Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.052
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Zhonghua Zhong Liu Za Zhi ; 46(5): 399-408, 2024 May 23.
Artigo em Chinês | MEDLINE | ID: mdl-38742353

RESUMO

Objectives: To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms. Methods: Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT). Results: Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated (r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 (r=-0.167, P=0.044), the level of serum CEA (r=-0.061, P=0.032), and the level of serum ALT(r=-0.147,P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 (r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT (r=0.164, P=0.029). Conclusion: Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neovascularização Patológica , Receptores de LDL , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/irrigação sanguínea , Receptores de LDL/metabolismo , Receptores de LDL/genética , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Antígeno Carcinoembrionário/metabolismo , Antígeno Carcinoembrionário/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Transcriptoma , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética
2.
FASEB J ; 38(10): e23653, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38738548

RESUMO

Hypoxic preconditioning has been recognized as a promotive factor for accelerating cutaneous wound healing. Our previous study uncovered that exosomal lncRNA H19, derived from adipose-derived stem cells (ADSCs), plays a crucial role in orchestrating cutaneous wound healing. Herein, we aimed to explore whether there is a connection between hypoxia and ADSC-derived exosomes (ADSCs-exos) in cutaneous wound healing. Exosomes extracted from ADSCs under normoxic and hypoxic conditions were identified using transmission electron microscope (TEM) and particle size analysis. The effects of ADSCs-exos on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8, EdU, wound healing, and tube formation assays. Expression patterns of H19, HIF-1α, and USP22 were measured. Co-immunoprecipitation, chromatin immunoprecipitation, ubiquitination, and luciferase reporter assays were conducted to confirm the USP22/HIF-1α/H19 axis, which was further validated in a mice model of skin wound. Exosomes extracted from hypoxia-treated ADSCs (termed as H-ADSCs-exos) significantly increased cell proliferation, migration, and angiogenesis in H2O2-exposed HUVECs, and promoted cutaneous wound healing in vivo. Moreover, H-ADSCs and H-ADSCs-exos, which exhibited higher levels of H19, were found to be transcriptionally activated by HIF-1α. Mechanically, H-ADSCs carrying USP22 accounted for deubiquitinating and stabilizing HIF-1α. Additionally, H-ADSCs-exos improved cell proliferation, migration, and angiogenesis in H2O2-triggered HUVECs by activating USP22/HIF-1α axis and promoting H19 expression, which may provide a new clue for the clinical treatment of cutaneous wound healing.


Assuntos
Exossomos , Células Endoteliais da Veia Umbilical Humana , Subunidade alfa do Fator 1 Induzível por Hipóxia , RNA Longo não Codificante , Ubiquitina Tiolesterase , Cicatrização , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Exossomos/metabolismo , Humanos , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proliferação de Células , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Masculino , Regulação para Cima , Células-Tronco/metabolismo , Movimento Celular , Pele/metabolismo , Hipóxia Celular , Camundongos Endogâmicos C57BL
3.
Mol Biol Rep ; 51(1): 635, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727850

RESUMO

BACKGROUND: Psoriasis, a chronic inflammatory skin disease, is increasingly effectively managed with the targeted immunotherapy; however, long-term immunotherapy carries health risks, and loss of response. Therefore, we need to develop the alternative treatment strategies. Mesenchymal stem/stromal cell (M.S.C.) exosomes stand out for their remarkable immunomodulatory properties, gaining widespread recognition. This study investigated whether M.S.C. exosomes can reduce psoriasis-induced hyperplasia by inducing Transforming Growth Factor beta 2 (TGF-beta2) signaling. METHODOLOGY: Exosomes were isolated from M.S.C.s by ultracentrifugation. Then, scanning electron microscopy was used for the morphology of exosomes. To ascertain the exosome concentration, the Bradford test was used. To ascertain the cellular toxicity of exosomes in Human Umbilical Vein Endothelial Cells ( H.U.V.E.C), an MTT experiment was then conducted. Real-time PCR was used to quantify TGF beta2 expression levels, whereas an ELISA immunosorbent assay was used to determine the protein concentration of TGF beta2. RESULTS: In this study, the exosomes of 15-30 nm in size that were uniform, and cup-shaped were isolated. Moreover, the IC50 value for this Treatment was calculated to be 181.750 µg/ml. The concentration of TGF-ß2 gene in the target cells significantly increased following Treatment with the exosomes. Furthermore, the expression level of the studied gene significantly increased due to the Treatment. CONCLUSION: Upregulating the expression of TGF-ß2 in psoriatic cells via TGF-ß2 signaling is one way exosomes can help reduce hyperplasia.


Assuntos
Exossomos , Células Endoteliais da Veia Umbilical Humana , Hiperplasia , Células-Tronco Mesenquimais , Psoríase , Fator de Crescimento Transformador beta2 , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Psoríase/metabolismo , Humanos , Fator de Crescimento Transformador beta2/metabolismo , Hiperplasia/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Animais
4.
J Transl Med ; 22(1): 487, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773585

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) causes significant cancer mortality worldwide. Cancer organoids can serve as useful disease models by high costs, complexity, and contamination risks from animal-derived products and extracellular matrix (ECM) that limit its applications. On the other hand, synthetic ECM alternatives also have limitations in mimicking native biocomplexity. This study explores the development of a physiologically relevant HCC organoid model using plasma-derived extracellular matrix as a scaffold and nutritive biomatrix with different cellularity components to better mimic the heterogenous HCC microenvironment. Plasma-rich platelet is recognized for its elevated levels of growth factors, which can promote cell proliferation. By employing it as a biomatrix for organoid culture there is a potential to enhance the quality and functionality of organoid models for diverse applications in biomedical research and regenerative medicine and to better replicate the heterogeneous microenvironment of HCC. METHOD: To generate the liver cancer organoids, HUH-7 hepatoma cells were cultured alone (homogenous model) or with human bone marrow-derived mesenchymal stromal cells and human umbilical vein endothelial cells (heterogeneous model) in plasma-rich platelet extracellular matrix (ECM). The organoids were grown for 14 days and analyzed for cancer properties including cell viability, invasion, stemness, and drug resistance. RESULTS: HCC organoids were developed comprising HUH-7 hepatoma cells with or without human mesenchymal stromal and endothelial cells in plasma ECM scaffolds. Both homogeneous (HUH-7 only) and heterogeneous (mixed cellularity) organoids displayed viability, cancer hallmarks, and chemoresistance. The heterogeneous organoids showed enhanced invasion potential, cancer stem cell populations, and late-stage HCC genetic signatures versus homogeneous counterparts. CONCLUSION: The engineered HCC organoids system offers a clinically relevant and cost-effective model to study liver cancer pathogenesis, stromal interactions, and drug resistance. The plasma ECM-based culture technique could enable standardized and reproducible HCC modeling. It could also provide a promising option for organoid culture and scaling up.


Assuntos
Carcinoma Hepatocelular , Análise Custo-Benefício , Matriz Extracelular , Neoplasias Hepáticas , Modelos Biológicos , Organoides , Humanos , Organoides/patologia , Matriz Extracelular/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Animais , Células-Tronco Mesenquimais/citologia
5.
J Cell Mol Med ; 28(10): e18239, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774996

RESUMO

The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1ß and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.


Assuntos
Trifosfato de Adenosina , Células Endoteliais da Veia Umbilical Humana , Inflamassomos , Isoflavonas , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Transdução de Sinais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ratos , Masculino , Trifosfato de Adenosina/metabolismo , Inflamassomos/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Piroptose/efeitos dos fármacos , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Glucose/metabolismo , Apoptose/efeitos dos fármacos
6.
Toxicon ; 243: 107746, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704124

RESUMO

Our study presents the anticancer potential of crotamine from Crotalus durissus terrificus in human prostate cancer cell line DU-145. Crotamine isolation was conducted through RP-FPLC, its molecular mass analyzed by MALDI-TOF was 4881.4 kDa, and N-terminal sequencing confirmed crotamine identity. Crotamine demonstrated no toxicity and did not inhibit migration in HUVEC cells. Although no cell death occurred in DU-145 cells, crotamine inhibited their migration. Thus, crotamine presented potential to be a prototype of anticancer drug.


Assuntos
Antineoplásicos , Movimento Celular , Venenos de Crotalídeos , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Antineoplásicos/farmacologia , Crotalus , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Animais
7.
Toxicon ; 243: 107742, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38705486

RESUMO

Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.


Assuntos
Inibidores da Angiogênese , Bothrops , Proliferação de Células , Venenos de Crotalídeos , Neoplasias Pulmonares , Animais , Humanos , Inibidores da Angiogênese/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Fosfolipases A2/farmacologia , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células A549 , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Serpentes Peçonhentas
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 712-719, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708505

RESUMO

OBJECTIVE: To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS: In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS: In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION: A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.


Assuntos
Movimento Celular , Proliferação de Células , Dexametasona , Necrose da Cabeça do Fêmur , Glucocorticoides , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos BALB C , Animais , Camundongos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Glucocorticoides/efeitos adversos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dexametasona/efeitos adversos , Dexametasona/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cabeça do Fêmur/patologia , Cabeça do Fêmur/irrigação sanguínea , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Angiogênese
9.
Nature ; 629(8012): 660-668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693258

RESUMO

Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide1. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated2,3. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1-Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Mitocôndrias , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Mitocôndrias/metabolismo , Camundongos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Masculino , Proteínas Quinases/metabolismo , Autofagossomos/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Isquemia/patologia , Feminino , Metabolismo Energético , Transplante de Células-Tronco Mesenquimais , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL
10.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703204

RESUMO

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Assuntos
Apoptose , Catepsina K , Cloretos , Modelos Animais de Doenças , Compostos Férricos , Trombose , Animais , Humanos , Masculino , Camundongos , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/genética , Catepsina K/metabolismo , Catepsina K/genética , Cloretos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Trombose/metabolismo , Trombose/patologia , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética
11.
PLoS One ; 19(4): e0302387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635560

RESUMO

The aim of this study was to elucidate the specific mechanism through which 7-difluoromethoxy-5,4'-dimethoxygenistein (DFMG) inhibits angiogenesis in atherosclerosis (AS) plaques, given its previously observed but poorly understood inhibitory effects. In vitro, a model using Human Umbilical Vein Endothelial (HUVEC-12) cells simulated the initial lesion in the atherosclerotic pathological process, specifically oxidative stress injury, by exposing cells to 30 µmol/L LPC. Additionally, an AS mouse model was developed in ApoE knockout mice through a 16-week period of high-fat feeding. DFMG demonstrated a reduction in tubule quantities in the tube formation assay and neovascularization induced by oxidative stress-damaged endothelial cells in the chicken embryo chorioallantoic membrane assay. Furthermore, DFMG decreased lipid levels in the blood of ApoE knockout mice with AS, along with a decrease in atherosclerotic plaques and neovascularizations in the aortic arch and descending aorta of AS animal models. DFMG treatment upregulated microRNA140 (miR-140) expression and suppressed VEGF secretion in HUVEC-12 cells. These effects were counteracted by Toll-like receptor 4 (TLR4) overexpression in HUVEC-12 cells subjected to oxidative injury or in a mouse model of AS. Dual-luciferase reporter assays demonstrated that miR-140 directly targeted TLR4. Immunohistochemical assay findings indicated a significant inverse relationship between miR-140 expression and TLR4 expression in ApoE knockout mice subjected to a high-fat diet. The study observed a close association between DFMG inhibitory effects on angiogenesis and plaque stability in AS, and the inhibition of the TLR4/NF-κB/VEGF signaling pathway, negatively regulated by miR-140.


Assuntos
MicroRNAs , Placa Aterosclerótica , Embrião de Galinha , Humanos , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Knockout para ApoE , Angiogênese , NF-kappa B/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/metabolismo , Camundongos Knockout
12.
Cell Death Dis ; 15(4): 253, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594244

RESUMO

Mitochondria are important for the activation of endothelial cells and the process of angiogenesis. NDUFS8 (NADH:ubiquinone oxidoreductase core subunit S8) is a protein that plays a critical role in the function of mitochondrial Complex I. We aimed to investigate the potential involvement of NDUFS8 in angiogenesis. In human umbilical vein endothelial cells (HUVECs) and other endothelial cell types, we employed viral shRNA to silence NDUFS8 or employed the CRISPR/Cas9 method to knockout (KO) it, resulting in impaired mitochondrial functions in the endothelial cells, causing reduction in mitochondrial oxygen consumption and Complex I activity, decreased ATP production, mitochondrial depolarization, increased oxidative stress and reactive oxygen species (ROS) production, and enhanced lipid oxidation. Significantly, NDUFS8 silencing or KO hindered cell proliferation, migration, and capillary tube formation in cultured endothelial cells. In addition, there was a moderate increase in apoptosis within NDUFS8-depleted endothelial cells. Conversely, ectopic overexpression of NDUFS8 demonstrated a pro-angiogenic impact, enhancing cell proliferation, migration, and capillary tube formation in HUVECs and other endothelial cells. NDUFS8 is pivotal for Akt-mTOR cascade activation in endothelial cells. Depleting NDUFS8 inhibited Akt-mTOR activation, reversible with exogenous ATP in HUVECs. Conversely, NDUFS8 overexpression boosted Akt-mTOR activation. Furthermore, the inhibitory effects of NDUFS8 knockdown on cell proliferation, migration, and capillary tube formation were rescued by Akt re-activation via a constitutively-active Akt1. In vivo experiments using an endothelial-specific NDUFS8 shRNA adeno-associated virus (AAV), administered via intravitreous injection, revealed that endothelial knockdown of NDUFS8 inhibited retinal angiogenesis. ATP reduction, oxidative stress, and enhanced lipid oxidation were detected in mouse retinal tissues with endothelial knockdown of NDUFS8. Lastly, we observed an increase in NDUFS8 expression in retinal proliferative membrane tissues obtained from human patients with proliferative diabetic retinopathy. Our findings underscore the essential role of the mitochondrial protein NDUFS8 in regulating endothelial cell activation and angiogenesis.


Assuntos
Angiogênese , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno/farmacologia , Lipídeos/farmacologia , Trifosfato de Adenosina/farmacologia , Proliferação de Células/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
13.
Sci Transl Med ; 16(744): eadg5768, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657024

RESUMO

Sepsis is a life-threatening disease caused by a dysregulated host response to infection, resulting in 11 million deaths globally each year. Vascular endothelial cell dysfunction results in the loss of endothelial barrier integrity, which contributes to sepsis-induced multiple organ failure and mortality. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their ephrin ligands play a key role in vascular endothelial barrier disruption but are currently not a therapeutic target in sepsis. Using a cecal ligation and puncture (CLP) mouse model of sepsis, we showed that prophylactic or therapeutic treatment of mice with EphA4-Fc, a decoy receptor and pan-ephrin inhibitor, resulted in improved survival and a reduction in vascular leak, lung injury, and endothelial cell dysfunction. EphA2-/- mice also exhibited reduced mortality and pathology after CLP compared with wild-type mice. Proteomics of plasma samples from mice with sepsis after CLP revealed dysregulation of a number of Eph/ephrins, including EphA2/ephrin A1. Administration of EphA4-Fc to cultured human endothelial cells pretreated with TNF-α or ephrin-A1 prevented loss of endothelial junction proteins, specifically VE-cadherin, with maintenance of endothelial barrier integrity. In children admitted to hospital with fever and suspected infection, we observed that changes in EphA2/ephrin A1 in serum samples correlated with endothelial and organ dysfunction. Targeting Eph/ephrin signaling may be a potential therapeutic strategy to reduce sepsis-induced endothelial dysfunction and mortality.


Assuntos
Células Endoteliais , Efrinas , Sepse , Transdução de Sinais , Animais , Sepse/complicações , Sepse/metabolismo , Sepse/patologia , Humanos , Células Endoteliais/metabolismo , Camundongos , Efrinas/metabolismo , Camundongos Endogâmicos C57BL , Receptores da Família Eph/metabolismo , Ceco/patologia , Masculino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Modelos Animais de Doenças
14.
Int J Biol Macromol ; 267(Pt 2): 131667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636761

RESUMO

A thiolated RGD was incorporated into the threaded allyl-ß-cyclodextrins (Allyl-ß-CDs) of the polyrotaxane (PR) through a thiol-ene click reaction, resulting in the formation of dynamic RGD ligands on the PR surface (dRGD-PR). When maintaining consistent RGD density and other physical properties, endothelial cells (ECs) cultured on dRGD-PR exhibited significantly increased cell proliferation and a larger cell spreading area compared to those on the non-dynamic RGD (nRGD-PCL). Furthermore, ECs on dRGD-PR demonstrated elevated expression levels of FAK, p-FAK, and p-AKT, along with a larger population of cells in the G2/M stage during cell cycle analysis, in contrast to cells on nRGD-PCL. These findings suggest that the movement of the RGD ligands may exert additional beneficial effects in promoting EC spreading and proliferation, beyond their essential adhesion and proliferation-promoting capabilities, possibly mediated by the RGD-integrin-FAK-AKT pathway. Moreover, in vitro vasculogenesis tests were conducted using two methods, revealing that ECs cultured on dRGD-PR exhibited much better vasculogenesis than nRGD-PCL in vitro. In vivo testing further demonstrated an increased presence of CD31-positive tissues on dRGD-PR. In conclusion, the enhanced EC spreading and proliferation resulting from the dynamic RGD ligands may contribute to improved in vitro vasculogenesis and in vivo vascularization.


Assuntos
Proliferação de Células , Ciclodextrinas , Oligopeptídeos , Humanos , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Ligantes , Neovascularização Fisiológica/efeitos dos fármacos , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Poloxâmero/química , Poloxâmero/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotaxanos
15.
Atherosclerosis ; 392: 117527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583286

RESUMO

BACKGROUND AND AIMS: Diabetic atherosclerotic vascular disease is characterized by extensive vascular calcification. However, an elevated blood glucose level alone does not explain this pathogenesis. We investigated the metabolic markers underlying diabetic atherosclerosis and whether extracellular Hsp90α (eHsp90α) triggers vascular endothelial calcification in this particular metabolic environment. METHODS: A parallel human/animal model metabolomics approach was used. We analyzed 40 serum samples collected from 24 patients with atherosclerosis and from the STZ-induced ApoE-/- mouse model. A multivariate statistical analysis of the data was performed, and mouse aortic tissue was collected for the assessment of plaque formation. In vitro, the effects of eHsp90α on endothelial cell calcification were assessed by serum analysis, Western blotting and immunoelectron microscopy. RESULTS: Diabetic ApoE-/- mice showed more severe plaque lesions and calcification damage. Stearamide, oleamide, l-thyroxine, l-homocitrulline and l-citrulline are biomarkers of diabetic ASVD; l-thyroxine was downregulated in both groups, and the thyroid sensitivity index was correlated with serum Hsp90α concentration. In vitro studies showed that eHsp90α increased Runx2 expression in endothelial cells through the LRP1 receptor. l-thyroxine reduced the increase in Runx2 levels caused by eHsp90α and affected the distribution and expression of LRP1 through hydrogen bonding with glutamine at position 1054 in the extracellular segment of LRP1. CONCLUSIONS: This study provides a mechanistic link between characteristic serum metabolites and diabetic atherosclerosis and thus offers new insight into the role of extracellular Hsp90α in promoting vascular calcification.


Assuntos
Diabetes Mellitus Experimental , Proteínas de Choque Térmico HSP90 , Camundongos Knockout para ApoE , Placa Aterosclerótica , Tiroxina , Calcificação Vascular , Humanos , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Tiroxina/sangue , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pessoa de Meia-Idade , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Aterosclerose/metabolismo , Aterosclerose/patologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/etiologia , Metabolômica/métodos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Idoso , Camundongos Endogâmicos C57BL , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/sangue , Biomarcadores/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo
16.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38641433

RESUMO

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Assuntos
Catéteres , Materiais Revestidos Biocompatíveis , Heparina , Polifenóis , Taninos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Catéteres/microbiologia , Polifenóis/química , Polifenóis/farmacologia , Heparina/química , Heparina/farmacologia , Taninos/química , Taninos/farmacologia , Silanos/química , Silanos/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Propilaminas/química , Aminas/química , Aminas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polilisina/química , Polilisina/farmacologia , Propriedades de Superfície , Interações Hidrofóbicas e Hidrofílicas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Elastômeros de Silicone/química , Adsorção , Escherichia coli/efeitos dos fármacos
17.
Int J Biol Macromol ; 268(Pt 1): 131594, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621568

RESUMO

Treating severe peripheral nerve injuries is difficult. Nerve repair with conduit small gap tubulization is a treatment option but still needs to be improved. This study aimed to assess the use of microgels containing growth factors, along with chitosan-based conduits, for repairing nerves. Using the water-oil emulsion technique, microgels of methacrylic alginate (AlgMA) that contained vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) were prepared. The effects on rat Schwann cells (RSC96) and human umbilical vein endothelial cells (HUVECs) were evaluated. Chitosan-based conduits were fabricated and used in conjunction with microgels containing two growth factors to treat complete neurotmesis in rats. The results showed that the utilization of dual growth factor microgels improved the migration and decreased the apoptosis of RSC96 cells while promoting the growth and formation of tubes in HUVECs. The utilization of dual growth factor microgels and chitosan-based conduits resulted in notable advancements in the regeneration and myelination of nerve fibers, recovery of neurons, alleviation of muscle atrophy and recovery of neuromotor function and nerve conduction. In conclusion, the use of dual growth factor AlgMA microgels in combination with chitosan-based conduits has the potential to significantly improve the effectiveness of nerve repair.


Assuntos
Alginatos , Quitosana , Células Endoteliais da Veia Umbilical Humana , Regeneração Nervosa , Células de Schwann , Quitosana/química , Quitosana/farmacologia , Alginatos/química , Alginatos/farmacologia , Animais , Humanos , Ratos , Regeneração Nervosa/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Microgéis/química , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/terapia , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alicerces Teciduais/química , Metacrilatos/química , Metacrilatos/farmacologia , Movimento Celular/efeitos dos fármacos
18.
ACS Biomater Sci Eng ; 10(5): 3306-3315, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38634810

RESUMO

Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.


Assuntos
Técnicas de Cocultura , Fator 2 de Crescimento de Fibroblastos , Gelatina , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Metacrilatos , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Gelatina/química , Gelatina/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Engenharia Tecidual/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Tecido Adiposo/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
19.
Lab Chip ; 24(10): 2644-2657, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38576341

RESUMO

Developing a tumor model with vessels has been a challenge in microfluidics. This difficulty is because cancer cells can overgrow in a co-culture system. The up-regulation of anti-angiogenic factors during the initial tumor development can hinder neovascularization. The standard method is to develop a quiescent vessel network before loading a tumor construct in an adjacent chamber, which simulates the interaction between a tumor and its surrounding vessels. Here, we present a new method that allows a vessel network and a tumor to develop simultaneously in two linked chambers. The physiological environment of these two chambers is controlled by a microfluidic resistive circuit using two symmetric long microchannels. Applying the resistive circuit, a diffusion-dominated environment with a small 2-D pressure gradient is created across the two chambers with velocity <10.9 nm s-1 and Péclet number <6.3 × 10-5. This 2-D pressure gradient creates a V-shaped velocity clamp to confine the tumor-associated angiogenic factors at pores between the two chambers, and it has two functions. At the early stage, vasculogenesis is stimulated to grow a vessel network in the vessel chamber with minimal influence from the tumor that is still developed in the adjacent chamber. At the post-tumor-development stage, the induced steep concentration gradient at pores mimics vessel-tumor interactions to stimulate angiogenesis to grow vessels toward the tumor. Applying this method, we demonstrate that vasculogenic vessels can grow first, followed by stimulating angiogenesis. Angiogenic vessels can grow into stroma tissue up to 1.3 mm long, and vessels can also grow into or wrap around a 625 µm tumor spheroid or a tumor tissue developed from a cell suspension. In summary, our study suggests that the interactions between a developing vasculature and a growing tumor must be controlled differently throughout the tissue development process, including at the early stage when vessels are still forming and at the later stage when the tumor needs to interact with the vessels.


Assuntos
Técnicas Analíticas Microfluídicas , Neovascularização Patológica , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Difusão , Neoplasias/metabolismo , Neoplasias/patologia , Indutores da Angiogênese/metabolismo , Indutores da Angiogênese/farmacologia , Desenho de Equipamento
20.
Biochem Biophys Res Commun ; 711: 149916, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38613866

RESUMO

ßIV-spectrin is a membrane-associated cytoskeletal protein that maintains the structural stability of cell membranes and integral proteins such as ion channels and transporters. Its biological functions are best characterized in the brain and heart, although recently we discovered a fundamental new role in the vascular system. Using cellular and genetic mouse models, we reported that ßIV-spectrin acts as a critical regulator of developmental and tumor-associated angiogenesis. ßIV-spectrin was shown to selectively express in proliferating endothelial cells (EC) and suppress VEGF/VEGFR2 signaling by enhancing receptor internalization and degradation. Here we examined how these events impact the downstream kinase signaling cascades and target substrates. Based on quantitative phosphoproteomics, we found that ßIV-spectrin significantly affects the phosphorylation of epigenetic regulatory enzymes in the nucleus, among which DNA methyltransferase 1 (DNMT1) was determined as a top substrate. Biochemical and immunofluorescence results showed that ßIV-spectrin inhibits DNMT1 function by activating ERK/MAPK, which in turn phosphorylates DNMT1 at S717 to impede its nuclear localization. Given that DNMT1 controls the DNA methylation patterns genome-wide, and is crucial for vascular development, our findings suggest that epigenetic regulation is a key mechanism by which ßIV-spectrin suppresses angiogenesis.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Sistema de Sinalização das MAP Quinases , Proteômica , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Animais , Proteômica/métodos , Camundongos , Fosforilação , Humanos , Neovascularização Fisiológica , Espectrina/metabolismo , Espectrina/genética , Fosfoproteínas/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais/metabolismo , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA