Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339168

RESUMO

Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 µM dose-dependently suppressed growth, whereas LW6 at 20 µM, but not at 2-10 µM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 µM significantly promoted glucose uptake, with the strongest effect at 20 µM DIF-1, whereas LW6 at 2-20 µM significantly promoted glucose uptake, with the strongest effect at 10 µM LW6. Western blot analyses showed that LW6 (10 µM) and DIF-1 (20 µM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.


Assuntos
Glucose , Malato Desidrogenase , Animais , Humanos , Camundongos , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Adenilato Quinase/metabolismo , Dictyostelium/metabolismo , Glucose/metabolismo , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Malato Desidrogenase/antagonistas & inibidores , Malato Desidrogenase/metabolismo , Mamíferos/metabolismo
2.
Basic Clin Pharmacol Toxicol ; 131(3): 174-188, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35688794

RESUMO

Somatostatin and its analogues, known as somatostatin receptor ligands (SRLs), have been reported to attenuate weight gain in some clinical settings. However, their direct effects on preadipocytes are barely investigated. Therefore, this study aimed to evaluate the influence of SRLs on preadipocytes and to further explore the potential mechanisms. Cell Counting Kit-8 assay, Oil Red O staining, triglyceride contents measurements, quantitative polymerase chain reaction (qPCR) and western blot were used to investigate the effects of SRLs on preadipocytes. We found that three SRLs (octreotide, TT232 and pasireotide) inhibited cell viability after 8-48 h but not 4 h. Further western blot results showed that they significantly suppressed activation of PI3K/Akt pathway. Besides, lipid accumulation was also significantly inhibited by these SRLs. Moreover, mRNA levels of some critical adipogenic markers, including Pparg, Cebpa, Fasn, Fabp4, Acaca and Lpl, were downregulated by the treatments of all these SRLs. Consistently, the protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα) and fatty acid synthase (FAS) was also suppressed by SRLs. SRLs inhibit the proliferation and lipogenesis in preadipocytes. Their inhibitory effects on cell proliferation may be mediated by the downregulated PI3K/Akt pathway, and the suppressive actions on lipogenesis may be related to the decreased PPARγ and C/EBPα expression.


Assuntos
Ligantes , Lipogênese , Receptores de Somatostatina , Somatostatina , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Proliferação de Células , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/análogos & derivados , Somatostatina/farmacologia
3.
Phytother Res ; 35(2): 1113-1124, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33015893

RESUMO

Trigonelline, a major alkaloid component of fenugreek, has been demonstrated to have several biological activities, including antidiabetic and anticancer effects. This study aimed to examine the possible application of trigonelline as an anti-obesity compound based on an investigation of its enhancement of lipid catabolism and induction of browning in white adipocytes. Trigonelline induces browning of 3T3-L1 white adipocytes by enhancing the expressions of brown-fat signature proteins and genes as well as beige-specific genes, including Cd137, Cited1, Tbx1, and Tmem26. Trigonelline also improves lipid metabolism in white adipocytes by decreasing adipogenesis and lipogenesis as well as promotes lipolysis and fatty acid oxidation. Moreover, trigonelline increases the expression of Cox4, Nrf1, and Tfam genes that are responsible for mitochondrial biogenesis. Mechanistic studies revealed that the browning effect of trigonelline in 3T3-L1 white adipocytes is mediated by activating ß3-AR and inhibiting PDE4, thereby stimulating the p38 MAPK/ATF-2 signaling pathway. Considering its high bioavailability in humans and the results of this study, trigonelline may have potential as an anti-obesity compound.


Assuntos
Células 3T3-L1/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Alcaloides/uso terapêutico , Obesidade/tratamento farmacológico , Alcaloides/farmacologia , Animais , Humanos , Camundongos
4.
Biol Pharm Bull ; 43(3): 440-449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115502

RESUMO

There is significant cultivation of persimmon (Diospyros kaki) in East Asia, a plant whose fruit has abundant nutrients, including vitamins, polyphenols, and dietary fiber. Persimmon dietary supplements can benefit health by amelioration of diabetes, cardiovascular disease, and obesity. There are also persimmon-based beverages produced via fermentation, such as wines and vinegars, and increasing consumption of these products in East Asia. Although there is great interest in functional foods, the health effects of fermented persimmon extract (FPE) are completely unknown. We examined the effects of FPE on the metabolic parameters of mice fed a high-fat diet (HFD). Our results indicated that FPE supplementation led to an approx. 15% reduction of body weight, reduced abdominal and liver fat, and reduced serum levels of triglycerides, total cholesterol, and glucose. FPE also blocked the differentiation of murine 3T3-L1 pre-adipocyte cells into mature adipocytes. We suggest that gallic acid is a major bioactive component of FPE, and that AMP-activated protein kinase mediates the beneficial effects of FPE and gallic acid.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diospyros/química , Obesidade/dietoterapia , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Células 3T3-L1/metabolismo , Gordura Abdominal/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Glicemia , Peso Corporal/efeitos dos fármacos , Fermentação , Frutas , Ácido Gálico/farmacologia , Gordura Intra-Abdominal/efeitos dos fármacos , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química
5.
J Ocul Pharmacol Ther ; 36(3): 162-169, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31934812

RESUMO

Purpose: We aimed at comparing the effects of omidenepag (OMD) with those of prostaglandin F (FP) receptor agonists (FP agonists) on adipogenesis in mouse 3T3-L1 cells. Methods: To evaluate the agonistic activities of OMD against the mouse EP2 (mEP2) receptor, we determined cAMP contents in mEP2 receptor-expressing CHO cells by using radioimmunoassays. Overall, 3T3-L1 cells were cultured in differentiation medium for 10 days and adipocyte differentiation was assessed according to Oil Red O-stained cell areas. Changes in expression levels of the adipogenic transcription factors Pparg, Cebpa, and Cebpb were determined by using real-time polymerase chain reaction (PCR). OMD at 0.1, 1, 10, and 40 µmol/L, latanoprost free acid (LAT-A) at 0.1 µmol/L, or prostaglandin F2α (PGF2α), at 0.1 µmol/L were added to cell culture media during adipogenesis. Oil Red O-stained areas and expression patterns of transcription factor targets of OMD or FP agonists were compared with those of untreated controls. Results: The 50% effective concentration (EC50) of OMD against the mEP2 receptor was 3.9 nmol/L. Accumulations of Oil Red O-stained lipid droplets were observed inside control cells on day 10. LAT-A and PGF2α significantly inhibited the accumulation of lipid droplets; however, OMD had no effect on this process even at concentrations up to 40 µmol/L. LAT-A and PGF2α significantly suppressed Pparg, Cebpa, and Cebpb gene expression levels during adipocyte differentiation. Conversely, OMD had no obvious effects on the expression levels of these genes. Conclusions: A selective EP2 receptor agonist, OMD, did not affect the adipocyte differentiation in 3T3-L1 cells, whereas FP agonists significantly inhibited this process.


Assuntos
Células 3T3-L1/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Glicina/análogos & derivados , Latanoprosta/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Prostaglandina E Subtipo EP2/agonistas , Células 3T3-L1/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Células CHO/efeitos dos fármacos , Células CHO/metabolismo , Diferenciação Celular/efeitos dos fármacos , Cricetulus , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Glicina/farmacologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Camundongos , Prostaglandinas F Sintéticas/farmacologia , Radioimunoensaio/métodos
6.
Toxicol In Vitro ; 59: 246-254, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31009676

RESUMO

Previous studies revealed that cellular accumulation of mono(2-ethylhexyl)phthalate (MEHP) disturbed energy metabolism in adipocytes, where glucose uptake was significantly increased. The present study aimed to determine the mechanisms underlying the increased glucose uptake. MEHP-treated 3T3-L1 adipocytes exhibited a significantly increased glucose uptake activity. Immunoblot analysis suggested that the insulin-induced signals were not responsible for the increased glucose uptake. qPCR analysis revealed that both Glut1 and Glut4 genes were highly expressed during adipogenesis; Glut1 mRNA levels in MEHP-treated adipocytes were significantly increased. Moreover, MEHP-treated adipocytes exhibited significantly increased levels of fibroblast growth factor 21 (FGF21) in both mRNA and secreted protein. FGF21 is a peptide hormone with pleiotropic effects on regulation of insulin sensitivity and glucose/lipid homeostasis. We found that MEHP, FGF21, and lactate in culture medium together enhanced Fgf21 gene expression in MEHP-treated adipocytes. FGF21 signaling requires fibroblast growth factor receptor (FGFR) and ßKlotho. Fgfr family and ßKlotho genes were actively expressed during adipogenesis; mRNA levels of Fgfr3 and Fgfr4 genes in MEHP-treated adipocytes were significantly increased. Roles of FGF21/FGFR and phosphoinositide 3-kinase (PI3K)/AKT signal axes in regulation of glucose uptake were determined. We demonstrated that FGF21/FGFR signals played the major roles in up-regulation of the basal glucose uptake in MEHP-treated adipocytes. The in vitro evidence suggests that cellular FGF21 secretion enhances the basal glucose uptake in MEHP-treated adipocytes.


Assuntos
Células 3T3-L1/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Células 3T3-L1/metabolismo , Adipócitos/metabolismo , Animais , Dietilexilftalato/farmacologia , Insulina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
J Med Food ; 21(8): 793-800, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30048215

RESUMO

Obesity is the most common metabolic disease in developed countries and has become a global epidemic in recent years. Obesity is associated with various metabolic abnormalities, including glucose intolerance, insulin resistance, type 2 diabetes, dyslipidemia, and hypertension. Leaves from the plant Dendropanax morbiferus are beneficial to health as they contain high levels of vitamin C and tannin. There have been seminal studies on the anticancer, antimicrobial, antidiabetes, and antihyperglycemic effects of treatments with D. morbiferus trees. Herein, we investigated the toxicity of D. morbiferus water (DLW) extracts in vitro, and demonstrated no toxicity at 5-500 µg/mL in 24-72-h experiments with 3T3-L1 cells. The DLW increased cell viability at 48 h and inhibited adipogenesis in 3T3-L1 cells by reducing intracellular triglyceride levels and glucose uptake. In addition, mRNA and protein expression levels of adipogenesis-related genes were lowered by DLW, suggesting antiobesity effects in mouse 3T3-L1 cells. Because few studies have demonstrated cholesterol-lowering effects of D. morbiferus, we investigated the activities of adipogenic transcriptional factors following treatments of 3T3-L1 cells with D. morbiferus and observed increased CEBPα, CEBPß, PPARγ, and SREBP1 activities in the cells, indicating that DLW extracts inhibit adipogenesis.


Assuntos
Células 3T3-L1/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Araliaceae , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Células 3T3-L1/metabolismo , Animais , Fármacos Antiobesidade/uso terapêutico , Colesterol/metabolismo , Camundongos , Fitoterapia , Extratos Vegetais/uso terapêutico , Triglicerídeos/metabolismo
8.
Yakugaku Zasshi ; 136(9): 1195-216, 2016.
Artigo em Japonês | MEDLINE | ID: mdl-27592825

RESUMO

Macrophages play major roles in inflammation, immunity and host defense mechanisms. Once activated they produce and release cytokines, oxygen and nitrogen species, and eicosanoids. The best characterized stimuli to induce the transcription of genes encoding pro-inflammatory proteins in macrophages in vitro is bacterial lipopolysaccharide (LPS). LPS could be used alone or in combination with recombinant mouse interferon-γ (IFN-γ). Such stimulation results in cytokine release and the synthesis of enzymes such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). The nitric oxide (NO) radical is known to play a central role in inflammatory and immune reactions for self-protection. However, the excessive production of NO may lead to tissue damage. In inflammatory diseases such as rheumatoid arthritis, excessive NO production by activated macrophages has been observed. Adipose tissue is composed of various cell types such as mature adipocytes, preadipocytes, fibroblasts, endothelial cells, vascular cells, and macrophages. Recent studies indicate that obesity is associated with low-grade chronic inflammation of adipose tissues, and that such inflammation is one of the potential mechanisms leading to the insulin resistance. It has been demonstrated that obese adipose tissue is characterized by the increased infiltration of macrophages. Therefore, we attempted to identify natural anti-inflammatory compounds that not only inhibit the secretion of NO from RAW 264.7 cells, but also inhibit triglyceride accumulation in 3T3-L1 adipocytes. This review describes the NO prpduction inhibitory activity or the TG accumulation inhibitory activity of the compounds obtained from 18 plants and a fungi that have been used as traditional medicines.


Assuntos
Adipócitos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Triglicerídeos/metabolismo , Células 3T3-L1/metabolismo , Animais , Produtos Biológicos/uso terapêutico , Depressão Química , Humanos , Camundongos , Conformação Molecular , Fitoterapia , Células RAW 264.7
9.
Obesity (Silver Spring) ; 24(9): 1913-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27430164

RESUMO

OBJECTIVE: Obesity is a chronic inflammatory disease, and adipocytes contribute to obesity-associated inflammation by releasing inflammatory mediators. High mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, mainly localized to cell nuclei, has been recently recognized as an innate pro-inflammatory mediator when released extracellularly. It was hypothesized that HMGB1 is an adipocytokine that acts as an innate pro-inflammatory mediator in white adipose tissue (WAT) of patients with obesity and is associated with insulin resistance. Additionally, it was hypothesized that HMGB1 secretion is regulated by adiponectin. METHODS: 3T3-L1 cells were differentiated into mature adipocytes. After tumor necrosis factor-α (TNF-α) stimulation, HMGB1 in culture media was measured. Localizations of HMGB1 in 3T3-L1 adipocytes and human WAT were examined by immunostaining. RESULTS: HMGB1 was secreted from TNF-α-induced 3T3-L1 adipocytes through JNK signaling. HMGB1-activated MAP kinases (ERK1/2, JNK) and suppressed insulin-stimulated Akt phosphorylation in 3T3-L1 adipocytes. The cytoplasm in 3T3-L1 adipocytes and adipocytes of WAT from a patient with obesity was intensely stained with HMGB1. Adiponectin partially inhibited TNF-α-induced HMGB1 secretion from 3T3-L1 adipocytes. CONCLUSIONS: These findings suggest that HMGB1 is a pro-inflammatory adipocytokine involved in WAT inflammation and insulin resistance in patients with obesity, which may contribute to the progression of metabolic syndrome, and that adiponectin protects against HMGB1-induced adipose tissue inflammation.


Assuntos
Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Proteína HMGB1/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Obesidade/metabolismo , Células 3T3-L1/metabolismo , Adipócitos/metabolismo , Adipocinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
10.
Phytother Res ; 30(11): 1802-1808, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27406217

RESUMO

Fucoxanthin, a pigment from the chloroplasts of marine brown algae, has a number of effects against obesity, diabetes, inflammation and cancer and provides cerebrovascular protection. In this study, we investigated the inhibitory effects of fucoxanthin on lipid accumulation and reactive oxygen species (ROS) production during adipogenesis. Treatment with fucoxanthin suppresses protein levels of the adipogenic transcription factors CCAAT/enhancer-binding protein alpha C/EBPα and peroxisome proliferator-activated receptor-γ and of their target protein, fatty acid binding protein 4. Lipogenesis-related enzymes, such as diglyceride acyltransferase 1 and lysophosphatidic acid acyltransferase-θ, were downregulated by fucoxanthin. The ROS-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) and the NADPH-generating enzyme glucose-6-phosphate dehydrogenase also decreased following fucoxanthin treatment. The adipokine adiponectin and the ROS-scavenging enzymes superoxide dismutase 2, glutathione reductase and catalase were dose-dependently increased by fucoxanthin. Furthermore, lipolysis-related enzymes and superoxide dismutase 1 were slightly decreased, because of the suppression of lipid-generating factors and the cytosolic enzyme NOX4. To confirm these results, we investigated lipid accumulation and ROS production in zebrafish, where fucoxanthin suppressed lipid and triglyceride accumulation, as well as ROS production. Our data suggest that fucoxanthin inhibits lipid accumulation and ROS production by controlling adipogenic and lipogenic factors and ROS-regulating enzymes. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Células 3T3-L1/metabolismo , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Xantofilas/química , Animais , Diferenciação Celular , Camundongos , Espécies Reativas de Oxigênio , Xantofilas/farmacologia , Peixe-Zebra
11.
J Agric Food Chem ; 64(23): 4758-64, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27253611

RESUMO

Turanose is a sucrose isomer naturally existing in honey and a promising functional sweetener due to its low glycemic response. In this study, the extrinsic fructose effect on turanose productivity was examined in Neisseria amylosucrase reaction. Turanose was produced, by increasing the amount of extrinsic fructose as a reaction modulator, with high concentration of sucrose substrate, which resulted in 73.7% of production yield. In physiological functionality test, lipid accumulation in 3T3-L1 preadipocytes in the presence of high amounts of pure glucose was attenuated by turanose substitution in a dose-dependent manner. Turanose treatments at concentrations representing 50%, 75%, and 100% of total glucose concentration in cell media significantly reduced lipid accumulation by 18%, 35%, and 72%, respectively, as compared to controls. This result suggested that turanose had a positive role in controlling adipogenesis, and enzymatic process of turanose production has a potential to develop a functional food ingredient for controlling obesity and related chronic diseases.


Assuntos
Adipogenia/efeitos dos fármacos , Dissacarídeos/biossíntese , Dissacarídeos/farmacologia , Glucosiltransferases/metabolismo , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Animais , Biotecnologia/métodos , Dissacarídeos/metabolismo , Frutose/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , PPAR gama/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sacarose/metabolismo , Receptor fas/genética
12.
J Steroid Biochem Mol Biol ; 155(Pt A): 155-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26277096

RESUMO

Perivascular adipose tissue (PVAT) has been recognized as an active contributor to vascular function due to its paracrine effects on cells contained within vascular wall. The present study was designed to investigate the effect of diosgenin on adipokine expression in PVAT with emphasis on the regulation of endothelial function. Palmitic acid (PA) stimulation induced inflammation and dysregulation of adipokine expression in PVAT. Diosgenin treatment inhibited IKKß phosphorylation and downregulated mRNA expressions of proinflammatory cytokines/proteins including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein (MCP-1), and inducible nitric oxide synthase (iNOS), while reduced gene expressions for adiponectin, PPARγ, and arginase 1 (Arg-1) were reversed by diosgenin treatment. Diosgenin enhanced AMPK phosphorylation under basal and inflammatory conditions in PVAT, whereas knockdown of AMPK by SiRNA diminished its modulatory effect, indicating that diosgenin inhibited inflammation in an AMPK-dependent manner. We prepared conditioned medium from PA-stimulated PVAT to induce endothelial dysfunction and found that pre-treatment of PVAT with diosgenin effectively restored the loss of ACh-induced vasodilation and increased eNOS phosphorylation in rat aorta. High-fat diet feeding in rats induced inflammation in PVAT and the impairment of endothelium-dependent vasodilation, whereas these alterations were prevented by oral administration of diosgenin at doses of 20 and 40 mg/kg. In conclusion, the obtained data showed that diosgenin ameliorated inflammation-associated adipokine dysregulation, and thereby prevented endothelial dysfunction. Our findings would shed a novel insight into the potential mechanism by which diosgenin protected endothelial function against inflammatory insult.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/efeitos dos fármacos , Diosgenina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Tecido Adiposo/metabolismo , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Dieta Hiperlipídica/efeitos adversos , Diosgenina/administração & dosagem , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Camundongos , Paniculite/tratamento farmacológico , Paniculite/metabolismo , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos
13.
FEBS J ; 283(2): 378-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524605

RESUMO

Mice deficient for zinc transporter 7 protein (ZnT7) are mildly zinc deficient with low body weight gain and body fat accumulation. To investigate the underlying mechanism of ZnT7 deficiency in body adiposity, we examined fatty acid composition and insulin sensitivity in visceral (epididymal) and subcutaneous fat pads from Znt7 knockout and control mice. We showed that ZnT7 deficiency had adverse effects on fatty acid metabolism and insulin action in subcutaneous fat but not in epididymal fat in mice, consistent with the ZnT7 protein expression pattern in adipose tissues. Importantly, we found that the expression of ZnT7 protein was induced by lipogenic differentiation and reached a peak when the adipocyte was fully differentiated in mouse 3T3-L1 adipocytes. We demonstrated, using Znt7 knockdown (Znt7KD) 3T3-L1 adipocytes, that reduction in Znt7 expression blunted activations of the signal transduction pathways that regulated both basal and insulin-stimulated glucose uptake in adipocytes, resulting in low glucose uptake and lipid accumulation. The expression of the signaling mediators critical for the initiation of pre-adipocyte differentiation, including Pparγ and C/Ebpα, appeared not to be affected by Znt7KD in 3T3-L1 adipocytes. These findings strongly suggest a role for ZnT7 in adipocyte lipogenesis.


Assuntos
Adipócitos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Glucose/metabolismo , Lipídeos/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Tecido Adiposo/metabolismo , Animais , Peso Corporal/genética , Proteínas de Transporte de Cátions/genética , Epididimo/metabolismo , Ácidos Graxos/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gordura Subcutânea/metabolismo
14.
Nutrition ; 31(10): 1266-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206271

RESUMO

OBJECTIVE: Iron participates in several mechanisms involving inflammation and innate immunity, yet the dysregulation of its homeostasis is a major cause of metabolic syndrome. Adipocytes should play a major role in iron metabolism, as an impairment in iron turnover is closely related to insulin resistance, obesity, and type 2 diabetes. The aim of this study was to investigate the role of iron in an in vitro-inflamed adipocyte model. METHODS: Gene expression of tumor necrosis factor-α, interleukin-6, inflammatory chemokines (CCL3, CCL4, and CXCL12), and molecules involved in iron metabolism were evaluated in an in vitro mouse 3T3-L1 cell model. Cells underwent treatment with FeSO4 heptahydrate and lipopolysaccharide (LPS) stimulation. Toll-like receptor 4 (TLR4) membrane expression, lipid droplet immunohystochemistry, and lipolysis were also evaluated. RESULTS: Iron sulphate heptahydrate elicited gene expression of hepcidin, hemojuvelin, and ferroportin at different time courses. Additionally, it activated lipolysis but did not trigger any adipokine gene expression. When cells treated with physiological doses of iron were also stimulated with LPS, an enhancement in the LPS-induced gene expression of cytokines and chemokines was observed. The enhancement occurred with different patterns depending on different time courses and investigated genes, showing its maximal effect for IL-6 gene expression. CONCLUSIONS: FeSO4 heptahydrate at a relatively physiological dose, induced gene expression of iron modulatory proteins and also enhanced RNA transcripts of several inflammatory cytokines and chemokines through a priming/synergistic mechanism involving membrane TLR4.


Assuntos
Células 3T3-L1/metabolismo , Adipócitos/imunologia , Expressão Gênica , Ferro/metabolismo , Receptor 4 Toll-Like/imunologia , Animais , Proteínas de Transporte de Cátions/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Compostos Férricos/administração & dosagem , Compostos Férricos/metabolismo , Proteínas Ligadas por GPI , Proteína da Hemocromatose , Hepcidinas/metabolismo , Inflamação/metabolismo , Resistência à Insulina , Ferro/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Obesidade/metabolismo
15.
Biochem Biophys Res Commun ; 464(3): 840-7, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26188090

RESUMO

This study examined whether oral administration of an arginase inhibitor regulates adipose tissue macrophage infiltration and inflammation in mice with high fat diet (HFD)-induced obesity. Male C57BL/6 mice (n = 30) were randomly assigned to control (CTL, n = 10), HFD only (n = 10), and HFD with arginase inhibitor N(ω)-hydroxy-nor-l-arginine (HFD with nor-NOHA, n = 10) groups. Plasma and mRNA levels of cytokines in epididymal adipose tissues (EAT), macrophage infiltration into EAT, and macrophage phenotype polarization were measured in the animals after 12 weeks. Additionally, the effects of nor-NOHA on adipose tissue macrophage infiltration and mRNA expression of cytokines were measured in co-cultured 3T3-L1 adipocytes and RAW 264.7 macrophages. Macrophage infiltration into the adipocytes was significantly suppressed by nor-NOHA treatment in adipocyte/macrophage co-culture system and mice with HFD-induced obesity. Pro-inflammatory cytokines, including monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), were significantly downregulated, and the anti-inflammatory cytokine IL-10 was significantly upregulated in nor-NOHA-treated co-cultured cells. In the mice with HFD-induced obesity, plasma and mRNA levels of MCP-1 significantly reduced after supplementation with nor-NOHA. In addition, oral supplement of nor-NOHA modified M1/M2 phenotype ratio in the EAT. Oral supplementation of an arginase inhibitor, nor-NOHA, altered M1/M2 macrophage phenotype and macrophage infiltration into HFD-induced obese adipose tissue, thereby improved adipose tissue inflammatory response. These results may indicate that arginase inhibition ameliorates obesity-induced adipose tissue inflammation.


Assuntos
Arginase/antagonistas & inibidores , Arginina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Obesidade/complicações , Paniculite/tratamento farmacológico , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Administração Oral , Animais , Arginase/metabolismo , Arginina/administração & dosagem , Arginina/farmacologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Técnicas de Cocultura , Citocinas/sangue , Citocinas/genética , Dieta Hiperlipídica/efeitos adversos , Inibidores Enzimáticos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Paniculite/etiologia
16.
Biochem Biophys Res Commun ; 458(1): 123-7, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25637537

RESUMO

Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue.


Assuntos
Adipogenia/fisiologia , Cisteína Dioxigenase/metabolismo , PPAR gama/metabolismo , Células 3T3-L1/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Células Cultivadas , Cisteína Dioxigenase/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Gotículas Lipídicas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Regiões Promotoras Genéticas , Regulação para Cima
17.
Int J Obes (Lond) ; 39(5): 747-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25504041

RESUMO

BACKGROUND: A relationship has been reported between blood concentrations of coagulation factor VII (FVII) and obesity. In addition to its role in coagulation, FVII has been shown to inhibit insulin signals in adipocytes. However, the production of FVII by adipocytes remains unclear. OBJECTIVE: We herein investigated the production and secretion of FVII by adipocytes, especially in relation to obesity-related conditions including adipose inflammation and sympathetic nerve activation. METHODS: C57Bl/6J mice were fed a low- or high-fat diet and the expression of FVII messenger RNA (mRNA) was then examined in adipose tissue. 3T3-L1 cells were used as an adipocyte model for in vitro experiments in which these cells were treated with tumor necrosis factor-α (TNF-α) or isoproterenol. The expression and secretion of FVII were assessed by quantitative real-time PCR, Western blotting and enzyme-linked immunosorbent assays. RESULTS: The expression of FVII mRNA in the adipose tissue of mice fed with high-fat diet was significantly higher than that in mice fed with low-fat diet. Expression of the FVII gene and protein was induced during adipogenesis and maintained in mature adipocytes. The expression and secretion of FVII mRNA were increased in the culture medium of 3T3-L1 adipocytes treated with TNF-α, and these effects were blocked when these cells were exposed to inhibitors of mitogen-activated kinases or NF-κB activation. The ß-adrenoceptor agonist isoproterenol stimulated the secretion of FVII from mature adipocytes via the cyclic AMP/protein kinase A pathway. Blockade of secreted FVII with the anti-FVII antibody did not affect the phosphorylation of Akt in the isoproterenol-stimulated adipocytes. CONCLUSION: Obese adipose tissue produced FVII. The production and secretion of FVII by adipocytes was enhanced by TNF-α or isoproterenol via different mechanisms. These results indicate that FVII is an adipokine that plays an important role in the pathogenesis of obesity.


Assuntos
Células 3T3-L1/metabolismo , Adipócitos/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Fator VII/metabolismo , Isoproterenol/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Western Blotting , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Fator VII/efeitos dos fármacos , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
18.
Endocrine ; 49(1): 90-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25326905

RESUMO

Irisin, a newly identified myokine responsible for browning of white or beige adipocytes, has been reported to be present at reduced levels in diabetic patients and associated with obesity, serum triglyceride (TG) levels, and intrahepatic TG levels. We wondered whether irisin could directly affect fatty acid and TG metabolism in adipocytes and hepatocytes. We examined the effects of various concentrations of irisin on lipolysis (according to Oil Red O staining, free fatty acid release, and glycerol release), protein expression of HSL and ATGL, and mRNA expression of other lipid-related genes (UCP-1, PPARγ, FABP-4, HSL, ATGL, PPARα, and CPT-1) in mature 3T3-L1 adipocytes, as well as mRNA levels of genes involved in the synthesis (SREBP-1C and FAS) and ß-oxidation (PPARα and CPT-1) of fatty acids in HepG2 hepatocytes under physiological or hyperglycemic conditions. Our results revealed that although irisin significantly increased the mRNA levels of UCP-1 and PPARα, it failed to show detectable effects on lipolysis, HSL or ATGL protein levels, or the mRNA expression of other lipid-related genes in mature 3T3-L1 adipocytes. In HepG2 hepatocytes, high glucose induced the upregulation of SREBP-1C and FAS and the downregulation of PPARα; however, no significant effect of irisin on gene expression was observed under either physiological or hyperglycemic conditions. We therefore conclude that irisin has no significant direct effect on lipolysis in 3T3-L1 adipocytes or on fatty acid metabolism in HepG2 hepatocytes.


Assuntos
Células 3T3-L1/metabolismo , Ácidos Graxos/metabolismo , Fibronectinas/metabolismo , Células Hep G2/metabolismo , Lipólise/fisiologia , Animais , Humanos , Camundongos , Triglicerídeos/metabolismo
19.
J Agric Food Chem ; 62(40): 9860-7, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25222709

RESUMO

Because of the prevalence of obesity, there is particular interest in finding potential therapeutic targets. In a previous study, we demonstrated that 2,4,5-trimethoxybenzaldehyde (2,4,5-TMBA), a bitter principle in plants and a natural cyclooxygenase II (COX-2) inhibitor, suppressed the differentiation of preadipocyts into adipocytes at the concentration of 0.5 mM. In this current study, we aimed to investigate the stage during adipogenesis that is critically affected by 2,4,5-TMBA and the effects of 2,4,5-TMBA on the time-course expression of signaling molecules MAP kinase kinase (MAPKK, represented by MEK) and extracellular signal-regulated kinase (ERK), transcription factors CCAAT/enhancer binding protein (C/EBP)α, ß, and δ and peroxisome proliferator-activated receptor (PPAR)γ, lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), and lipid droplet-coating protein perilipin A. When preadipocytes were co-cultured with 2,4,5-TMBA (0.5 mM) specifically at post-induction days 0-2, 2-4, 4-6, or 6-8 only, relative lipid accumulation was decreased by 67.93, 34.65, 49.56, and 34.32%, respectively. A time-course study showed that treatment of 2,4,5-TMBA suppressed the phosphorylation of ERK1 at the initial stage of adipogenesis but upregulated the phosphorylation at the late stage, which is opposite to the conditions required for the differentiation process. The overall expression of C/EBPα, ß, and δ, PPARγ2, ACC, FAS, and perilipin A in preadipocytes was downregulated by the treatment of 2,4,5-TMBA. Taken together, our findings suggest that 2,4,5-TMBA suppresses adipogenesis through the regulation of ERK1 phosphorylation. Although results from in vitro studies cannot be directly extrapolated into clinical effects, our study will help to elucidate the anti-adipogenic potential of 2,4,5-TMBA.


Assuntos
Células 3T3-L1/metabolismo , Adipogenia/efeitos dos fármacos , Benzaldeídos/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células 3T3-L1/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Transporte/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Camundongos , PPAR gama/metabolismo , Perilipina-1 , Fosfoproteínas/metabolismo , Receptor fas/metabolismo
20.
Endokrynol Pol ; 65(4): 252-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25185846

RESUMO

INTRODUCTION: C1q/TNF-related Protein-3 (CTRP3) is a novel adipokine with multiple effects such as lowering glucose levels, inhibiting glyconeogenesis in the liver, and increasing angiogenesis and anti-inflammation. But little is known about the effects of CTRP3 on insulin resistance in adipose tissue. This study aims to investigate the effects and mechanisms of CTRP3 on the insulin sensitivity of 3T3-L1 adipocytes. MATERIAL AND METHODS: Insulin resistant 3T3-L1 adipocytes were induced by palmic acid cultivation. Such adipocytes were treated with recombinant CTRP3 protein at different concentrations (0, 10, 50, 1,250 ng/mL) for 12 hours, and at a concentration of 250 ng/mL for differing times (2, 6, 12, and 24 h). Another group was pre-treated with wortmannin, the special inhibitor of phosphatidylinositol-4,5- bisphosphate 3-kinase (PI3K), for 20 minutes before the treatment with 250 ng/mL CTRP3. The glucose consumption, the glucose uptake, the expression and release of tumour necrosis factor α (TNF-α) and interleukin-6(IL-6) in supernatant, and the protein relative expression of PI3K and protein kinase B (PKB)(ser437) were detected. RESULTS: Compared to the control group, glucose consumption in the CTRP3 intervention group at concentrations of 10, 50, 250, and 1,250 ng/mL was increased by 22.1%, 42.9%, 76.6% and 80.5% respectively (all P < 0.01); the glucose uptake was increased by 39.0%, 68.0%, 108.0% and 111.0% respectively (all P < 0.01); the content of TNF-α in the culture media of CTRP3 (10, 50, 250 ng/mL) intervention group was decreased by 7.6% (P > 0.05), 13.0% (P < 0.05) and 17.4% (P < 0.01) respectively; the content of IL-6 was decreased by 7.1%, 12.4% and 17.1% respectively (all P < 0.01); the protein relative expression of PI3K was increased by 0.63-, 1.00- and 1.36-fold respectively (all P < 0.01), and PKB(ser437) increased by 0.65-, 1.61- and 1.93-fold respectively (all P < 0.01); the mRNA relative expression of GLUT-4 was increased by 23.0%, 47.0% and 62.0% respectively (all P < 0.01). After the treatment with wortmannin, glucose consumption, glucose uptake, PI3K and PKB(ser437) protein relative expression, as well as GLUT-4 mRNA relative expression, was decreased by 53.2%, 44.7%, 43.4%, 56.1 and 30.9% respectively (all P < 0.01). CONCLUSIONS: CTRP3 could improve insulin sensitivity of insulin resistant 3T3-L1 adipocytes by decreasing inflammation and ameliorating insulin signalling transduction, indicating that CTRP3 may be a new target for the prevention and cure of insulin resistance and type 2 diabetes.


Assuntos
Adipócitos/efeitos dos fármacos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Células 3T3-L1/metabolismo , Adipócitos/metabolismo , Animais , Estudos de Casos e Controles , Relação Dose-Resposta a Droga , Humanos , Camundongos , Proteína 3 Supressora da Sinalização de Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA