Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Hum Mol Genet ; 30(11): 985-995, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33791800

RESUMO

P2RX2 encodes the P2X2 receptor, which is an adenosine triphosphate (ATP) gated (purinoreceptor) ion channel. P2RX2 c. 178G > T (p.V60L) mutation was previously identified in two unrelated Chinese families, as the cause of human DFNA41, a form of dominant, early-onset and progressive sensorineural hearing loss. We generated and characterized a knock-in mouse model based on human p.V60L mutation that recapitulates the human phenotype. Heterozygous KI mice started to exhibit hearing loss at 21-day-old and progressed to deafness by 6-month-old. Vestibular dysfunction was also observed in mutant mice. Abnormal morphology of the inner hair cells and ribbon synapses was progressively observed in KI animals suggesting that P2rx2 plays a role in the membrane spatial location of the ribbon synapses. These results suggest that P2rx2 is essential for acoustic information transfer, which can be the molecular mechanism related to hearing loss.


Assuntos
Perda Auditiva Neurossensorial/genética , Receptores Purinérgicos P2X2/genética , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Neurossensorial/patologia , Heterozigoto , Humanos , Camundongos , Mutação/genética , Linhagem , Fenótipo , Sinapses/genética , Sinapses/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
2.
PLoS One ; 16(1): e0243903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411811

RESUMO

Tinnitus, the phantom perception of sound, often occurs as a clinical sequela of auditory traumas. In an effort to develop an objective test and therapeutic approach for tinnitus, the present study was performed in blast-exposed rats and focused on measurements of auditory brainstem responses (ABRs), prepulse inhibition of the acoustic startle response, and presynaptic ribbon densities on cochlear inner hair cells (IHCs). Although the exact mechanism is unknown, the "central gain theory" posits that tinnitus is a perceptual indicator of abnormal increases in the gain (or neural amplification) of the central auditory system to compensate for peripheral loss of sensory input from the cochlea. Our data from vehicle-treated rats supports this rationale; namely, blast-induced cochlear synaptopathy correlated with imbalanced elevations in the ratio of centrally-derived ABR wave V amplitudes to peripherally-derived wave I amplitudes, resulting in behavioral evidence of tinnitus. Logistic regression modeling demonstrated that the ABR wave V/I amplitude ratio served as a reliable metric for objectively identifying tinnitus. Furthermore, histopathological examinations in blast-exposed rats revealed tinnitus-related changes in the expression patterns of key plasticity factors in the central auditory pathway, including chronic loss of Arc/Arg3.1 mobilization. Using a formulation of N-acetylcysteine (NAC) and disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07) as a therapeutic for addressing blast-induced neurodegeneration, we measured a significant treatment effect on preservation or restoration of IHC ribbon synapses, normalization of ABR wave V/I amplitude ratios, and reduced behavioral evidence of tinnitus in blast-exposed rats, all of which accorded with mitigated histopathological evidence of tinnitus-related neuropathy and maladaptive neuroplasticity.


Assuntos
Acetilcisteína , Benzenossulfonatos , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva Provocada por Ruído , Zumbido , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Benzenossulfonatos/farmacologia , Benzenossulfonatos/uso terapêutico , Biomarcadores/metabolismo , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/fisiopatologia , Masculino , Ratos , Zumbido/tratamento farmacológico , Zumbido/fisiopatologia
3.
Otolaryngol Clin North Am ; 54(1): 189-200, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33243375

RESUMO

Sensorineural hearing loss is caused by irreversible loss of auditory hair cells and/or neurons and is increasing in prevalence. Hair cells and neurons do not regenerate after damage, but novel regeneration therapies based on small molecule drugs, gene therapy, and cell replacement strategies offer promising therapeutic options. Endogenous and exogenous regeneration techniques are discussed in context of their feasibility for hair cell and neuron regeneration. Gene therapy and treatment of synaptopathy represent promising future therapies. Minimally invasive endoscopic ear surgery offers a viable approach to aid in delivery of pharmacologic compounds, cells, or viral vectors to the inner ear for all of these techniques.


Assuntos
Sistemas de Liberação de Medicamentos , Endoscopia/métodos , Perda Auditiva Neurossensorial/terapia , Animais , Orelha Interna/efeitos dos fármacos , Orelha Interna/fisiopatologia , Terapia Genética/métodos , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Regeneração , Gânglio Espiral da Cóclea/fisiopatologia
4.
Proc Natl Acad Sci U S A ; 117(47): 29894-29903, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168709

RESUMO

Transmembrane channel-like protein 1 (TMC1) and lipoma HMGIC fusion partner-like 5 (LHFPL5) are recognized as two critical components of the mechanotransduction complex in inner-ear hair cells. However, the physical and functional interactions of TMC1 and LHFPL5 remain largely unexplored. We examined the interaction between TMC1 and LHFPL5 by using multiple approaches, including our recently developed ultrasensitive microbead-based single-molecule pulldown (SiMPull) assay. We demonstrate that LHFPL5 physically interacts with and stabilizes TMC1 in both heterologous expression systems and in the soma and hair bundle of hair cells. Moreover, the semidominant deafness mutation D572N in human TMC1 (D569N in mouse TMC1) severely disrupted LHFPL5 binding and destabilized TMC1 expression. Thus, our findings reveal previously unrecognized physical and functional interactions of TMC1 and LHFPL5 and provide insights into the molecular mechanism by which the D572N mutation causes deafness. Notably, these findings identify a missing link in the currently known physical organization of the mechanotransduction macromolecular complex. Furthermore, this study has demonstrated the power of the microbead-based SiMPull assay for biochemical investigation of rare cells such as hair cells.


Assuntos
Surdez/genética , Células Ciliadas Auditivas Internas/patologia , Mecanotransdução Celular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Células COS , Sistemas CRISPR-Cas/genética , Chlorocebus aethiops , Surdez/patologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Células HEK293 , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Proteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Transgênicos , Mutação Puntual , Ligação Proteica/genética , Técnicas do Sistema de Duplo-Híbrido
6.
Artigo em Chinês | MEDLINE | ID: mdl-32842367

RESUMO

Objective: To measure the cochlear compound action potential (CAP) and the densities of hair cells (HCs) along the whole length of the basilar membrane (BM) in adult chinchillas. And to investigate the relationship between the severity of inner hair cells (IHCs) loss and the changes of CAP by using carboplatin-cochlear lesion model. Methods: Totally 18 chinchillas were recruited after ontological evaluation. They were randomly divided into three groups (with 6 subjects in each), A: control, B and C: legion groups treated with one or two shot(s) of carboplatin respectively (76 mg/kg in one shot, i.p., one-week interval between the two shots). Endpoint tests were performed 30 days after the carboplatin treatment in groups B and C, and matched time in group A. A sliver-ball electrode was placed into round window niche via hypotympanic approach in anesthetized chinchilla. CAP was measured in response to clicks and tone burst of 0.5, 1, 2, 4, 8, 16 kHz respectively under anesthesia. CAP amplitudes and thresholds were measured and compared across the groups. After the recording, the whole cochlea surface preparation was made and the HCs were stained in histochemistry against substrate of succinate dehydrogenase (SDH). Images were taken with high-resolution digital camera under light microscope and across the whole cochlea. The length of the basilar membrane (BM) and the number of both IHCs and OHCs were counted. The HC density was calculated as the number of HCs per 10% BM length. Results: The CAP thresholds were (7.1±2.6), (25.4±5.0), (24.6±5.4), (10.4±5.0), (0.4±1.4), (4.2±6.3) and (17.1±14.1) dB SPL (from 6 subjects in group A, n=12 ears) corresponding to stimuli of Click and 0.5, 1, 2, 4, 8, 16 kHz tone bursts respectively. The total number of cochlear HCs were measured as (8 936±643) (x±s) and the average length of the BMs was (17.73±1.012) mm from the six subjects in the group A (n=12 ears). The HC density was found to be varied slightly across the BM. There was no significant CAP threshold difference between the control (group A) and the group B, which received one shot of carboplatin. However, the maximal CAP amplitude was reduced by 40% in the group B and compared with group A. Correspondingly, approximately 40% loss of IHCs were seen. In contrast, a significant CAP threshold shift was seen in subjects receiving two shots of carboplatin (group C), which was accompanied by a loss of 90% IHCs. Conclusions: The CAP thresholds of adult chinchillas show typical open-V shape with the lowest values at 2, 4, and 8 kHz. IHC loss by carboplatin in certain degree is well correlated with CAP amplitude reduction, but does not change the threshold when inner hair cell loss reaches 40%, however, if inner hair cell loss exceeds 80%, the threshold shift of CAP will be inevitable.


Assuntos
Potenciais de Ação , Antineoplásicos/efeitos adversos , Limiar Auditivo/efeitos dos fármacos , Carboplatina/efeitos adversos , Cóclea , Células Ciliadas Auditivas Internas , Potenciais de Ação/fisiologia , Animais , Antineoplásicos/farmacologia , Limiar Auditivo/fisiologia , Carboplatina/farmacologia , Chinchila , Cóclea/patologia , Cóclea/fisiopatologia , Modelos Animais de Doenças , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/patologia
7.
PLoS Genet ; 16(8): e1008953, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776944

RESUMO

Apoptosis of cochlear hair cells is a key step towards age-related hearing loss. Although numerous genes have been implicated in the genetic causes of late-onset, progressive hearing loss, few show direct links to the proapoptotic process. By genome-wide linkage analysis and whole exome sequencing, we identified a heterozygous p.L183V variant in THOC1 as the probable cause of the late-onset, progressive, non-syndromic hearing loss in a large family with autosomal dominant inheritance. Thoc1, a member of the conserved multisubunit THO/TREX ribonucleoprotein complex, is highly expressed in mouse and zebrafish hair cells. The thoc1 knockout (thoc1 mutant) zebrafish generated by gRNA-Cas9 system lacks the C-startle response, indicative of the hearing dysfunction. Both Thoc1 mutant and knockdown zebrafish have greatly reduced hair cell numbers, while the latter can be rescued by embryonic microinjection of human wild-type THOC1 mRNA but to significantly lesser degree by the c.547C>G mutant mRNA. The Thoc1 deficiency resulted in marked apoptosis in zebrafish hair cells. Consistently, transcriptome sequencing of the mutants showed significantly increased gene expression in the p53-associated signaling pathway. Depletion of p53 or applying the p53 inhibitor Pifithrin-α significantly rescued the hair cell loss in the Thoc1 knockdown zebrafish. Our results suggested that THOC1 deficiency lead to late-onset, progressive hearing loss through p53-mediated hair cell apoptosis. This is to our knowledge the first human disease associated with THOC1 mutations and may shed light on the molecular mechanism underlying the age-related hearing loss.


Assuntos
Proteínas de Ligação a DNA/genética , Surdez/genética , Células Ciliadas Auditivas Internas/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Benzotiazóis/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteínas de Ligação a DNA/deficiência , Surdez/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas Internas/patologia , Humanos , Camundongos , Mutação , RNA Guia de Cinetoplastídeos/genética , Transdução de Sinais/efeitos dos fármacos , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Sequenciamento do Exoma , Peixe-Zebra/genética
8.
Nutrients ; 12(4)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235401

RESUMO

Despite the excellent antimicrobial activity of aminoglycoside antibiotics, permanent inner ear damage associated with the use of these drugs has resulted in the need to develop strategies to address the ototoxic risk given their widespread use. In a previous study, we showed that avocado oil protects ear hair cells from damage caused by neomycin. However, the detailed mechanism by which this protection occurs is still unclear. Here, we investigated the auditory cell-protective mechanism of enhanced functional avocado oil extract (DKB122). RNA sequencing followed by pathway analysis revealed that DKB122 has the potential to enhance the expression of detoxification and antioxidant genes associated with glutathione metabolism (Hmox4, Gsta4, Mgst1, and Abcc3) in HEI-OC1 cells. Additionally, DKB122 effectively decreased ROS levels, resulting in the inhibition of apoptosis in HEI-OC1 cells. The expression of the inflammatory genes that encode chemokines and interleukins was also downregulated by DKB122 treatment. Consistent with these results, DKB122 significantly inhibited p65 nuclear migration induced by TNF-α or LPS in HEI-OC1 cells and THP-1 cells and the expression of inflammatory chemokine and interleukin genes induced by TNF-α was significantly reduced. Moreover, DKB122 treatment increased LC3-II and decreased p62 in HEI-OC1 cells, suggesting that DKB122 increases autophagic flux. These results suggest that DKB122 has otoprotective effects attributable to its antioxidant activity, induction of antioxidant gene expression, anti-inflammatory activity, and autophagy activation.


Assuntos
Aminoglicosídeos/efeitos adversos , Antibacterianos/efeitos adversos , Ototoxicidade/tratamento farmacológico , Ototoxicidade/etiologia , Ototoxicidade/genética , Persea/química , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Autofagia/efeitos dos fármacos , Autofagia/genética , Células Cultivadas , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/patologia , Humanos , Mediadores da Inflamação/metabolismo , Desintoxicação Metabólica Fase I/genética , Ototoxicidade/patologia , Estresse Oxidativo/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Sci Rep ; 9(1): 15362, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653916

RESUMO

Noise exposures causing only transient threshold shifts can destroy auditory-nerve synapses without damaging hair cells. Here, we asked whether virally mediated neurotrophin3 (NT3) overexpression can repair this damage. CBA/CaJ mice at 6 wks were injected unilaterally with adeno-associated virus (AAV) containing either NT3 or GFP genes, via the posterior semicircular canal, 3 wks prior to, or 5 hrs after, noise exposure. Controls included exposed animals receiving vehicle only, and unexposed animals receiving virus. Thresholds were measured 2 wks post-exposure, just before cochleas were harvested for histological analysis. In separate virus-injected animals, unexposed cochleas were extracted for qRT-PCR. The GFP reporter showed that inner hair cells (IHCs) were transfected throughout the cochlea, and outer hair cells mainly in the apex. qRT-PCR showed 4- to 10-fold overexpression of NT3 from 1-21 days post-injection, and 1.7-fold overexpression at 40 days. AAV-NT3 delivered prior to noise exposure produced a dose-dependent reduction of synaptopathy, with nearly complete rescue at some cochlear locations. In unexposed ears, NT3 overexpression did not affect thresholds, however GFP overexpression caused IHC loss. In exposed ears, NT3 overexpression increased permanent threshold shifts. Thus, although NT3 overexpression can minimize noise-induced synaptic damage, the forced overexpression may be harmful to hair cells themselves during cochlear overstimulation.


Assuntos
Cóclea/patologia , Dependovirus/metabolismo , Neurotrofina 3/metabolismo , Ruído , Sinapses/patologia , Animais , Limiar Auditivo , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Proteínas de Fluorescência Verde/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Neurotrofina 3/genética , Emissões Otoacústicas Espontâneas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinapses/metabolismo
10.
Toxicol Lett ; 310: 51-60, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30991096

RESUMO

Manganese (Mn) is an essential cofactor for many enzymes and thus plays an important role in normal growth and development. However, persistent exposure to high Mn concentrations can result in deleterious effects on not only the central nervous system but also peripheral nerves, including nerves associated with the auditory system. Our initial research on cochlear organotypic cultures in vitro showed that N-acetylcysteine (NAC) clearly decreases Mn-induced losses in hair cells (HCs), auditory nerve fibers (ANFs) and spiral ganglion neurons (SGNs) in a concentration-dependent manner. Salidroside (SAL) (p-hydroxyphenethyl-b-d-glucoside; C14H20O7), which is extracted from Rhodiola rosea L, has many pharmacological actions and antioxidative, antiaging, neuroprotective and anticancer effects. We hypothesized that SAL could also protect HCs, ANFs and SGNs from Mn injury. Cochlear organotypic cultures were treated with 1 mM Mn alone or combined with SAL (1-1000 µM). The neurofilament staining results showed that HCs, ANFs and SGNs were seriously damaged at high concentrations (100-1000 µM) but less damaged at low concentrations (1-10 µM). SAL may protect against 1 mM Mn-induced HC loss and axonal degeneration, suggesting that SAL could be a promising drug for clinical applications.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cloretos/toxicidade , Glucosídeos/farmacologia , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Gânglio Espiral da Cóclea/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/metabolismo , Citoproteção , Relação Dose-Resposta a Droga , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Compostos de Manganês , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Técnicas de Cultura de Tecidos
11.
Nat Commun ; 10(1): 427, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683875

RESUMO

Adeno-associated virus (AAV) has been successfully used to deliver gene therapy to improve auditory function in mouse models of hereditary hearing loss. Many forms of hereditary hearing loss have mutations which affect the cochlear hair cells, the mechanosensory cells which allow for sound detection and processing. While most conventional AAVs infect inner hair cells (IHCs) with various efficiencies, they infect outer hair cells (OHCs) and supporting cells at lower levels in the cochlea. Here we examine the infection patterns of two synthetic AAVs (AAV2.7m8 and AAV8BP2) in the mouse inner ear. AAV2.7m8 infects both IHCs and OHCs with high efficiency. In addition, AAV2.7m8 infects inner pillar cells and inner phalangeal cells with high efficiency. Our results suggest that AAV2.7m8 is an excellent viral vector for inner ear gene therapy targeting cochlear hair cells and supporting cells, and it will likely greatly expand the potential applications for inner ear gene therapy.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva Neurossensorial/terapia , Miosinas/genética , Animais , Animais Recém-Nascidos , Dependovirus/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Audição/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Camundongos , Miosina VIIa , Miosinas/metabolismo
12.
Hear Res ; 374: 5-12, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30682699

RESUMO

In the context of acquired sensorineural hearing loss (SNHL), cochlear hair cells have long been thought to be among the most vulnerable elements in mammalian cochleae. However, recent studies have indicated that the synaptic connection between inner hair cells (IHC) and spiral ganglion neurons (SGN) can be an important target for the treatment of SNHL. Our previous studies in patients with sudden SNHL demonstrated delayed and gradual hearing recovery following topical application of insulin-like growth factor 1 (IGF-1), suggesting that not only protective but also regenerative mechanisms may account for hearing recovery after treatment with IGF-1. We then hypothesized that IGF-1 has the potential to drive the regeneration of IHC-SGN synapses. To test this hypothesis, we investigated the effects of IGF-1 on IHC-SGN synapses using cochlear explant cultures from postnatal day 2 mice that had been damaged by exposure to the excitatory amino acids N-methyl-d-aspartate and kainate. Cochlear explants that lost IHC-SGN synapses upon exposure to excitatory amino acids were cultured with exogenous IGF-1 for an additional 48 h. We observed increased numbers of IHC-SGN synapses after exogenous IGF-1 application. Pharmacological inhibition of the IGF-1 receptor attenuated the restoration of IHC-SGN synapses by exogenous IGF-1. These findings indicated that IGF-1 induces regeneration of IHC-SGN synapses in cochlear explant cultures from postnatal day 2 mice. Therefore, in a future study we will perform in vivo experiments using adult mice to ascertain the effects of IGF-1 on the regeneration of IHC-SGN synapses.


Assuntos
Cóclea/efeitos dos fármacos , Cóclea/inervação , Fator de Crescimento Insulin-Like I/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Animais , Cóclea/fisiologia , Modelos Animais de Doenças , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Internas/fisiologia , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Técnicas In Vitro , Fator de Crescimento Insulin-Like I/fisiologia , Ácido Caínico/toxicidade , Camundongos , Camundongos Endogâmicos ICR , N-Metilaspartato/toxicidade , Regeneração Nervosa/fisiologia , Ototoxicidade/tratamento farmacológico , Ototoxicidade/patologia , Ototoxicidade/fisiopatologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/fisiologia , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/patologia , Gânglio Espiral da Cóclea/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/patologia , Sinapses/fisiologia
13.
EMBO Mol Med ; 11(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509897

RESUMO

Normal hearing and synaptic transmission at afferent auditory inner hair cell (IHC) synapses require otoferlin. Deafness DFNB9, caused by mutations in the OTOF gene encoding otoferlin, might be treated by transferring wild-type otoferlin cDNA into IHCs, which is difficult due to the large size of this transgene. In this study, we generated two adeno-associated viruses (AAVs), each containing half of the otoferlin cDNA Co-injecting these dual-AAV2/6 half-vectors into the cochleae of 6- to 7-day-old otoferlin knock-out (Otof-/-) mice led to the expression of full-length otoferlin in up to 50% of IHCs. In the cochlea, otoferlin was selectively expressed in auditory hair cells. Dual-AAV transduction of Otof-/- IHCs fully restored fast exocytosis, while otoferlin-dependent vesicle replenishment reached 35-50% of wild-type levels. The loss of 40% of synaptic ribbons in these IHCs could not be prevented, indicating a role of otoferlin in early synapse maturation. Acoustic clicks evoked auditory brainstem responses with thresholds of 40-60 dB. Therefore, we propose that gene delivery mediated by dual-AAV vectors might be suitable to treat deafness forms caused by mutations in large genes such as OTOF.


Assuntos
Surdez/patologia , Surdez/terapia , Exocitose , Terapia Genética/métodos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Proteínas de Membrana/deficiência , Animais , Dependovirus/genética , Vetores Genéticos , Camundongos Knockout , Transdução Genética , Resultado do Tratamento
14.
Stem Cell Res Ther ; 9(1): 230, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157937

RESUMO

BACKGROUND: Inner ear hair cells as mechanoreceptors are extremely important for hearing. Defects in hair cells are a major cause of deafness. Induced pluripotent stem cells (iPSCs) are promising for regenerating inner ear hair cells and treating hearing loss. Here, we investigated migration, differentiation, and synaptic connections of transplanted otic epithelial progenitors (OEPs) derived from human iPSCs in mouse cochlea. METHODS: Human urinary cells isolated from a healthy donor were reprogramed to form iPSCs that were induced to differentiate into OEPs and hair cell-like cells. Immunocytochemistry, electrophysiological examination, and scanning electron microscopy were used to examine characteristics of induced hair cell-like cells. OEP-derived hair cell-like cells were cocultured with spiral ganglion neurons (SGNs), and the markers of synaptic connections were detected using immunocytochemistry and transmission electron microscope. In vivo, OEPs derived from iPSCs were transplanted into the cochlea of mice by injection through the round window. Migration, differentiation, and synaptic connections of transplanted cells were also examined by thin cochlear sectioning and immunohistochemistry. RESULTS: The induced hair cell-like cells displayed typical morphological characteristics and electrophysiological properties specific to inner hair cells. In vitro, OEP-derived hair cell-like cells formed synaptic connections with SGNs in coculture. In vivo, some of the transplanted cells migrated to the site of the resident hair cells in the organ of Corti, differentiated into hair cell-like cells, and formed synaptic connections with native SGNs. CONCLUSIONS: We conclude that the transplantation of OEPs is feasible for the regeneration of hair cells. These results present a substantial reference for a cell-based therapy for the loss of hair cells.


Assuntos
Cóclea/patologia , Regulação da Expressão Gênica , Células Ciliadas Auditivas Internas/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Regeneração/genética , Transplante de Células-Tronco , Adulto , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Movimento Celular , Cóclea/metabolismo , Técnicas de Cocultura , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Knockout , Camundongos Nus , Neurônios/metabolismo , Neurônios/ultraestrutura , Transportadores de Sulfato/deficiência , Transportadores de Sulfato/genética , Sinapses/metabolismo , Sinapses/ultraestrutura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo
15.
Otolaryngol Head Neck Surg ; 159(3): 526-534, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890895

RESUMO

Objective Hearing loss following temporal bone (TB) fracture may result from direct transection of the middle and inner ear. The pathophysiology of hearing loss due to head injury without TB fracture, however, is not well understood. Few reports describe otopathologic findings. Herein, we investigate the pathologic findings of patients who sustained a head injury without evidence of a TB fracture. Study Design Otopathology study. Setting Otopathology laboratory. Subjects Subjects with a history of head injury without TB fracture. Methods The TBs of patients with head injury were evaluated by light microscopy. Inner ear anatomy was evaluated, including counts of spiral ganglion cells (SGCs), hair cells, pillar cells, atrophy of the stria vascularis, and the presence of endolymphatic hydrops. SGC counts were compared with those of historical age-matched controls. Results All cases (N = 6 TBs) had evidence of inner ear pathology. Of the 6 cases, 2 (33%) had severe loss of hair cells in all 3 turns of the cochlea, and 4 (67%) cases demonstrated moderate to severe loss at the basal turn of the cochlea. Four cases had scattered atrophy of the stria vascularis, and 3 (50%) had cochlear hydrops. The number of total SGCs was decreased, with an average 53% loss (range, 25%-79%) as compared with controls. The SGC count loss was evenly distributed along Rosenthal's canal. Conclusions Patients with a history of head injury without TB fracture demonstrate inner ear pathology. Further studies are necessary to determine if otopathology findings are directly attributable to trauma.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Cóclea/patologia , Hidropisia Endolinfática/patologia , Perda Auditiva Neurossensorial/etiologia , Osso Temporal/patologia , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Audiometria/métodos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Estudos de Casos e Controles , Feminino , Fraturas Ósseas , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva/etiologia , Perda Auditiva/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Otolaringologia/métodos , Prognóstico , Índice de Gravidade de Doença
16.
J Cell Sci ; 131(9)2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618634

RESUMO

Given the importance of connexin43 (Cx43, encoded by GJA1) function in the central nervous system and sensory organ processing, we proposed that it would also be crucial in auditory function. To that end, hearing was examined in two mouse models of oculodentodigital dysplasia that globally express GJA1 mutations resulting in mild or severe loss of Cx43 function. Although Cx43I130T/+ mutant mice, with ∼50% Cx43 channel function, did not have any hearing loss, Cx43G60S/+ mutant mice, with ∼20% Cx43 channel function, had severe hearing loss. There was no evidence of inner ear sensory hair cell loss, suggesting that the mechanism for Cx43-linked hearing loss lies downstream in the auditory pathway. Since evidence suggests that Cx26 function is essential for hearing and may be protective against noise-induced hearing loss, we challenged Cx43I130T/+ mice with a loud noise and found that they had a similar susceptibility to noise-induced hearing loss to that found in controls, suggesting that decreased Cx43 function does not sensitize the mice for environmentally induced hearing loss. Taken together, this study suggests that Cx43 plays an important role in baseline hearing and is essential for auditory processing.This article has an associated First Person interview with the first author of the paper.


Assuntos
Conexina 43/genética , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/genética , Anormalidades do Olho/complicações , Anormalidades do Olho/genética , Deformidades Congênitas do Pé/complicações , Deformidades Congênitas do Pé/genética , Perda Auditiva/etiologia , Perda Auditiva/genética , Mutação , Sindactilia/complicações , Sindactilia/genética , Anormalidades Dentárias/complicações , Anormalidades Dentárias/genética , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Cóclea/metabolismo , Cóclea/patologia , Conexina 43/metabolismo , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Modelos Animais de Doenças , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Deformidades Congênitas do Pé/metabolismo , Deformidades Congênitas do Pé/patologia , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sindactilia/metabolismo , Sindactilia/patologia , Anormalidades Dentárias/metabolismo , Anormalidades Dentárias/patologia
17.
Neurosci Lett ; 663: 18-24, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29452611

RESUMO

Hair cells of the inner ear detect sound stimuli, inertial or gravitational forces by deflection of their apical stereocilia. A small number of stereociliary cation-selective mechanotransduction (MET) channels admit K+ and Ca2+ ions into the cytoplasm promoting hair cell membrane depolarization and, consequently, neurotransmitter release at the cell basolateral pole. Ca2+ influx into the stereocilia compartment is counteracted by the unusual w/a splicing variant of plasma-membrane calcium-pump isoform 2 (PMCA2) which, unlike other PMCA2 variants, increases only marginally its activity in response to a rapid variation of the cytoplasmic free Ca2+ concentration ([Ca2+]c). Missense mutations of PMCA2w/a cause deafness and loss of balance in humans. Mouse models in which the pump is genetically ablated or mutated show hearing and balance impairment, which correlates with defects in homeostatic regulation of stereociliary [Ca2+]c, decreased sensitivity of mechanotransduction channels to hair bundle displacement and progressive degeneration of the organ of Corti. These results highlight a critical role played by the PMCA2w/a pump in the control of hair cell function and survival, and provide mechanistic insight into the etiology of deafness and vestibular disorders.


Assuntos
Perda Auditiva Neurossensorial/genética , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Animais , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Isoformas de Proteínas/genética
18.
J Cell Physiol ; 233(4): 3195-3206, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28834538

RESUMO

Zebrafish has become an excellent model for studying the development and function of inner ear. We report here a zebrafish line in which claudin 7b (cldn7b) locus is interrupted by a Tol2 transposon at its first intron. The homozygous mutants have enlarged otocysts, smaller or no otoliths, slowly formed semicircular canals, and insensitiveness to sound stimulation. These abnormal phenotypes and hearing loss of inner ear could be mostly rescued by injection of cldn7b-mRNA into one-cell stage homozygous mutant embryos. Mechanistically, cldn7b-deficiency interrupted the formation of apical junction complexes (AJCs) in otic epithelial cells of inner ear and the ion-homeostasis of endolymph, which then led to the loss of proper contact between otoliths and normally developed hair cells in utricle and saccule or aberrant mechanosensory transduction. Thus, Cldn7b is essential for the formation and proper function of inner ear through its unique role in keeping an initial integrity of otic epithelia during zebrafish embryogenesis.


Assuntos
Orelha Interna/embriologia , Orelha Interna/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Orelha Interna/anormalidades , Células Epiteliais/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Homozigoto , Mutação/genética , Junções Íntimas/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
19.
Toxicol Lett ; 279: 77-86, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28778520

RESUMO

Manganese (Mn) is an indispensable cofactor for many enzymes and a basic factor for many reproductive and metabolic pathways. However, exposure to high concentrations of Mn can result in deleterious effects on the central nervous system and peripheral nerves, including nerves associated with the auditory system. Based on our studies of cochlear organotypic cultures, Mn exposure induces a significant loss of hair cells (HCs), auditory nerve fibers (ANFs) and spiral ganglion neurons (SGNs) in a concentration-dependent manner. Additionally, N-acetylcysteine (NAC), a glutathione (GSH) provider and a direct scavenger of reactive oxygen species (ROS), clearly decreases Mn-induced ROS accumulation, caspase-3 activation and TUNEL staining, which indicate increased cell survival. Based on these results, Mn exposure exerts ototoxic and neurotoxic effects on the auditory system. Furthermore, 20mM NAC may prevent 1mM Mn-induced hair cell loss and axonal degeneration, indicating that NAC could be a promising drug for clinical applications.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cloretos/toxicidade , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Gânglio Espiral da Cóclea/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Citoproteção , Relação Dose-Resposta a Droga , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Compostos de Manganês , Técnicas de Cultura de Órgãos , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea/metabolismo , Fatores de Tempo
20.
Sci Rep ; 7: 45524, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28367981

RESUMO

The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a "designer" AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.


Assuntos
Cóclea/metabolismo , Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva/terapia , Animais , Cóclea/patologia , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA