Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690647

RESUMO

Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.


Assuntos
Nível de Alerta , Plexo Corióideo , Células Ependimogliais , Hibernação , Proteínas Proto-Oncogênicas c-fos , Torpor , Animais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Nível de Alerta/fisiologia , Torpor/fisiologia , Hibernação/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Plexo Corióideo/metabolismo , Plexo Corióideo/fisiologia , Mesocricetus , Masculino , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Marrom/metabolismo , Cricetinae
2.
Nature ; 628(8009): 826-834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538787

RESUMO

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Assuntos
Tronco Encefálico , Células Ependimogliais , Comportamento Alimentar , Temperatura Alta , Hipotálamo , Vias Neurais , Neurônios , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Dopamina/metabolismo , Ingestão de Alimentos/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Comportamento Alimentar/fisiologia , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Sensação Térmica/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Biophys Chem ; 294: 106957, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716682

RESUMO

Presently exciton activation of enzymatic oxidation of ethanol by human alcohol dehydrogenase (ADH) 1A enzyme is reported. The ADH1A enzyme was activated by infrared (IR) excitons transferred over Müller cell (MC) intermediate filaments (IFs). These IR excitons were generated by energy liberated upon enzymatic ATP hydrolysis and transferred to IFs. Also, the emission spectrum was recorded of the electronically excited ADH1A…NAD+…EtOH complexes obtained by energy transfer from IR excitons that traveled along IFs. These results support the hypothesis that ATP hydrolysis energy may be transmitted in vivo in the form of IR excitons, over the network of IFs, both within and between cells.


Assuntos
Células Ependimogliais , Filamentos Intermediários , Humanos , Células Ependimogliais/fisiologia , Hidrólise , Etanol , Trifosfato de Adenosina
4.
Nat Neurosci ; 24(8): 1089-1099, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083786

RESUMO

Methods to enhance adult neurogenesis by reprogramming glial cells into neurons enable production of new neurons in the adult nervous system. Development of therapeutically viable approaches to induce new neurons is now required to bring this concept to clinical application. Here, we successfully generate new neurons in the cortex and dentate gyrus of the aged adult mouse brain by transiently suppressing polypyrimidine tract binding protein 1 using an antisense oligonucleotide delivered by a single injection into cerebral spinal fluid. Radial glial-like cells and other GFAP-expressing cells convert into new neurons that, over a 2-month period, acquire mature neuronal character in a process mimicking normal neuronal maturation. The new neurons functionally integrate into endogenous circuits and modify mouse behavior. Thus, generation of new neurons in the dentate gyrus of the aging brain can be achieved with a therapeutically feasible approach, thereby opening prospects for production of neurons to replace those lost to neurodegenerative disease.


Assuntos
Giro Denteado , Células Ependimogliais , Neurogênese/fisiologia , Neurônios , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Animais , Reprogramação Celular/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Camundongos , Neurônios/citologia , Neurônios/fisiologia , Oligonucleotídeos Antissenso
6.
Nat Commun ; 12(1): 2288, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863883

RESUMO

Hypothalamic tanycytes in median eminence (ME) are emerging as a crucial cell population that regulates endocrine output, energy balance and the diffusion of blood-born molecules. Tanycytes have recently been considered as potential somatic stem cells in the adult mammalian brain, but their regenerative and tumorigenic capacities are largely unknown. Here we found that Rax+ tanycytes in ME of mice are largely quiescent but quickly enter the cell cycle upon neural injury for self-renewal and regeneration. Mechanistically, Igf1r signaling in tanycytes is required for tissue repair under injury conditions. Furthermore, Braf oncogenic activation is sufficient to transform Rax+ tanycytes into actively dividing tumor cells that eventually develop into a papillary craniopharyngioma-like tumor. Together, these findings uncover the regenerative and tumorigenic potential of tanycytes. Our study offers insights into the properties of tanycytes, which may help to manipulate tanycyte biology for regulating hypothalamic function and investigate the pathogenesis of clinically relevant tumors.


Assuntos
Craniofaringioma/patologia , Células Ependimogliais/fisiologia , Eminência Mediana/fisiologia , Neoplasias Experimentais/patologia , Regeneração , Animais , Carcinogênese/patologia , Autorrenovação Celular/fisiologia , Craniofaringioma/induzido quimicamente , Craniofaringioma/genética , Proteínas do Olho/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Eminência Mediana/citologia , Camundongos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Proteínas Proto-Oncogênicas B-raf/genética , RNA-Seq , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Análise de Célula Única , Fatores de Transcrição/metabolismo
7.
Exp Eye Res ; 207: 108569, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33839111

RESUMO

Retinal regeneration research offers hope to people affected by visual impairment due to disease and injury. Ongoing research has explored many avenues towards retinal regeneration, including those that utilizes implantation of devices, cells or targeted viral-mediated gene therapy. These results have so far been limited, as gene therapy only has applications for rare single-gene mutations and implantations are invasive and in the case of cell transplantation donor cells often fail to integrate with adult neurons. An alternative mode of retinal regeneration utilizes a stem cell population unique to vertebrate retina - Müller glia (MG). Endogenous MG can readily regenerate lost neurons spontaneously in zebrafish and to a very limited extent in mammalian retina. The use of adenosine triphosphate (ATP) has been shown to induce retinal degeneration and activation of the MG in mammals, but whether this is conserved to other vertebrate species including those with higher regenerative capacity remains unknown. In our study, we injected a single dose of ATP intravitreal in zebrafish to characterize the cell death and MG induced regeneration. We used TUNEL labelling on retinal sections to show that ATP caused localised death of photoreceptors and ganglion cells within 24 h. Histology of GFP-transgenic zebrafish and BrdU injected fish demonstrated that MG proliferation peaked at days 3 and 4 post-ATP injection. Using BrdU labelling and photoreceptor markers (Zpr1) we observed regeneration of lost rod photoreceptors at day 14. This study has been undertaken to allow for comparative studies between mammals and zebrafish that use the same specific induction method of injury, i.e. ATP induced injury to allow for direct comparison of across species to narrow down resulting differences that might reflect the differing regenerative capacity. The ultimate aim of this work is to recapitulate pro-neurogenesis Müller glia signaling in mammals to produce new neurons that integrate with the existing retinal circuit to restore vision.


Assuntos
Trifosfato de Adenosina/toxicidade , Células Ependimogliais/fisiologia , Regeneração Nervosa/fisiologia , Neuroglia/fisiologia , Degeneração Retiniana/induzido quimicamente , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Peixe-Zebra/fisiologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células , Modelos Animais de Doenças , Feminino , Marcação In Situ das Extremidades Cortadas , Injeções Intravítreas , Masculino , Degeneração Retiniana/fisiopatologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/patologia
8.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671690

RESUMO

Proliferative diabetic retinopathy (PDR), a major complication of diabetes mellitus, results from an inflammation-sustained interplay among endothelial cells, neurons, and glia. Even though anti-vascular endothelial growth factor (VEGF) interventions represent the therapeutic option for PDR, they are only partially efficacious. In PDR, Müller cells undergo reactive gliosis, produce inflammatory cytokines/chemokines, and contribute to scar formation and retinal neovascularization. However, the impact of anti-VEGF interventions on Müller cell activation has not been fully elucidated. Here, we show that treatment of MIO-M1 Müller cells with vitreous obtained from PDR patients stimulates cell proliferation and motility, and activates various intracellular signaling pathways. This leads to cytokine/chemokine upregulation, a response that was not mimicked by treatment with recombinant VEGF nor inhibited by the anti-VEGF drug ranibizumab. In contrast, fibroblast growth factor-2 (FGF2) induced a significant overexpression of various cytokines/chemokines in MIO-M1 cells. In addition, the FGF receptor tyrosine kinase inhibitor BGJ398, the pan-FGF trap NSC12, the heparin-binding protein antagonist N-tert-butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe Boc2, and the anti-inflammatory hydrocortisone all inhibited Müller cell activation mediated by PDR vitreous. These findings point to a role for various modulators beside VEGF in Müller cell activation and pave the way to the search for novel therapeutic strategies in PDR.


Assuntos
Retinopatia Diabética/patologia , Células Ependimogliais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Proliferação de Células , Células Cultivadas , Colesterol/análogos & derivados , Colesterol/farmacologia , Retinopatia Diabética/cirurgia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/fisiologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica , Humanos , Hidrocortisona/farmacologia , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Ranibizumab/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Vitrectomia
9.
Exp Eye Res ; 205: 108490, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607076

RESUMO

Microglia and Müller cells (MCs) are believed to be critically involved in hypoxia-induced blood-retinal barrier (BRB) disruption, which is a major pathogenic factor of various retinopathies. However, the underlying mechanism remains poorly defined. The inner BRB (iBRB) is primarily formed of microvascular endothelial cells (ECs) with tight junction (TJ), which are surrounded and supported by retinal glial cells. We developed a novel in vitro iBRB model sheet by sandwiching Transwell membrane with layered mouse brain microvascular ECs (bEnd.3) and mouse retinal MCs (QMMuC-1) on each side of the membrane. Using this model, we tested the hypothesis that under hypoxic condition, activated microglia produce inflammatory cytokines such as interleukin (IL)-1ß, which may promote vascular endothelial growth factor (VEGF) production from MCs, leading to TJ disruption. The iBRB model cell sheets were exposed to 1% oxygen for 6 h with or without mouse brain microglia (BV2) or IL-1ß. TJ structure and function were examined by zonula occludens (ZO)-1 immunostaining and fluorescein isothiocyanate permeability assay, respectively. Relative gene expression of IL-1ß in BV2 under normoxic and hypoxic conditions was examined by real-time reverse transcription-polymerase chain reaction. VEGF protein concentration in QMMuC-1 supernatants was measured by enzyme-linked immunosorbent assay. The bEnd.3 cell sheet incubated with BV2 in hypoxic condition or with IL-1ß in normoxic condition showed abnormal localization of ZO-1 and aberrated barrier function. Under normoxic condition, EC-MC iBRB model cell sheet showed lower permeability than bEnd.3 cell sheet. Under hypoxic conditions, the barrier function of EC-MC iBRB model cell sheet was more deteriorated compared to bEnd.3 cell sheet. Under hypoxic condition, incubation of EC-MC iBRB model cell sheet with BV2 cells or IL-1ß significantly increased barrier permeability, and hypoxia-treated BV2 cells expressed significantly higher levels of IL-1ß mRNA. Incubation of QMMuC-1 with IL-1ß increased VEGF production. These results suggest that under hypoxic condition, microglia are activated to release proinflammatory cytokines such as IL-1ß that promote VEGF production from MCs, leading to disruption of iBRB function. Modulating microglia and MCs function may be a novel approach to treat hypoxia-induced retinal BRB dysfunction.


Assuntos
Barreira Hematorretiniana/fisiologia , Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , Células Ependimogliais/fisiologia , Hipóxia/metabolismo , Microglia/fisiologia , Junções Íntimas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Imuno-Histoquímica , Interleucina-1beta/genética , Camundongos , Modelos Biológicos , RNA Mensageiro/genética , Vasos Retinianos/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1
10.
Cell Rep ; 34(1): 108587, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406432

RESUMO

Despite a growing appreciation for microglial influences on the developing brain, the responsiveness of microglia to insults during gestation remains less well characterized, especially in the embryo when microglia themselves are still maturing. Here, we asked if fetal microglia could coordinate an innate immune response to an exogenous insult. Using time-lapse imaging, we showed that hypothalamic microglia actively surveyed their environment by near-constant "touching" of radial glia projections. However, following an insult (i.e., IUE or AAV transduction), this seemingly passive touching became more intimate and long lasting, ultimately resulting in the retraction of radial glial projections and degeneration into small pieces. Mechanistically, the TAM receptors MERTK and AXL were upregulated in microglia following the insult, and Annexin V treatment inhibited radial glia breakage and engulfment by microglia. These data demonstrate a remarkable responsiveness of embryonic microglia to insults during gestation, a critical window for neurodevelopment.


Assuntos
Embrião de Mamíferos/metabolismo , Células Ependimogliais/fisiologia , Hipotálamo/embriologia , Hipotálamo/fisiologia , Microglia/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo , Animais , Encéfalo/embriologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata , Camundongos , Camundongos Transgênicos , Imagem Óptica/métodos , Receptor Tirosina Quinase Axl
11.
J Neurophysiol ; 125(1): 184-198, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206577

RESUMO

Small alterations in extracellular H+ can profoundly alter neurotransmitter release by neurons. We examined mechanisms by which extracellular ATP induces an extracellular H+ flux from Müller glial cells, which surround synaptic connections throughout the vertebrate retina. Müller glia were isolated from tiger salamander retinae and H+ fluxes examined using self-referencing H+-selective microelectrodes. Experiments were performed in 1 mM HEPES with no bicarbonate present. Replacement of extracellular sodium by choline decreased H+ efflux induced by 10 µM ATP by 75%. ATP-induced H+ efflux was also reduced by Na+/H+ exchange inhibitors. Amiloride reduced H+ efflux initiated by 10 µM ATP by 60%, while 10 µM cariporide decreased H+ flux by 37%, and 25 µM zoniporide reduced H+ flux by 32%. ATP-induced H+ fluxes were not significantly altered by the K+/H+ pump blockers SCH28080 or TAK438, and replacement of all extracellular chloride with gluconate was without effect on H+ fluxes. Recordings of ATP-induced H+ efflux from cells that were simultaneously whole cell voltage clamped revealed no effect of membrane potential from -70 mV to 0 mV. Restoration of extracellular potassium after cells were bathed in 0 mM potassium produced a transient alteration in ATP-dependent H+ efflux. The transient response to extracellular potassium occurred only when extracellular sodium was present and was abolished by 1 mM ouabain, suggesting that alterations in sodium gradients were mediated by Na+/K+-ATPase activity. Our data indicate that the majority of H+ efflux elicited by extracellular ATP from isolated Müller cells is mediated by Na+/H+ exchange.NEW & NOTEWORTHY Glial cells are known to regulate neuronal activity, but the exact mechanism(s) whereby these "support" cells modulate synaptic transmission remains unclear. Small changes in extracellular levels of acidity are known to be particularly powerful regulators of neurotransmitter release. Here, we show that extracellular ATP, known to be a potent activator of glial cells, induces H+ efflux from retinal Müller (glial) cells and that the bulk of the H+ efflux is mediated by Na+/H+ exchange.


Assuntos
Trifosfato de Adenosina/metabolismo , Células Ependimogliais/metabolismo , Prótons , Trocadores de Sódio-Hidrogênio/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Células Ependimogliais/fisiologia , Imidazóis/farmacologia , Transporte de Íons , Pirróis/farmacologia , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Sulfonamidas/farmacologia , Urodelos
12.
Invest Ophthalmol Vis Sci ; 61(14): 29, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369638

RESUMO

Purpose: Müller glial-mesenchymal transition (GMT) is reported as the fibrogenic mechanism promoted by TGF-ß-SNAIL axis in Müller cells transdifferentiated into myofibroblasts. Here we show the multifaceted involvement of TGF-ß in diabetic fibrovascular proliferation via Müller GMT and VEGF-A production. Methods: Surgically excised fibrovascular tissues from the eyes of patients with proliferative diabetic retinopathy were processed for immunofluorescence analyses of TGF-ß downstream molecules. Human Müller glial cells were used to evaluate changes in gene and protein expression with real-time quantitative PCR and ELISA, respectively. Immunoblot analyses were performed to detect TGF-ß signal activation. Results: Müller glial cells in patient fibrovascular tissues were immunopositive for GMT-related molecular markers, including SNAIL and smooth muscle protein 22, together with colocalization of VEGF-A and TGF-ß receptors. In vitro administration of TGF-ß1/2 upregulated TGFB1 and TGFB2, both of which were suppressed by inhibitors for nuclear factor-κB, glycogen synthase kinase-3, and p38 mitogen-activated protein kinase. Of the various profibrotic cytokines, TGF-ß1/2 application exclusively induced Müller glial VEGFA mRNA expression, which was decreased by pretreatment with small interfering RNA for SMAD2 and inhibitors for p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Supporting these findings, TGF-ß1/2 stimulation to Müller cells increased the phosphorylation of these intracellular signaling molecules, all of which were also activated in Müller glial cells in patient fibrovascular tissues. Conclusions: This study underscored the significance of Müller glial autoinduction of TGF-ß as a pathogenic cue to facilitate diabetic fibrovascular proliferation via TGF-ß-driven GMT and VEGF-A-driven angiogenesis.


Assuntos
Transdiferenciação Celular , Retinopatia Diabética/metabolismo , Células Ependimogliais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Citocinas/metabolismo , Retinopatia Diabética/fisiopatologia , Ensaio de Imunoadsorção Enzimática , Células Ependimogliais/fisiologia , Imunofluorescência , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(25): 14473-14481, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513737

RESUMO

Hypothalamic tanycytes are chemosensitive glial cells that contact the cerebrospinal fluid in the third ventricle and send processes into the hypothalamic parenchyma. To test whether they can activate neurons of the arcuate nucleus, we targeted expression of a Ca2+-permeable channelrhodopsin (CatCh) specifically to tanycytes. Activation of tanycytes ex vivo depolarized orexigenic (neuropeptide Y/agouti-related protein; NPY/AgRP) and anorexigenic (proopiomelanocortin; POMC) neurons via an ATP-dependent mechanism. In vivo, activation of tanycytes triggered acute hyperphagia only in the fed state during the inactive phase of the light-dark cycle.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiopatologia , Células Ependimogliais/fisiologia , Hiperfagia/fisiopatologia , Neurônios/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Apetite/fisiologia , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/diagnóstico por imagem , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Genes Reporter , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Rede Nervosa/fisiologia , Neuropeptídeo Y/metabolismo , Imagem Óptica , Optogenética , Técnicas de Patch-Clamp , Pró-Opiomelanocortina/metabolismo , Técnicas Estereotáxicas
14.
Neurosci Bull ; 36(9): 972-984, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32445021

RESUMO

In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) have major inhibitory effects on nerve regeneration. They include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. MAIs possess two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Previous studies have confirmed that the inhibition of NgR only results in a modest increase in regeneration in the CNS; however, the inhibitory effects of PirB with regard to nerve regeneration after binding to MAIs remain controversial. In this study, we demonstrated that PirB is expressed in primary cultures of retinal ganglion cells (RGCs), and the inhibitory effects of the three MAIs on the growth of RGC neurites are not significantly decreased after direct PirB knockdown using adenovirus PirB shRNA. Interestingly, we found that retinal Müller cells expressed PirB and that its knockdown enhanced the regeneration of co-cultured RGC neurites. PirB knockdown also activated the JAK/Stat3 signaling pathway in Müller cells and upregulated ciliary neurotrophic factor levels. These findings indicate that PirB plays a novel role in retinal Müller cells and that its action in these cells may indirectly affect the growth of RGC neurites. The results also reveal that PirB in Müller cells affects RGC neurite regeneration. Our findings provide a novel basis for the use of PirB as a target molecule to promote nerve regeneration.


Assuntos
Células Ependimogliais , Neuritos , Receptores Imunológicos/fisiologia , Regeneração , Células Ganglionares da Retina , Animais , Células Ependimogliais/fisiologia , Neuritos/fisiologia , Cultura Primária de Células , Ratos Sprague-Dawley , Células Ganglionares da Retina/fisiologia
15.
Neuroendocrinology ; 110(7-8): 574-581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986518

RESUMO

Tanycytes are peculiar ependymoglial cells lining the bottom and the lateral wall of the third ventricle. For a decade, the utilization of molecular genetic approaches allowed us to make important discoveries about their diverse physiological functions. Here, I review the current methods used to target tanycytes, focusing on their specificity, their efficiency, their limitations, as well as their potential future improvements.


Assuntos
Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Marcação de Genes/métodos , Animais , Sistemas de Liberação de Medicamentos/métodos , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Humanos , Sensibilidade e Especificidade , Terceiro Ventrículo
16.
Curr Eye Res ; 45(3): 349-360, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31557060

RESUMO

Retinal degeneration is a leading cause of untreatable blindness in the industrialised world. It is typically irreversible and there are few curative treatments available. The use of stem cells to generate new retinal neurons for transplantation purposes has received significant interest in recent years and is beginning to move towards clinical trials. However, such approaches are likely to be most effective for relatively focal areas of repair. An intriguing complementary approach is endogenous self-repair. Retinal cells from the ciliary marginal zone (CMZ), retinal pigment epithelium (RPE) and Müller glial cells (MG) have all been shown to play a role in retinal repair, typically in lower vertebrates. Among them, MG have received renewed interest, due to their distribution throughout (centre to periphery) the neural retina and their potential to re-acquire a progenitor-like state following retinal injury with the ability to proliferate and generate new neurons. Triggering these innate self-repair mechanisms represents an exciting therapeutic option in treating retinal degeneration. However, these cells behave differently in mammalian and non-mammalian species, with a considerably restricted potential in mammals. In this short review, we look at some of the recent progress made in our understanding of the signalling pathways that underlie MG-mediated regeneration in lower vertebrates, and some of the challenges that have been revealed in our attempts to reactivate this process in the mammalian retina.


Assuntos
Células Ependimogliais/fisiologia , Neuroglia/fisiologia , Regeneração/fisiologia , Degeneração Retiniana/fisiopatologia , Neurônios Retinianos/fisiologia , Animais , Humanos , Degeneração Retiniana/patologia
17.
Invest Ophthalmol Vis Sci ; 60(1): 26-35, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30601928

RESUMO

Several retinal conditions have been recently revealed by optical coherence tomography (OCT) to occur more frequently in glaucoma than in healthy eyes: paravascular defects, peripapillary retinoschisis, and pseudo-cysts of the inner nuclear layer (INL). Here the clinical OCT findings described in these reports are reviewed and a framework that could explain why they are related and occur more frequently in glaucoma is proposed. Evidence suggests that these conditions all share in common a strong tendency to develop in association with severe and/or rapidly progressing disease and a likelihood of involving biomechanical forces and differential tissue deformation. Müller glia are mechanosensitive and known to react to shear and axial strain, and to participate in homeostasis of water and ion flux through the retina, and to provide spring-like capability to buffer of mechanical forces. Thus, Müller cell integrity is also likely to be involved in the development and/or response to such events. OCT has also revealed that Müller cell optical properties (scatter and attenuation) appear to be altered in at least two of these retinal conditions: peripapillary retinoschisis and pseudo-cysts of the INL. Future studies applying 3D strain mapping techniques might reveal structural changes over time (either acute or longer-term deformations) that predict the onset and location of these retinal defects and their relationship to progressive optic nerve head deformation, retinal nerve fiber layer, and retinal ganglion cell loss in glaucoma.


Assuntos
Glaucoma/fisiopatologia , Disco Óptico/fisiopatologia , Retina/fisiopatologia , Idoso , Fenômenos Biomecânicos , Células Ependimogliais/fisiologia , Feminino , Humanos , Edema Macular/fisiopatologia , Pessoa de Meia-Idade , Fibras Nervosas/fisiologia , Células Ganglionares da Retina/fisiologia , Retinosquise/fisiopatologia , Tomografia de Coerência Óptica/métodos
18.
Neuroscience ; 400: 132-145, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30597194

RESUMO

Radial glial cells (RGCs) are neuronal progenitors and function as scaffolds for neuronal radial migration in the developing cerebral cortex. These functions depend on a polarized radial glial scaffold, which is of fundamental importance for brain development. Lethal giant larvae 1 (Lgl1), a key regulator for cell polarity from Drosophila to mammals, plays a key role in tumorigenesis and brain development. To overcome neonatal lethality in Lgl1-null mice and clarify the role of Lgl1 in mouse cerebral cortex development and function, we created Lgl1 dorsal telencephalon-specific knockout mice mediated by Emx1-Cre. Lgl1Emx1 conditional knockout (CKO) mice had normal life spans and could be used for function research. Histology results revealed that the mutant mice displayed an ectopic cortical mass in the dorsolateral hemispheric region between the normotopic cortex and the subcortical white matter, resembling human subcortical band heterotopia (SBH). The Lgl1Emx1 CKO cortex showed disrupted adherens junctions (AJs), which were accompanied by ectopic RGCs and intermediate progenitors, and disorganization of the radial glial fiber system. The early- and late-born neurons failed to reach the destined position along the disrupted radial glial fiber scaffold and instead accumulated in ectopic positions and formed SBH. Additionally, the absence of Lgl1 led to severe abnormalities in RGCs, including hyperproliferation, impaired differentiation, and increased apoptosis. Lgl1Emx1 CKO mice also displayed deficiencies in anxiety-related behaviors. We concluded that Lgl1 is essential for RGC development and neural migration during cerebral cortex development.


Assuntos
Movimento Celular , Córtex Cerebral/crescimento & desenvolvimento , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Células Ependimogliais/fisiologia , Glicoproteínas/fisiologia , Neurônios/fisiologia , Animais , Ansiedade , Apoptose , Diferenciação Celular , Polaridade Celular , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Glicoproteínas/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Hum Mol Genet ; 28(1): 105-123, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239717

RESUMO

Variations in the human Crumbs homolog-1 (CRB1) gene lead to an array of retinal dystrophies including early onset of retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) in children. To investigate the physiological roles of CRB1 and CRB2 in retinal Müller glial cells (MGCs), we analysed mouse retinas lacking both proteins in MGC. The peripheral retina showed a faster progression of dystrophy than the central retina. The central retina showed retinal folds, disruptions at the outer limiting membrane, protrusion of photoreceptor nuclei into the inner and outer segment layers and ingression of photoreceptor nuclei into the photoreceptor synaptic layer. The peripheral retina showed a complete loss of the photoreceptor synapse layer, intermingling of photoreceptor nuclei within the inner nuclear layer and ectopic photoreceptor cells in the ganglion cell layer. Electroretinography showed severe attenuation of the scotopic a-wave at 1 month of age with responses below detection levels at 3 months of age. The double knockout mouse retinas mimicked a phenotype equivalent to a clinical LCA phenotype due to loss of CRB1. Localization of CRB1 and CRB2 in non-human primate (NHP) retinas was analyzed at the ultrastructural level. We found that NHP CRB1 and CRB2 proteins localized to the subapical region adjacent to adherens junctions at the outer limiting membrane in MGC and photoreceptors. Our data suggest that loss of CRB2 in MGC aggravates the CRB1-associated RP-like phenotype towards an LCA-like phenotype.


Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Retinose Pigmentar/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Eletrorretinografia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Macaca fascicularis , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/fisiologia , Fenótipo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Distrofias Retinianas/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia
20.
Biomed Res Int ; 2018: 2749257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228984

RESUMO

The vitreousness of glaucoma subjects contains elevated glutamate, and excessive extracellular glutamate is toxic to retinal neurons. Therefore, glutamate clearance is potentially impaired in the retina of glaucoma subjects. Müller cells play an important role in maintaining low extracellular levels of neurotransmitters, such as glutamate. A better understanding of the cross-talk between adenosine and glutamate may provide a better characterization of the regulatory network in Müller cells. Here, Müller cells were purified from the rat retina on postnatal day 5 using the papain digestion method. Application of increasing concentrations of glutamate (0-20 mmol/L) caused a dose-dependent decrease in the expression levels of Kir4.1, Kir2.1, GLAST, and GS. Exogenous adenosine regulated Kir channels and subsequently promoted GLAST and GS expression levels in Müller cells under exogenous glutamate stimulation. These effects were partly dependent on adenosine receptors.


Assuntos
Adenosina/fisiologia , Células Ependimogliais/fisiologia , Ácido Glutâmico/farmacologia , Antagonistas de Receptores Purinérgicos P1/metabolismo , Retina/metabolismo , Animais , Glaucoma , Neuroglia , Canais de Potássio Corretores do Fluxo de Internalização , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA