Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Microvasc Res ; 139: 104252, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520772

RESUMO

Soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein, is involved in the pathogenesis of atherosclerosis (AS), and the underlying mechanism is still unclear. Here, we attempted to investigate the mechanism of action of sFlt-1 in AS. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low density lipoprotein (ox-LDL) to induce cell injury. ox-LDL treatment increased LC3-II/LC3-I ratio, Beclin-1 expression and GFP-LC3 puncta in HUVECs, suggesting that ox-LDL may induce autophagic flux impairment in HUVECs. ox-LDL-treated HUVECs displayed a decrease of sFlt-1 levels. Moreover, ox-LDL treatment reduced cell proliferation and elevated apoptosis in HUVECs, which was abrogated by sFlt-1 overexpression. Up-regulation of sFlt-1 repressed the activity of PI3K/AKT/mTOR signaling pathway and enhanced autophagy in HUVECs following ox-LDL treatment. Additionally, sFlt-1 overexpression-mediated increase of autophagy in ox-LDL-treated HUVECs was abolished by 3-methyladenine (autophagy inhibitor). 3-methyladenine abrogated the impact of sFlt-1 overexpression on proliferation and apoptosis in ox-LDL-treated HUVECs. This work confirmed that overexpression of sFlt-1 activated autophagy by repressing PI3K/Akt/mTOR signaling pathway, and thus alleviated ox-LDL-induced injury of HUVECs. Therefore, this study suggests that sFlt-1 may be a potential target for AS treatment.


Assuntos
Aterosclerose/enzimologia , Autofagia/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Lipoproteínas LDL/toxicidade , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Apoptose/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/patologia , Proteína Beclina-1/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais , Regulação para Cima , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
2.
Arterioscler Thromb Vasc Biol ; 42(1): 19-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789002

RESUMO

OBJECTIVE: Fluid shear stress (FSS) is known to mediate multiple phenotypic changes in the endothelium. Laminar FSS (undisturbed flow) is known to promote endothelial alignment to flow, which is key to stabilizing the endothelium and rendering it resistant to atherosclerosis and thrombosis. The molecular pathways responsible for endothelial responses to FSS are only partially understood. In this study, we determine the role of PGC1α (peroxisome proliferator gamma coactivator-1α)-TERT (telomerase reverse transcriptase)-HMOX1 (heme oxygenase-1) during shear stress in vitro and in vivo. Approach and Results: Here, we have identified PGC1α as a flow-responsive gene required for endothelial flow alignment in vitro and in vivo. Compared with oscillatory FSS (disturbed flow) or static conditions, laminar FSS (undisturbed flow) showed increased PGC1α expression and its transcriptional coactivation. PGC1α was required for laminar FSS-induced expression of TERT in vitro and in vivo via its association with ERRα(estrogen-related receptor alpha) and KLF (Kruppel-like factor)-4 on the TERT promoter. We found that TERT inhibition attenuated endothelial flow alignment, elongation, and nuclear polarization in response to laminar FSS in vitro and in vivo. Among the flow-responsive genes sensitive to TERT status, HMOX1 was required for endothelial alignment to laminar FSS. CONCLUSIONS: These data suggest an important role for a PGC1α-TERT-HMOX1 axis in the endothelial stabilization response to laminar FSS.


Assuntos
Células Endoteliais/enzimologia , Heme Oxigenase-1/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Telomerase/metabolismo , Animais , Células Cultivadas , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/genética , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fluxo Sanguíneo Regional , Estresse Mecânico , Telomerase/genética
3.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750583

RESUMO

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Assuntos
Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Células Endoteliais/enzimologia , Linfangiogênese , Vasos Linfáticos/enzimologia , RNA Ribossômico/biossíntese , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Vasos Linfáticos/embriologia , RNA Ribossômico/genética , Ribossomos/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
J Diabetes Res ; 2021: 2936667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447854

RESUMO

BACKGROUND: Mammalian target of rapamycin (mTOR) is crucial for endothelial function. This study is aimed at assessing whether the glucagon-like peptide-1 (GLP-1) analogue liraglutide has a protective effect on endothelial function via the mTOR signaling pathway. METHODS: Human umbilical vein endothelial cells (HUVECs) were administered liraglutide (100 nM) for 0, 10, 30, 60, 720, and 1440 minutes, respectively. Then, the expression and phosphorylation levels of mTOR, mTOR-Raptor complex (mTORC1), and mTOR-Rictor complex (mTORC2) were determined by Western blot and immunoprecipitation, while mTORC1 and mTORC2 expression was blocked by siRNA-Raptor and siRNA-Rictor, respectively. Akt phosphorylation was detected by Western blot. HUVECs were then incubated with liraglutide in the absence or presence of Akt inhibitor IV. Nitric oxide (NO) release was assessed by the nitrate reductase method. Phosphorylated endothelial nitric oxide synthase (eNOS), human telomerase reverse transcriptase (hTERT), and apoptosis-related effectors were assessed for protein levels by Western blot. Telomerase activity was evaluated by ELISA. RESULTS: Sustained mTOR phosphorylation, mTORC2 formation, and mTORC2-dependent Akt phosphorylation were induced by liraglutide. In addition, eNOS phosphorylation, NO production, nuclear hTERT accumulation, and nuclear telomerase activity were enhanced by mTORC2-mediated Akt activation. Liraglutide also showed an antiapoptotic effect by upregulating antiapoptotic proteins and downregulating proapoptotic proteins in an mTORC2-Akt activation-dependent manner. CONCLUSION: Liraglutide significantly improves endothelial function, at least partially via the mTORC2/Akt signaling pathway.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Incretinas/farmacologia , Liraglutida/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Microvasc Res ; 138: 104229, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339726

RESUMO

The current study assessed the effects of the thalidomide and palladium (II) saccharinate complex of terpyridine on the suppression of angiogenesis-mediated cell proliferation. The viability was assessed after treatment with palladium (II) complex (1.56-100 µM) and thalidomide (0.1-400 µM) alone by using ATP assay for 48 h. Palladium (II) complex was found to inhibit growth statistically significant in a dose-dependent manner in HUVECs and promoted PARP-1 cleavage through the production of ROS. On the other hand, thalidomide did not cause any significant change in cell viability. Moreover, cell death was observed to be manifested as late apoptosis due to Annexin V/SYTOX staining after palladium (II) complex treatment however, thalidomide did not demonstrate similar results. Thalidomide and palladium (II) complex also suppressed HUVEC migration and capillary-like structure tube formation in vitro in a time-dependent manner. Palladium (II) complex (5 mg/ml) treatment showed a strong antiangiogenic effect similar to positive control thalidomide (5 mg/ml) and successfully disrupted the vasculature and reduced the thickness of the vessels compared to control (agar). Furthermore, suppression of autophagy enhanced the cell death and anti-angiogenic effect of thalidomide and palladium (II) complex. We also showed that being treated with thalidomide and palladium (II) complex inhibited phosphorylation of the signaling regulators downstream of the VEGFR2. These results provide evidence for the regulation of endothelial cell functions that are relevant to angiogenesis through the suppression of the FAK/Src/Akt/ERK1/2 signaling pathway. Our results also indicate that PLC-γ1 phosphorylation leads to activation of p-Akt and p-Erk1/2 which cause stimulation on cell proliferation at lower doses. Hence, we demonstrated that palladium (II) and thalidomide can induce cell death via the Erk/Akt/PLCγ signaling pathway and that this pathway might be a novel mechanism.


Assuntos
Inibidores da Angiogênese/farmacologia , Autofagia/efeitos dos fármacos , Complexos de Coordenação/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Talidomida/farmacologia , Quinases da Família src/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Transdução de Sinais
6.
J Vasc Res ; 58(5): 301-310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34218226

RESUMO

Endothelial dysfunction plays a central role in the patho-genesis of diabetic vascular complications. 2,3,5,4'-tetra-hydroxystilbene-2-O-ß-D-glucoside (TSG), an active component extracted from the roots of Polygonum multiflorum Thunb, has been shown to have strong antioxidant and antiapoptotic activities. In the present study, we investigated the protective effect of TSG on apoptosis induced by high glucose in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms. Our data demonstrated that TSG significantly reversed the high glucose-induced decrease in cell viability, suppressed high glucose-induced generation of intracellular reactive oxygen species (ROS), the activity of caspase-3, and decreased the percentage of apoptotic cells in a dose-dependent manner. In addition, we found that TSG not only increased the expression of Bcl-2, while decreasing Bax expression, but also activated phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) with subsequent nitric oxide production and ultimately reduced high glucose-induced apoptosis. However, the antiapoptotic effects of TSG were abrogated by pretreatment of the cells with PI3K inhibitor (LY294002) or eNOS inhibitor NG-L-nitro-arginine methyl ester, respectively. These results suggest that TSG inhibits high glucose-induced apoptosis in HUVECs through inhibition of ROS production, activation of the PI3K/Akt/eNOS pathway, and upregulation of the Bcl-2/Bax ratio, and thus may demonstrate significant potential for preventing diabetic cardiovascular complications.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/toxicidade , Glucosídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estilbenos/farmacologia , Proteína X Associada a bcl-2/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Óxido Nítrico/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Nat Immunol ; 22(4): 485-496, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33767426

RESUMO

Evasion of host immunity is a hallmark of cancer; however, mechanisms linking oncogenic mutations and immune escape are incompletely understood. Through loss-of-function screening of 1,001 tumor suppressor genes, we identified death-associated protein kinase 3 (DAPK3) as a previously unrecognized driver of anti-tumor immunity through the stimulator of interferon genes (STING) pathway of cytosolic DNA sensing. Loss of DAPK3 expression or kinase activity impaired STING activation and interferon (IFN)-ß-stimulated gene induction. DAPK3 deficiency in IFN-ß-producing tumors drove rapid growth and reduced infiltration of CD103+CD8α+ dendritic cells and cytotoxic lymphocytes, attenuating the response to cancer chemo-immunotherapy. Mechanistically, DAPK3 coordinated post-translational modification of STING. In unstimulated cells, DAPK3 inhibited STING K48-linked poly-ubiquitination and proteasome-mediated degradation. After cGAMP stimulation, DAPK3 was required for STING K63-linked poly-ubiquitination and STING-TANK-binding kinase 1 interaction. Comprehensive phospho-proteomics uncovered a DAPK3-specific phospho-site on the E3 ligase LMO7, critical for LMO7-STING interaction and STING K63-linked poly-ubiquitination. Thus, DAPK3 is an essential kinase for STING activation that drives tumor-intrinsic innate immunity and tumor immune surveillance.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Imunidade Inata , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/enzimologia , Evasão Tumoral , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata/efeitos dos fármacos , Interferon beta/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Fosforilação , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Evasão Tumoral/efeitos dos fármacos , Ubiquitinação
9.
Eur J Pharmacol ; 898: 173994, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675784

RESUMO

Disintegrin and metalloproteinase 28 (ADAM28) is a member of the disintegrin and metalloprotease domain (ADAM) family. It is associated with the growth and metastasis of various malignancies in vivo, but its role in gastric cancer remains unclear. The purpose of this study was to investigate the effect of ADAM28 derived from gastric cancer and endothelium on gastric cancer cells and its related mechanisms. In this study, Western blot analysis and q-PCR results showed that ADAM28 was up-regulated in gastric cancer cell lines. The TCGA database showed that patients with high ADAM28 expression had significantly shorter overall survival than those with low ADAM28 expression. By MTT analysis, wound healing assay, and flow cytometry, we found that overexpression/knockdown of ADAM28 expression in gastric cancer cells can regulate cell proliferation, apoptosis and migration in vitro. In addition, overexpression/knockdown of ADAM28 in human umbilical vein endothelial cells (HUVECs) in the upper ventricle can regulate the apoptosis of lower ventricular gastric cancer cells in the co-culture system. Furthermore, ELISA demonstrated that knockdown of ADAM28 from endothelial cells increased the expression of von Willebrand Factor (vWF) in the supernatant. We found that ADAM28 both from gastric cancer cells and HUVECs eliminated vWF-induced apoptosis of gastric cancer cells by cleaving vWF, and the addition of the vWF knockdown plasmid eliminated the increase of integrin ß3, p-TP53 and c-Casp3 caused by ADAM28 knockdown. In conclusion, ADAM28 from endothelium and gastric cancer may cleave vWF to eliminate vWF-induced apoptosis of gastric cancer cells and play an pro-metastasis effect.


Assuntos
Proteínas ADAM/metabolismo , Apoptose , Células Endoteliais da Veia Umbilical Humana/enzimologia , Comunicação Parácrina , Neoplasias Gástricas/enzimologia , Fator de von Willebrand/metabolismo , Proteínas ADAM/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
11.
Inflammation ; 44(3): 1130-1144, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33527321

RESUMO

While sustained nuclear factor-κB (NF-κB) activation is critical for proinflammatory molecule expression, regulators of NF-κB activity during chronic inflammation are not known. We investigated the role of focal adhesion kinase (FAK) on sustained NF-κB activation in tumor necrosis factor-α (TNF-α)-stimulated endothelial cells (ECs) both in vitro and in vivo. We found that FAK inhibition abolished TNF-α-mediated sustained NF-κB activity in ECs by disrupting formation of TNF-α receptor complex-I (TNFRC-I). Additionally, FAK inhibition diminished recruitment of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and the inhibitor of NF-κB (IκB) kinase (IKK) complex to TNFRC-I, resulting in elevated stability of IκBα protein. In mice given TNF-α, pharmacological and genetic FAK inhibition blocked TNF-α-induced IKK-NF-κB activation in aortic ECs. Mechanistically, TNF-α activated and redistributed FAK from the nucleus to the cytoplasm, causing elevated IKK-NF-κB activation. On the other hand, FAK inhibition trapped FAK in the nucleus of ECs even upon TNF-α stimulation, leading to reduced IKK-NF-κB activity. Together, these findings support a potential use for FAK inhibitors in treating chronic inflammatory diseases.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/enzimologia , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Quinase 1 de Adesão Focal/genética , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Quinase I-kappa B/metabolismo , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor de NF-kappaB alfa/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
12.
Microvasc Res ; 136: 104146, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33610563

RESUMO

The goal of this study was to evaluate the effects of CM082, a novel vascular endothelial growth factor (VEGF) receptor-2 tyrosine kinase inhibitor, on human umbilical vein endothelial cells (HUVECs), and oxygen-induced retinopathy (OIR) mice. HUVECs were stimulated with rHuVEGF165 and then treated with CM082 to assess the antiangiogenic effects of CM082; subsequently, proliferation, wound-healing migration, Transwell invasion, tube formation assays, and Western blotting were performed in vitro. Retinal neovascularization tufts, avascular area, and TUNEL assays were estimated for OIR mice after intraperitoneal injection with CM082. CM082 significantly inhibited proliferation, migration, invasion, and tube formation induced by stimulation of HUVECs with rHuVEGF165; this inhibitory effect was mediated by blocking VEGFR2 activation. CM082 significantly inhibited retinal neovascularization and avascular area and did not increase apoptosis in the retina of OIR mice. The findings demonstrated that CM082 exhibits highly antiangiogenic effects in HUVECs and OIR mice. Thus, it may serve as an alternative treatment for neovascular eye disease in the future.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Indóis/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Pirrolidinas/farmacologia , Neovascularização Retiniana/prevenção & controle , Retinopatia da Prematuridade/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Hiperóxia/complicações , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/enzimologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/enzimologia , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/patologia , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
J Ethnopharmacol ; 267: 113642, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264658

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tubeimoside I (TBM) is a triterpenoid saponin purified from tubeimu (tuber of Bolbostemma paniculatum (Maxim.) Franquet). In traditional Chinese medicine, tubeimu had been used to treat acute mastitis, snake bites, detoxication, inflammatory diseases, and tumors for over 1000 years. AIM OF THE STUDY: This study aimed to investigate whether TBM could promote angiogenesis and how to promote angiogenesis. MATERIALS AND METHODS: In vivo, the pro-angiogenic effects of TBM were examined using the hindlimb ischemia model. After the ischemia operation, 1 mg/kg/day TBM was given via intraperitoneal injection for 28 days and the recovery of blood flow was monitored by Doppler scanner every 7 days. The capillary density in gastrocnemius muscle was detected by immunofluorescence. Expression of related proteins were determined by western blotting. In vitro, the pro-angiogenic effects of TBM on HUVECs were examined by Cell Counting Kit-8, scratch assay, endothelial cell tube formation assay and western blotting. RESULTS: TBM improved recovery from hindlimb ischemia in C57BL/6 mice. TBM promoted endothelial cell viability, migration and tube formation in HUVECs. TBM could activate eNOS-VEGF signaling pathway by enhancing expression of eNOS. And TBM's pro-angiogenesis effects could be abolished by L-NAME (an inhibitor of eNOS). CONCLUSIONS: TBM promoted angiogenesis via the activation of eNOS-VEGF signaling pathway and TBM could be a novel agent for therapeutic angiogenesis in ischemic diseases.


Assuntos
Indutores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Isquemia/tratamento farmacológico , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genética , Fluxo Sanguíneo Regional , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
14.
Biomed Pharmacother ; 133: 111073, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33378972

RESUMO

Sepsis is a life-threatening condition often leading to multiple organ failure for which currently no pharmacological treatment is available. Endothelial cells (EC) are among the first cells to respond to pathogens and inflammatory mediators in sepsis and might be a sentinel target to prevent the occurrence of multiple organ failure. Lipopolysaccharide (LPS) is a Gram-negative bacterial component that induces endothelial expression of inflammatory adhesion molecules, cytokines, and chemokines. This expression is regulated by a network of kinases, the result of which in vivo enables leukocytes to transmigrate from the blood into the underlying tissue, causing organ damage. We hypothesised that besides the known kinase pathways, other kinases are involved in the regulation of EC in response to LPS, and that these can be pharmacologically targeted to inhibit cell activation. Using kinome profiling, we identified 58 tyrosine kinases (TKs) that were active in human umbilical vein endothelial cells (HUVEC) at various timepoints after stimulation with LPS. These included AXL tyrosine kinase (Axl), focal adhesion kinase 1 (FAK1), and anaplastic lymphoma kinase (ALK). Using siRNA-based gene knock down, we confirmed that these three TKs mediate LPS-induced endothelial inflammatory activation. Pharmacological inhibition with FAK1 inhibitor FAK14 attenuated LPS-induced endothelial inflammatory activation and leukocyte adhesion partly via blockade of NF-κB activity. Administration of FAK14 after EC exposure to LPS also resulted in inhibition of inflammatory molecule expression. In contrast, inhibition of ALK with FDA-approved inhibitor Ceritinib attenuated LPS-induced endothelial inflammatory activation via a pathway that was independent of NF-κB signalling while it did not affect leukocyte adhesion. Furthermore, Ceritinib administration after start of EC exposure to LPS did not inhibit inflammatory activation. Combined FAK1 and ALK inhibition attenuated LPS-induced endothelial activation in an additive manner, without affecting leukocyte adhesion. Summarising, our findings suggest the involvement of FAK1 and ALK in mediating LPS-induced inflammatory activation of EC. Since pharmacological inhibition of FAK1 attenuated endothelial inflammatory activation after the cells were exposed to LPS, FAK1 represents a promising target for follow up studies.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/farmacologia , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Perfilação da Expressão Gênica , Células HL-60 , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Inflamação/enzimologia , Inflamação/genética , Análise Serial de Proteínas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Piridonas/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Sulfonas/farmacologia , Fatores de Tempo , Transcriptoma , Receptor Tirosina Quinase Axl
15.
Biomed Pharmacother ; 132: 110933, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33128943

RESUMO

Diabetic foot is one of the main causes of non-traumatic amputation. However, there is still lack of effective drugs to treat diabetic foot in clinical practice. Kanglexin (KLX) is a new anthraquinone compound with cardiovascular protective effects. Here we report that KLX accelerates diabetic wound healing by promoting angiogenesis via FGFR1/ERK signaling. Firstly, KM mice were injected (ip) with streptozocin to establish type 1 diabetic model. The full thickness wound with the diameter of 5 mm was prepared on the back of each mice. The wounds were treated with KLX once a day for 14 consecutive days. Results showed that KLX significantly accelerated the closure of diabetic wounds. Pathological studies of skin tissues around the wounds showed that KLX promoted the formation of granulation tissue and new blood vessels, increased collagen deposition and reduced inflammatory cell infiltration. Besides, KLX significantly alleviated advanced glycation end products (AGEs) - induced abnormal proliferation, migration and tubule formation of human umbilical vein endothelial cells (HUVECs), and up-regulated phospho-ERK1/2 both in the diabetic wound tissue and AGEs - treated HUVECs. Moreover, molecular docking results indicated that KLX had the potential to bind with FGF receptor 1 (FGFR1), and subsequent experiments confirmed that FGFR1 inhibitor PD173074 reversed the effect of KLX on promoting the phosphorylation of ERK1/2 and angiogenesis, suggesting that KLX promoted angiogenesis through FGFR1/ERK signaling. In conclusion, our study provides a new effective compound for treating diabetic wounds. More importantly, KLX has the potential to be developed as a topical drug to promote diabetic wound healing.


Assuntos
Indutores da Angiogênese/farmacologia , Angiopatias Diabéticas/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Angiopatias Diabéticas/enzimologia , Angiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Masculino , Camundongos , Fosforilação , Transdução de Sinais , Pele/lesões , Fatores de Tempo , Ferimentos e Lesões/enzimologia , Ferimentos e Lesões/fisiopatologia
16.
Am J Physiol Heart Circ Physiol ; 319(6): H1482-H1495, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064557

RESUMO

Multiple organ perfusion is impaired in sepsis. Clinical studies suggest that persistent perfusion disturbances are prognostic of fatal outcome in sepsis. Pyroptosis occurs upon activation of caspases and their subsequent cleavage of gasdermin D (Gsdmd), resulting in Gsdmd-N (activated NH2-terminal fragment of Gsdmd) that form membrane pores to induce cell death in sepsis. In addition, Gsdmd-/- mice are protected from a lethal dose of lipopolysaccharide (LPS). However, how Gsdmd-mediated pyroptosis occurs in endothelial cells and leads to impaired perfusion remain unexplored in endotoxemia. We used transgenic mice with ablation of Gsdmd and determined that mice lacking Gsdmd exhibited reduced breakdown of endothelial barrier, improved organ perfusion, as well as increased survival in endotoxemia. Phospholipase Cγ1 (PLCγ1) contributed to Gsdmd-mediated endothelial pyroptosis in a calcium-dependent fashion, without affecting Gsdmd-N production. Cytosolic calcium signaling promoted Gsdmd-N translocation to the plasma membrane, enhancing endothelial pyroptosis induced by LPS. We used adeno-associated virus (AAV9) vectors carrying a short hairpin RNA (shRNA) against murine PLCγ1 mRNA under control of the tie1 core promoter (AAV-tie1-sh-PLCγ1) to uniquely downregulate PLCγ1 expression in the endothelial cells. Here, we showed that unique inhibition of endothelial PLCγ1 attenuated breakdown of endothelial barrier, reduced vascular leakage, and improved perfusion disturbances. Moreover, unique downregulate endothelial PLCγ1 expression markedly decreased mortality of mice in endotoxemia. Thus, we establish that endothelial injury as an important trigger of fatal outcome in endotoxemia. Additionally, these findings suggest that interfering with Gsdmd and PLCγ1-calcium pathway may represent a new treatment strategy for critically ill patients sustaining endotoxemia.NEW & NOTEWORTHY Our study newly reveals that Phospholipase Cγ1 (PLCγ1) contributes to gasdermin D (Gsdmd)-mediated endothelial pyroptosis in a calcium-dependent fashion. Cytosolic calcium signaling promotes activated NH2-terminal fragment of Gsdmd (Gsdmd-N) to translocate to the plasma membrane, enhancing endothelial pyroptosis induced by cytoplasmic LPS. Genetic or pharmacologic inhibition of endothelial PLCγ1 attenuated breakdown of endothelial barrier, reduced vascular leakage, improve perfusion disturbances, and decrease mortality of mice in endotoxemia.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Membrana Celular/enzimologia , Células Endoteliais/enzimologia , Endotoxemia/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosfolipase C gama/metabolismo , Piroptose , Animais , Permeabilidade Capilar , Membrana Celular/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos , Masculino , Camundongos Knockout , Proteínas de Ligação a Fosfato/deficiência , Proteínas de Ligação a Fosfato/genética , Transporte Proteico
17.
Arterioscler Thromb Vasc Biol ; 40(11): 2665-2677, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938217

RESUMO

OBJECTIVE: Previous studies have demonstrated that the expression of several lysine (K)-specific demethylases (KDMs) is induced by hypoxia. Here, we sought to investigate the exact mechanisms underlying this regulation and its functional implications for endothelial cell function, such as angiogenesis. Approach and Results: We analyzed the expression changes of KDMs under hypoxia and modulation of HIF (hypoxia-inducible factor) expression using GRO-Seq and RNA-Seq in endothelial cells. We provide evidence that the majority of the KDMs are induced at the level of nascent transcription mediated by the action of HIF-1α and HIF-2α. Importantly, we show that transcriptional changes at the level of initiation represent the major mechanism of gene activation. To delineate the epigenetic effects of hypoxia and HIF activation in normoxia, we analyzed the genome-wide changes of H3K27me3 using chromosome immunoprecipitation-Seq. We discovered a redistribution of H3K27me3 at ≈2000 to 3000 transcriptionally active loci nearby genes implicated in angiogenesis. Among these, we demonstrate that vascular endothelial growth factor A (VEGFA) expression is partly induced by KDM4B- and KDM6B-mediated demethylation of nearby regions. Knockdown of KDM4B and KDM6B decreased cell proliferation, tube formation, and endothelial sprouting while affecting hundreds of genes associated with angiogenesis. These findings provide novel insights into the regulation of KDMs by hypoxia and the epigenetic regulation of VEGFA-mediated angiogenesis. CONCLUSIONS: Our study describes an additional level of epigenetic regulation where hypoxia induces redistribution of H3K27me3 around genes implicated in proliferation and angiogenesis. More specifically, we demonstrate that KDM4B and KDM6B play a key role in modulating the expression of the major angiogenic driver VEGFA.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Neovascularização Fisiológica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Células Cultivadas , Desmetilação , Histona Desmetilases/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Nutr Metab Cardiovasc Dis ; 30(12): 2406-2416, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32917500

RESUMO

BACKGROUND AND AIM: Abnormal aggregation of oxidized low-density lipoprotein (Ox-LDL) in vascular endothelial cells (VECs) is one of the major pathological changes in atherosclerotic lesions. Our research aimed to assess the mechanism of humanin (HN) in promoting autophagic degradation of Ox-LDL in HUVECs. METHODS AND RESULTS: Flow cytometry and lipid quantitation results showed that Ox-LDL caused lipid and cholesterol accumulation in HUVECs. Western blot results showed that Ox-LDL increased the expression of autophagy-related proteins P62 and LC3-II in a concentration-dependent manner. The cathepsin D activity assay showed that Ox-LDL inhibited the function of cathepsin D. HNG pretreatment reduced lipid and cholesterol aggregation in HUVECs induced by Ox-LDL, increased LC3-II protein level, decreased P62 protein content, and reversed Ox-LDL-induced cathepsin D functional impairment. Inhibition of the FPRL1 pathway by FPRL1 siRNA or the FPRL1-specific inhibitor Boc-MLF blocked all HNG's protective effects. These results indicate that HNG could restore cathepsin D activity and protein level in HUVECs to repair lysosomal functional damage induced by Ox-LDL, further repairing Ox-LDL-induced autophagic damage in HUVECs. CONCLUSION: HNG restores the activity of Ox-LDL-induced damaged lysosomal enzyme cathepsin D through its membrane protein receptor FPRL1 to promote autophagic degradation of Ox-LDL in HUVECs.


Assuntos
Autofagia/efeitos dos fármacos , Catepsina D/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Lisossomos/efeitos dos fármacos , Peptídeos/farmacologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Lisossomos/enzimologia , Lisossomos/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteólise , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
19.
Arterioscler Thromb Vasc Biol ; 40(11): 2619-2631, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32907372

RESUMO

OBJECTIVE: The occurrence of new blood vessel formation in the lungs of asthmatic patients suggests a critical role for airway endothelial cells (ECs) in the disease. IL-33 (Interleukin-33)-a cytokine abundantly expressed in human lung ECs-recently emerged as a key factor in the development of allergic diseases, including asthma. In the present study, we evaluated whether mouse and human ECs exposed to the common Dermatophagoides farinae allergen produce IL-33 and characterized the activated signaling pathways. Approach and Results: Mouse primary lung ECs were exposed in vitro to D farinae extract or rmIL-33 (recombinant murine IL-33). Both D farinae and rmIL-33 induced Il-33 transcription without increasing the IL-33 production and upregulated the expression of its receptor, as well as genes involved in angiogenesis and the regulation of immune responses. In particular, D farinae and rmIL-33 upregulated Fas/Cd95 transcript level, yet without promoting apoptosis. Inhibition of caspases involved in the Fas signaling pathway, increased IL-33 protein level in ECs, suggesting that Fas may decrease IL-33 level through caspase-8-dependent mechanisms. Our data also showed that the NF-κB (nuclear factor-κB), PI3K/Akt, and Wnt/ß-catenin pathways regulate Il-33 transcription in both mouse and human primary ECs. CONCLUSIONS: Herein, we described a new mechanism involved in the control of IL-33 production in lung ECs exposed to allergens.


Assuntos
Antígenos de Dermatophagoides/farmacologia , Células Endoteliais/efeitos dos fármacos , Interleucina-33/farmacologia , Pulmão/irrigação sanguínea , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor fas/metabolismo , Animais , Caspase 8/metabolismo , Linhagem Celular , Células Endoteliais/enzimologia , Células Endoteliais/imunologia , Ativação Enzimática , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Interleucina-33/genética , Interleucina-33/metabolismo , Camundongos , Regulação para Cima , Via de Sinalização Wnt , Receptor fas/genética
20.
Mol Biol Rep ; 47(9): 6829-6840, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32888132

RESUMO

The main challenge of pain management with opioids is development of acute and chronic analgesic tolerance. Several studies on neuronal cells have focused on the molecular mechanisms involved in tolerance such as cyclic AMP (cAMP) activation, and nitric oxide (NO) pathway. However, the effects of opioids on non-neuronal cells and tolerance development have been poorly investigated. Lithium chloride is a glycogen synthase kinase 3ß (GSK-3ß) inhibitor and exert its effects through modulation of nitric oxide pathway. In this study we examined the effect of lithium on acute/chronic morphine and methadone administration in endothelial cells which express mu opioid receptors. Human umbilical vein endothelial cells (HUVECs) were treated with different doses of morphine, methadone, and lithium for six and 48 h. Then we evaluated cell viability, nitrite and cyclic AMP levels, as well as the expression of endothelial nitric oxide synthase (eNOS) protein using Immunocytochemistry (ICC) assay and phosphorylated GSK-3ß enzyme by western blot analysis in cells. Both chronic morphine and methadone treatment increased NO level and eNOS expression in HUVECs. Morphine induced cAMP overproduction after 48 h exposure with cells. Lithium pretreatment (10 mM) in both morphine and methadone received groups significantly reduced nitrite and cAMP levels as well as eNOS expression as compared to the control. The decreased amount of phospho GSK-3ß due to the opioid exposure was increased following lithium treatment. Tolerance like pattern may occur in non-neuronal cells with opioid receptors and this study clearly revealed the attenuation of morphine and methadone tolerance like behavior by lithium treatment in HUVECs.


Assuntos
Analgésicos Opioides/farmacologia , Tolerância a Medicamentos/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Analgésicos Opioides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imuno-Histoquímica , Metadona/administração & dosagem , Morfina/administração & dosagem , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA