Cell survival is conventionally defined as the capability of irradiated cells to produce colonies. It is quantified by the clonogenic assays that consist in determining the number of colonies resulting from a known number of irradiated cells. Several mathematical models were proposed to describe the survival curves, notably from the target theory. The Linear-Quadratic (LQ) model, which is to date the most frequently used model in radiobiology and radiotherapy, dominates all the other models by its robustness and simplicity. Its usefulness is particularly important because the ratio of the values of the adjustable parameters, α and ß, on which it is based, predicts the occurrence of post-irradiation tissue reactions. However, the biological interpretation of these parameters is still unknown. Throughout this review, we revisit and discuss historically, mathematically and biologically, the different models of the radiation action by providing clues for resolving the enigma of the LQ model.


Assuntos
Células/efeitos da radiação , Modelos Biológicos , Radiação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sobrevivência Celular/efeitos da radiação , Células Clonais , Humanos , Mamíferos , Tolerância a Radiação/efeitos da radiação
17.
Anal Chem ; 87(21): 10693-7, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26461268

RESUMO

Internalized gold nanoparticles were quantified in large numbers of individual prostate cancer cells using large area synchrotron X-ray fluorescence microscopy. Cells were also irradiated with a 6 MV linear accelerator to assess the biological consequence of radiosensitization with gold nanoparticles. A large degree of heterogeneity in nanoparticle uptake between cells resulted in influenced biological effect.


Assuntos
Células/efeitos da radiação , Fluorescência , Luz , Nanopartículas Metálicas/química , Células/efeitos dos fármacos , Ouro/química , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Raios X
18.
Electromagn Biol Med ; 34(3): 197-210, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26444193

RESUMO

The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.


Assuntos
Células/metabolismo , Células/efeitos da radiação , Radiação não Ionizante , Água/metabolismo , Animais , Células/citologia , Humanos
19.
Sci Rep ; 5: 10250, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25974639

RESUMO

Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.


Assuntos
Células/efeitos da radiação , Microscopia de Força Atômica/métodos , Raios X/efeitos adversos , Linhagem Celular , Células HEK293 , Humanos , Manejo de Espécimes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
20.
Radiat Oncol ; 10: 42, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25880907

RESUMO

Ion microbeams are important tools in radiobiological research. Still, the worldwide number of ion microbeam facilities where biological experiments can be performed is limited. Even fewer facilities combine ion microirradiation with live-cell imaging to allow microscopic observation of cellular response reactions starting very fast after irradiation and continuing for many hours. At SNAKE, the ion microbeam facility at the Munich 14 MV tandem accelerator, a large variety of biological experiments are performed on a regular basis. Here, recent developments and ongoing research projects at the ion microbeam SNAKE are presented with specific emphasis on live-cell imaging experiments. An overview of the technical details of the setup is given, including examples of suitable biological samples. By ion beam focusing to submicrometer beam spot size and single ion detection it is possible to target subcellular structures with defined numbers of ions. Focusing of high numbers of ions to single spots allows studying the influence of high local damage density on recruitment of damage response proteins.


Assuntos
Células/metabolismo , Células/efeitos da radiação , Imagem Molecular/instrumentação , Aceleradores de Partículas/instrumentação , Radiobiologia/instrumentação , Humanos , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA