Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(9)2021 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-34572046

RESUMO

The retinas of many species show regional specialisations that are evident in the differences in the processing of visual input from different parts of the visual field. Regional specialisation is thought to reflect an adaptation to the natural visual environment, optical constraints, and lifestyle of the species. Yet, little is known about regional differences in synaptic circuitry. Here, we were interested in the topographical distribution of connexin-36 (Cx36), the major constituent of electrical synapses in the retina. We compared the retinas of mice, rats, and cats to include species with different patterns of regional specialisations in the analysis. First, we used the density of Prox1-immunoreactive amacrine cells as a marker of any regional specialisation, with higher cell density signifying more central regions. Double-labelling experiments showed that Prox1 is expressed in AII amacrine cells in all three species. Interestingly, large Cx36 plaques were attached to about 8-10% of Prox1-positive amacrine cell somata, suggesting the strong electrical coupling of pairs or small clusters of cell bodies. When analysing the regional changes in the volumetric density of Cx36-immunoreactive plaques, we found a tight correlation with the density of Prox1-expressing amacrine cells in the ON, but not in the OFF sublamina in all three species. The results suggest that the relative contribution of electrical synapses to the ON- and OFF-pathways of the retina changes with retinal location, which may contribute to functional ON/OFF asymmetries across the visual field.


Assuntos
Células Amácrinas/fisiologia , Conexinas/metabolismo , Dendritos/fisiologia , Sinapses Elétricas/fisiologia , Junções Comunicantes/fisiologia , Proteínas de Homeodomínio/metabolismo , Retina/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Células Amácrinas/citologia , Animais , Conexinas/genética , Feminino , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Retina/citologia , Proteínas Supressoras de Tumor/genética , Proteína delta-2 de Junções Comunicantes
2.
J Comp Neurol ; 527(1): 133-158, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472856

RESUMO

Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2 , respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.


Assuntos
Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Peptídeo Intestinal Vasoativo/metabolismo , Vias Visuais/citologia , Vias Visuais/metabolismo
3.
Sci Rep ; 8(1): 12544, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135513

RESUMO

Ndr2/Stk38l encodes a protein kinase associated with the Hippo tumor suppressor pathway and is mutated in a naturally-occurring canine early retinal degeneration (erd). To elucidate the retinal functions of Ndr2 and its paralog Ndr1/Stk38, we generated Ndr1 and Ndr2 single knockout mice. Although retinal lamination appeared normal in these mice, Ndr deletion caused a subset of Pax6-positive amacrine cells to proliferate in differentiated retinas, while concurrently decreasing the number of GABAergic, HuD and Pax6-positive amacrine cells. Retinal transcriptome analyses revealed that Ndr2 deletion increased expression of neuronal stress genes and decreased expression of synaptic organization genes. Consistent with the latter, Ndr deletion dramatically reduced levels of Aak1, an Ndr substrate that regulates vesicle trafficking. Our findings indicate that Ndr kinases are important regulators of amacrine and photoreceptor cells and suggest that Ndr kinases inhibit the proliferation of a subset of terminally differentiated cells and modulate interneuron synapse function via Aak1.


Assuntos
Interneurônios/citologia , Interneurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Retina/citologia , Células Amácrinas/citologia , Animais , Proliferação de Células , Proteína Semelhante a ELAV 4/metabolismo , Regulação da Expressão Gênica , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX6/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas Serina-Treonina Quinases/genética , Retina/metabolismo , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo
4.
Biochem Biophys Res Commun ; 503(4): 3023-3030, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30146259

RESUMO

We found that the Zhx2 gene (whose product is known to act as a tumor suppressor in hepatocellular carcinoma) is expressed in embryonic retinal progenitors and in developing cone bipolar cells in the postnatal retina, as well as in Müller glia in the mature retina. To examine the functions of Zhx2 protein during retinal development, we performed loss- and gain-of-function analyses using a retinal explant culture system. We introduced a plasmid encoding Zhx2 shRNA into isolated mouse retinas at E17.5, and the retinas were cultured as explants. After 3 days of culture, proliferation was slightly enhanced, leading to retinas thicker than in the control, but this phenomenon was observed only transiently. After 14 days of the culture, the thickness and gross morphology of retinas expressing sh-Zhx2 were indistinguishable from those of the control. The numbers of rod cells, amacrine cells, and Müller glia were the same in both groups. However, although the total number of bipolar cells was the same, the experimental group saw an increased population of ON bipolar cells, and decreased numbers of a subset of OFF bipolar cells. We also examined the effects of overexpression of Zhx2. Although Zhx2 acts as a tumor suppressor, its overexpression in developing retinas did not lead to any discernible difference in retinal thickness, suggesting that proliferation activity was not affected. After 14 days of explant culture, the total number of bipolar cells decreased, and subset composition was altered. Taken together, these results suggest that Zhx2 plays roles in the regulation of bipolar cell subset fate determination during retinal development.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Retina/citologia , Retina/crescimento & desenvolvimento , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Proteínas de Homeodomínio/análise , Proteínas de Homeodomínio/metabolismo , Camundongos Endogâmicos ICR , Neurogênese , Neuroglia/citologia , Neuroglia/metabolismo , Retina/embriologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
5.
EBioMedicine ; 30: 38-51, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29525572

RESUMO

Müller glial cells (MGCs) represent the most plastic cell type found in the retina. Following injury, zebrafish and avian MGCs can efficiently re-enter the cell cycle, proliferate and generate new functional neurons. The regenerative potential of mammalian MGCs, however, is very limited. Here, we showed that N-methyl-d-aspartate (NMDA) damage stimulates murine MGCs to re-enter the cell cycle and de-differentiate back to a progenitor-like stage. These events are dependent on the recruitment of endogenous bone marrow cells (BMCs), which, in turn, is regulated by the stromal cell-derived factor 1 (SDF1)-C-X-C motif chemokine receptor type 4 (CXCR4) pathway. BMCs mobilized into the damaged retina can fuse with resident MGCs, and the resulting hybrids undergo reprogramming followed by re-differentiation into cells expressing markers of ganglion and amacrine neurons. Our findings constitute an important proof-of-principle that mammalian MGCs retain their regenerative potential, and that such potential can be activated via cell fusion with recruited BMCs. In this perspective, our study could contribute to the development of therapeutic strategies based on the enhancement of mammalian endogenous repair capabilities.


Assuntos
Células da Medula Óssea/citologia , Reprogramação Celular , Neuroglia/citologia , Retina/citologia , Células Amácrinas/citologia , Células Amácrinas/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Fusão Celular , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Camundongos Transgênicos , N-Metilaspartato/toxicidade , Neuroglia/efeitos dos fármacos , Receptores CXCR4/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais
6.
J Comp Neurol ; 526(4): 742-766, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218725

RESUMO

We report the retinal expression pattern of Ret, a receptor tyrosine kinase for the glial derived neurotrophic factor (GDNF) family ligands (GFLs), during development and in the adult mouse. Ret is initially expressed in retinal ganglion cells (RGCs), followed by horizontal cells (HCs) and amacrine cells (ACs), beginning with the early stages of postmitotic development. Ret expression persists in all three classes of neurons in the adult. Using RNA sequencing, immunostaining and random sparse recombination, we show that Ret is expressed in at least three distinct types of ACs, and ten types of RGCs. Using intersectional genetics, we describe the dendritic arbor morphologies of RGC types expressing Ret in combination with each of the three members of the POU4f/Brn3 family of transcription factors. Ret expression overlaps with Brn3a in 4 RGC types, with Brn3b in 5 RGC types, and with Brn3c in one RGC type, respectively. Ret+ RGCs project to the lateral geniculate nucleus (LGN), pretectal area (PTA) and superior colliculus (SC), and avoid the suprachiasmatic nucleus and accessory optic system. Brn3a+ Ret+ and Brn3c+ Ret+ RGCs project preferentially to contralateral retinorecipient areas, while Brn3b+ Ret+ RGCs shows minor ipsilateral projections to the olivary pretectal nucleus and the LGN. Our findings establish intersectional genetic approaches for the anatomic and developmental characterization of individual Ret+ RGC types. In addition, they provide necessary information for addressing the potential interplay between GDNF neurotrophic signaling and transcriptional regulation in RGC type specification.


Assuntos
Células Amácrinas/enzimologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células Ganglionares da Retina/enzimologia , Células Horizontais da Retina/enzimologia , Células Amácrinas/citologia , Animais , Dendritos/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Camundongos Transgênicos , Células Ganglionares da Retina/citologia , Células Horizontais da Retina/citologia , Fator de Transcrição Brn-3A/metabolismo , Vias Visuais/citologia , Vias Visuais/enzimologia , Vias Visuais/crescimento & desenvolvimento
7.
J Neurophysiol ; 114(4): 2431-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26311183

RESUMO

Amacrine cells (ACs) are the most diverse class of neurons in the retina. The variety of signals provided by ACs allows the retina to encode a wide range of visual features. Of the 30-50 AC types in mammalian species, few have been studied in detail. Here, we combine genetic and viral strategies to identify and to characterize morphologically three vasoactive intestinal polypeptide-expressing GABAergic AC types (VIP1-, VIP2-, and VIP3-ACs) in mice. Somata of VIP1- and VIP2-ACs reside in the inner nuclear layer and somata of VIP3-ACs in the ganglion cell layer, and they show asymmetric distributions along the dorsoventral axis of the retina. Neurite arbors of VIP-ACs differ in size (VIP1-ACs ≈ VIP3-ACs > VIP2-ACs) and stratify in distinct sublaminae of the inner plexiform layer. To analyze light responses and underlying synaptic inputs, we target VIP-ACs under 2-photon guidance for patch-clamp recordings. VIP1-ACs depolarize strongly to light increments (ON) over a wide range of stimulus sizes but show size-selective responses to light decrements (OFF), depolarizing to small and hyperpolarizing to large stimuli. The switch in polarity of OFF responses is caused by pre- and postsynaptic surround inhibition. VIP2- and VIP3-ACs both show small depolarizations to ON stimuli and large hyperpolarizations to OFF stimuli but differ in their spatial response profiles. Depolarizations are caused by ON excitation outweighing ON inhibition, whereas hyperpolarizations result from pre- and postsynaptic OFF-ON crossover inhibition. VIP1-, VIP2-, and VIP3-ACs thus differ in response polarity and spatial tuning and contribute to the diversity of inhibitory and neuromodulatory signals in the retina.


Assuntos
Células Amácrinas/citologia , Células Amácrinas/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Imuno-Histoquímica , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Microscopia Confocal , Técnicas de Patch-Clamp , Estimulação Luminosa , Técnicas de Cultura de Tecidos , Visão Ocular/fisiologia
8.
Proc Natl Acad Sci U S A ; 111(25): 9295-300, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927528

RESUMO

Neurons are commonly organized as regular arrays within a structure, and their patterning is achieved by minimizing the proximity between like-type cells, but molecular mechanisms regulating this process have, until recently, been unexplored. We performed a forward genetic screen using recombinant inbred (RI) strains derived from two parental A/J and C57BL/6J mouse strains to identify genomic loci controlling spacing of cholinergic amacrine cells, which is a subclass of retinal interneuron. We found conspicuous variation in mosaic regularity across these strains and mapped a sizeable proportion of that variation to a locus on chromosome 11 that was subsequently validated with a chromosome substitution strain. Using a bioinformatics approach to narrow the list of potential candidate genes, we identified pituitary tumor-transforming gene 1 (Pttg1) as the most promising. Expression of Pttg1 was significantly different between the two parental strains and correlated with mosaic regularity across the RI strains. We identified a seven-nucleotide deletion in the Pttg1 promoter in the C57BL/6J mouse strain and confirmed a direct role for this motif in modulating Pttg1 expression. Analysis of Pttg1 KO mice revealed a reduction in the mosaic regularity of cholinergic amacrine cells, as well as horizontal cells, but not in two other retinal cell types. Together, these results implicate Pttg1 in the regulation of homotypic spacing between specific types of retinal neurons. The genetic variant identified creates a binding motif for the transcriptional activator protein 1 complex, which may be instrumental in driving differential expression of downstream processes that participate in neuronal spacing.


Assuntos
Células Amácrinas/metabolismo , Neurônios Colinérgicos/metabolismo , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica/fisiologia , Securina/biossíntese , Células Amácrinas/citologia , Animais , Sequência de Bases , Neurônios Colinérgicos/citologia , Proteínas do Olho/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Securina/genética , Deleção de Sequência
9.
PLoS One ; 9(4): e95090, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24777042

RESUMO

BACKGROUND: Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A) receptor (A(2A)R) regulates retinal waves and whether A(2A)R regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS: We showed that A(2A)R was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2A)R decreased the frequency of spontaneous Ca²âº transients, suggesting that endogenous A(2A)R may up-regulate wave frequency. To investigate whether A(2A)R acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²âº transient frequency was increased by expressing wild-type A(2A)R (A2AR-WT) in SACs, suggesting that A(2A)R may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2A)R-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2A)R may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2A)R mutant (A(2A)R-ΔC) in SACs, the wave frequency was reduced compared to the A(2A)R-WT, but was similar to the control, suggesting that the full-length A(2A)R in SACs is required for A(2A)R up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE: A(2A)R up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full-length protein structure. Thus, by coupling with the downstream intracellular signaling, A(2A)R may have a great capacity to modulate patterned spontaneous activity during neural circuit refinement.


Assuntos
Potenciais de Ação , Células Amácrinas/citologia , Receptor A2A de Adenosina/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Regulação para Cima , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Imagem Molecular , Mutação , Ratos , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/deficiência , Receptor A2A de Adenosina/genética , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Transdução de Sinais , Potenciais Sinápticos
10.
Cell Tissue Res ; 355(2): 279-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24352804

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagon/vasoactive intestinal peptide family, exerts various effects on neuronal development as mediated by the differential expression of PAC1 receptor (PAC1-R) isoforms. The expression changes of PAC1-R isoforms (Hip, Hop1) reported in correlation with retinal development suggest an isoform switch during the second postnatal week. Our aim is to determine the exact period of the isoform shift and to describe the PAC1-R-immunoreactive structures appearing from postnatal day 5 (P5) to P10 in the rat retina. The ratio of Hip and Hop1 receptors was assessed and changes in their expression were followed by Taqman and SybrGreen-based quantitative polymerase chain reaction. For the detection of PAC1-R-expressing retinal structures, anti-PAC1-R, anti-calbindin, anti-protein kinase C, anti-glutamine synthetase, anti-HPC1 and anti-Brn3a antibodies were utilized. At the transcript level, a marked decrease to an undetectable level was measured in Hip mRNA expression from P6 to P9. Hop1 expression appeared to be unchanged from P6 to P9, followed by a significant elevation at P10. A Hip/Hop1 isoform shift occurred between P6 and P7. Immunostaining showed strong PAC1-R labeling from P5 to P10 in ganglion, amacrine, horizontal and rod bipolar neurons and in glial Muller cell processes. The Hop1 isoform was predominantly expressed in various types of retinal cell beginning at P7, because of a dramatic reduction in Hip mRNA level. As the Hop1 receptor is coupled to different signaling cascades, this isoform shift might alter the physiological role of PACAP during this particular period.


Assuntos
Splicing de RNA/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Neurônios Retinianos/metabolismo , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Animais Recém-Nascidos , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Microscopia de Fluorescência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Neurônios Retinianos/citologia
11.
BMC Biol ; 11: 106, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24124870

RESUMO

BACKGROUND: The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. RESULTS: In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. CONCLUSIONS: We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.


Assuntos
Encéfalo/metabolismo , Cromossomos Artificiais Bacterianos/genética , Cromossomos Humanos X/genética , Sequências Reguladoras de Ácido Nucleico , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Angiomotinas , Animais , Fator II de Transcrição COUP/genética , Sistema Nervoso Central/metabolismo , Biologia Computacional , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Loci Gênicos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Membrana/genética , Camundongos , Monoaminoxidase/genética , Proteína Sobre-Expressa em Nefroblastoma/genética , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-24111243

RESUMO

In patients who have lost their photoreceptors due to retinal degenerative diseases, it is possible to restore rudimentary vision by electrically stimulating surviving neurons. AII amacrine cells, which reside in the inner plexiform layer, split the signal from rod bipolar cells into ON and OFF cone pathways. As a result, it is of interest to develop a computational model to aid in the understanding of how these cells respond to the electrical stimulation delivered by a prosthetic implant. The aim of this work is to develop and constrain parameters in a single-compartment model of an AII amacrine cell using data from whole-cell patch clamp recordings. This model will be used to explore responses of AII amacrine cells to electrical stimulation. Single-compartment Hodgkin-Huxley-type neural models are simulated in the NEURON environment. Simulations showed successful reproduction of the potassium currentvoltage relationship and some of the spiking properties observed in vitro.


Assuntos
Células Amácrinas/citologia , Células Amácrinas/fisiologia , Estimulação Elétrica , Neurônios/fisiologia , Técnicas de Patch-Clamp , Retina/fisiologia , Doenças Retinianas/fisiopatologia , Simulação por Computador , Junções Comunicantes/fisiologia , Humanos , Íons , Degeneração Macular/fisiopatologia , Modelos Biológicos , Potássio/química , Células Fotorreceptoras Retinianas Bastonetes/citologia , Retinose Pigmentar/fisiopatologia , Sódio/química , Software , Tetrodotoxina/química
13.
PLoS One ; 7(3): e32795, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403711

RESUMO

BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Retina/citologia , Retina/metabolismo , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Células Amácrinas/efeitos da radiação , Animais , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Tamanho Celular/efeitos da radiação , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Técnicas de Inativação de Genes , Luz , Camundongos , Mutação , Neuritos/metabolismo , Neuritos/efeitos da radiação , Especificidade de Órgãos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Gravidez , Retina/efeitos da radiação , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos da radiação , Percepção Visual/efeitos da radiação
14.
Mol Cell Neurosci ; 49(2): 171-83, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22155156

RESUMO

The lipid phosphatase PTEN is a critical negative regulator of extracellular signal-induced PI3K activities, yet the roles of PTEN in the neural retina remain poorly understood. Here, we investigate the function of PTEN during retinal development. Deletion of Pten at the onset of neurogenesis in retinal progenitors results in the reduction of retinal ganglion cells and rod photoreceptors, but increased Müller glial genesis. In addition, PTEN deficiency leads to elevated phosphorylation of Akt, especially in the developing inner plexiform layer, where high levels of PTEN are normally expressed. In Pten mutant retinas, various subtypes of amacrine cells show severe dendritic overgrowth, causing specific expansion of the inner plexiform layer. However, the outer plexiform layer remains relatively undisturbed in the Pten deficient retina. Physiological analysis detects reduced rod function and augmented oscillatory potentials originating from amacrine cells in Pten mutants. Furthermore, deleting Pten or elevating Akt activity in individual amacrine cells is sufficient to disrupt dendritic arborization, indicating that Pten activity is required cell autonomously to control neuronal morphology. Moreover, inhibiting endogenous Akt activity attenuates inner plexiform layer formation in vitro. Together, these findings demonstrate that suppression of PI3K/Akt signaling by PTEN is crucial for proper neuronal differentiation and normal retinal network formation.


Assuntos
Interneurônios/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Retina/citologia , Células Amácrinas/citologia , Animais , Técnicas de Inativação de Genes , Interneurônios/citologia , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/genética , Morfogênese/fisiologia , Mutação/genética , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/classificação , Células Ganglionares da Retina/citologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
Invest Ophthalmol Vis Sci ; 52(10): 7705-10, 7704, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21960640

RESUMO

Hypothesis-driven science is expected to result in a continuum of studies and findings along a discrete path. By comparison, serendipity can lead to new directions that branch into different paths. Herein, I describe a diverse series of findings that were motivated by hypotheses, but driven by serendipity. I summarize how investigations into vision-guided ocular growth in the chick eye led to the identification of glucagonergic amacrine cells as key regulators of ocular elongation. Studies designed to assess the impact of the ablation of different types of neurons on vision-guided ocular growth led to the finding of numerous proliferating cells within damaged retinas. These proliferating cells were Müller glia-derived retinal progenitors with a capacity to produce new neurons. Studies designed to investigate Müller glia-derived progenitors led to the identification of a domain of neural stem cells that form a circumferential marginal zone (CMZ) that lines the periphery of the retina. Accelerated ocular growth, caused by visual deprivation, stimulated the proliferation of CMZ progenitors. We formulated a hypothesis that growth-regulating glucagonergic cells may regulate both overall eye size (scleral growth) and the growth of the retina (proliferation of CMZ cells). Subsequent studies identified unusual types of glucagonergic neurons with terminals that ramify within the CMZ; these cells use visual cues to control equatorial ocular growth and the proliferation of CMZ cells. Finally, while studying the signaling pathways that stimulate CMZ and Müller glia-derived progenitors, serendipity led to the discovery of a novel type of glial cell that is scattered across the inner retinal layers.


Assuntos
Olho/crescimento & desenvolvimento , Neuroglia/citologia , Retina/citologia , Células-Tronco/citologia , Visão Ocular/fisiologia , Células Amácrinas/citologia , Animais , Distinções e Prêmios , Galinhas , Florida , Oftalmologia , Esclera/crescimento & desenvolvimento , Sociedades Científicas
16.
Dev Biol ; 348(1): 87-96, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20875817

RESUMO

Netrin-1 and DCC are well known for their roles in neurite growth, axonal guidance, and neuronal migration. Recently, a number of studies showed that DCC is involved in the induction of apoptosis, and this proapoptotic activity can be blocked in the presence of Netrin-1. However, here, we found that DCC is required for the survival of two types of neurons selectively in the developing mouse retina where DCC is abundantly expressed. Our results showed that the DCC(-/-) retina displayed a reduced ganglion cell layer with relatively normal neuroblastic layer. Immunostaining assays revealed that in DCC(-/-) mice, initial neurogenesis within retina was unchanged while the numbers of differentiated retinal ganglion cells and displaced amacrine cells in ganglion cell layer were greatly reduced due to increased apoptosis. By contrast, other neuronal types including horizontal cells, bipolar cells, amacrine cells, photoreceptors, and Müller cells appeared normal in DCC mutant retinas. Moreover, DCC(kanga) mice that lack the intracellular P3 domain of DCC receptor displayed the same defects as DCC(-/-) mice. Thus, our findings suggest that DCC is a key regulator for the survival of specific types of neurons during retinal development and that DCC-P3 domain is essential for this developing event.


Assuntos
Células Amácrinas/citologia , Proteínas do Olho/fisiologia , Neurogênese/fisiologia , Receptores de Superfície Celular/fisiologia , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/citologia , Proteínas Supressoras de Tumor/fisiologia , Células Amácrinas/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Sobrevivência Celular , Receptor DCC , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Proteínas do Olho/química , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes DCC , Camundongos , Camundongos Knockout , Camundongos Mutantes , Neurogênese/genética , Estrutura Terciária de Proteína , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Deleção de Sequência , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
17.
J Neurosci ; 29(47): 14903-11, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19940186

RESUMO

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.


Assuntos
Células Amácrinas/metabolismo , Dopamina/metabolismo , Junções Comunicantes/metabolismo , Retina/metabolismo , Transmissão Sináptica/fisiologia , Células Amácrinas/citologia , Células Amácrinas/efeitos dos fármacos , Animais , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Conexinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/ultraestrutura , Técnicas de Cultura de Órgãos , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Coelhos , Retina/citologia , Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Visão Ocular/efeitos dos fármacos , Visão Ocular/fisiologia , Proteína delta-2 de Junções Comunicantes
18.
Mol Vis ; 15: 1680-9, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19710944

RESUMO

PURPOSE: The conversion of inner retinal neurons to photosensitive cells via viral mediated expression of channelrhodopsin-2 (ChR2) offers a new potential approach for the restoration of vision after photoreceptor degeneration. This study was conducted to evaluate the recombinant adeno-associated virus serotype 2 (rAAV2)-mediated long-term expression and safety of ChR2 in the mouse retina. METHODS: rAAV2 vectors carrying a fusion construct of channelopsin-2 (Chop2) and green fluorescent protein (GFP; Chop2-GFP) under the control of a hybrid cytomegalovirus early enhancer and chicken beta-actin (CAG) promoter were injected at different concentrations into the eyes of wild-type adult mice. The retinas were harvested up to 18 months after virus injection for immunostaining and electrophysiological studies. Injected mice were kept either under normal light conditions, or exposed to a strong blue light. The expression of GFP and the density of the cells in the ganglion cell layer (GCL) were examined. RESULTS: The expression of Chop2-GFP was stable for up to 18 months. Chop-GFP was observed predominantly in retinal ganglion as well as amacrine cells. At the highest virus concentration (6 x 10(12) GC/ml), up to 20% of the cells in the GCL were infected by the virus. At the lowest virus concentration (1 x 10(10) GC/ml), the expression was targeted to AII amacrine cells. The concentration of the virus, the light conditions, and the percentage of Chop2-GFP-positive cells had no effect on the density and, thus, on the survival of the cells in the GCL. Sufficient number of functional ChR2 channels were maintained in ganglion cells to drive robust membrane depolarization and spike firing in response to light. CONCLUSIONS: Expression of Chop2-GFP could be achieved in retinal neurons in vivo for the duration of the lifespan of mice. The expression of Chop2-GFP did not cause any detectable toxicity and cell death to neurons of the ganglion cell layer.


Assuntos
Dependovirus/genética , Retina/metabolismo , Retina/virologia , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Contagem de Células , Channelrhodopsins , Eletrodos , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Microscopia de Fluorescência , Neurotoxinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Neurônios Retinianos/citologia , Neurônios Retinianos/metabolismo , Fatores de Tempo
19.
Invest Ophthalmol Vis Sci ; 50(3): 1416-22, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18997090

RESUMO

PURPOSE: The authors investigated the effect of brain-derived neurotrophic factor (BDNF) administration on the expression of Ca(2+)-binding proteins in the developing bdnf(-/-) mouse retina. METHODS: Intraocular injections of BDNF (0.5 microg) were applied on postnatal day (P) 11 bdnf(-/-) mice, and their effects were evaluated on P14. Neurons expressing Ca(2+)-binding protein were studied by immunohistochemistry for PKC-alpha, recoverin, calbindin-D28K, calretinin, and parvalbumin. RESULTS: Cell density and immunostaining intensity for Ca(2+)-binding proteins in horizontal, bipolar, amacrine, and ganglion cells were lower in the retinas of bdnf(-/-) mice than of wild-type mice. Mutant retinas treated with BDNF showed a 35% to 40% increase in the number of calbindin-positive horizontal and amacrine cells. Increases of 30% and 50%, respectively, were also observed for calretinin- and parvalbumin-positive cells in the inner nuclear layer after BDNF treatment. The retinas of bdnf(-/-) mice showed recoverin expression only in scattered bipolar cells; however, recoverin-positive bipolar cells were readily detectable after BDNF injection in mutants (80% increase). The number of parvalbumin-positive ganglion cells after BDNF treatment reached 100% of control values. Expression of calretinin and calbindin was also upregulated in the ganglion cell layers of BDNF-treated mutants. CONCLUSIONS: The expression of Ca(2+)-binding proteins is reduced in the mutant retina. This neurochemical phenotype can be reverted, at least partially, by providing exogenous BDNF during the second week of postnatal development.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Retina/metabolismo , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Animais Recém-Nascidos , Calbindina 1 , Calbindina 2 , Calbindinas , Contagem de Células , Regulação para Baixo , Inativação Gênica/fisiologia , Técnicas Imunoenzimáticas , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Transgênicos , Parvalbuminas/metabolismo , Fenótipo , Proteína Quinase C-alfa/metabolismo , Recoverina/metabolismo , Retina/efeitos dos fármacos , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/citologia , Células Horizontais da Retina/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(49): 19508-13, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19033471

RESUMO

Müller glia can serve as a source of new neurons after retinal damage in both fish and birds. Investigations of regeneration in the mammalian retina in vitro have provided some evidence that Müller glia can proliferate after retinal damage and generate new rods; however, the evidence that this occurs in vivo is not conclusive. We have investigated whether Müller glia have the potential to generate neurons in the mouse retina in vivo by eliminating ganglion and amacrine cells with intraocular NMDA injections and stimulating Müller glial to re-enter the mitotic cycle by treatment with specific growth factors. The proliferating Müller glia dedifferentiate and a subset of these cells differentiated into amacrine cells, as defined by the expression of amacrine cell-specific markers Calretinin, NeuN, Prox1, and GAD67-GFP. These results show for the first time that the mammalian retina has the potential to regenerate inner retinal neurons in vivo.


Assuntos
Regeneração Nervosa/fisiologia , Neuroglia/citologia , Neurônios/citologia , Retina/citologia , Retina/fisiologia , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Biomarcadores/metabolismo , Calbindina 2 , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA , Denervação , Agonistas de Aminoácidos Excitatórios/toxicidade , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , N-Metilaspartato/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA