Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 140(3): 615-623.e5, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31479664

RESUMO

Abundant corneocyte surface protrusions, observed in patients with atopic dermatitis with filaggrin loss-of-function mutations, are inversely associated with levels of natural moisturizing factors (NMFs) in the stratum corneum. To dissect the etiological role of NMFs and filaggrin deficiency in surface texture alterations, we examined mouse models with genetic deficiencies in the synthesis or degradation of filaggrin monomers for NMFs, cell stiffness (elastic modulus) and corneocyte surface protrusion density (dermal texture index). Five neonatal and adult mouse models carrying inactivating mutations of SASPase (Sasp-/-), filaggrin (Flgft/ft and Flg-/-), filaggrin-hornerin (FlgHrnr-/-), and bleomycin hydrolase (Blmh-/-) were investigated. Sasp-/- and Flg-/- were on the hairless mouse background. Atomic force microscopy was used to determine elastic modulus and dermal texture index. Corneocytes of each neonatal as well as hairless adult knockout mouse exhibited an increased number of protrusions and decreased elastic modulus. In these mice, NMFs were reduced except for Sasp-/-. Dermal texture index was inversely correlated with NMFs and elastic modulus. Our findings demonstrate that any filaggrin-NMF axis deficiency can affect corneocyte mechanical properties in mice and likely in humans. Differences in NMFs and corneocyte surface texture between neonatal and adult as well as hairless and hairy mice emphasize the need for carefully selecting the most appropriate animal models for studies.


Assuntos
Dermatite Atópica/patologia , Células Epidérmicas/patologia , Epiderme/patologia , Proteínas de Filamentos Intermediários/deficiência , Animais , Ácido Aspártico Endopeptidases/genética , Cisteína Endopeptidases/genética , Dermatite Atópica/genética , Modelos Animais de Doenças , Módulo de Elasticidade , Células Epidérmicas/ultraestrutura , Proteínas Filagrinas , Humanos , Proteínas de Filamentos Intermediários/genética , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Microscopia de Força Atômica
2.
Elife ; 72018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30355452

RESUMO

The heterogeneity and compartmentalization of stem cells is a common principle in many epithelia, and is known to function in epithelial maintenance, but its other physiological roles remain elusive. Here we show transcriptional and anatomical contributions of compartmentalized epidermal stem cells in tactile sensory unit formation in the mouse hair follicle. Epidermal stem cells in the follicle upper-bulge, where mechanosensory lanceolate complexes innervate, express a unique set of extracellular matrix (ECM) and neurogenesis-related genes. These epidermal stem cells deposit an ECM protein called EGFL6 into the collar matrix, a novel ECM that tightly ensheathes lanceolate complexes. EGFL6 is required for the proper patterning, touch responses, and αv integrin-enrichment of lanceolate complexes. By maintaining a quiescent original epidermal stem cell niche, the old bulge, epidermal stem cells provide anatomically stable follicle-lanceolate complex interfaces, irrespective of the stage of follicle regeneration cycle. Thus, compartmentalized epidermal stem cells provide a niche linking the hair follicle and the nervous system throughout the hair cycle.


Assuntos
Células Epidérmicas/citologia , Folículo Piloso/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Tato/fisiologia , Animais , Axônios/metabolismo , Proteínas de Ligação ao Cálcio , Adesão Celular , Moléculas de Adesão Celular , Células Epidérmicas/metabolismo , Células Epidérmicas/ultraestrutura , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/metabolismo , Folículo Piloso/inervação , Integrina alfaV/metabolismo , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Neurônios/citologia , Peptídeos/metabolismo , Células de Schwann/metabolismo , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura
3.
Micron ; 106: 59-68, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29353148

RESUMO

We adopted light and electron microscopy to understand the structure of the skin of two species of caecilians, Ichthyophis tricolor and Uraeotyphlus cf. oxyurus, from Western Ghats of Kerala, India. The surface of the skin of these caecilians contains an irregular pattern of microridges. Oval, round and polymorphic glandular openings are randomly distributed all over the skin surface. Most of the openings are funnel shaped. The epithelial cells along the rim of the opening descend into the tunnel of the duct. A few glandular openings protrude slightly above the epithelium of the duct. The skin is formed of epidermis and dermis. Small flat disk-like dermal scales, composed of a basal plate of several layers of unmineralized collagen fibers topped with a discontinuous layer of mineralized globular squamulae, are lodged in pouches in the transverse ridges of the skin. Each pouch contains 1-4 scales, which might differ in size. The scales are almost similar between species, yet the difference can be useful in distinguishing between the two species. Flask cells and Merkel cells are present in the epidermis. Two types of glands, mucous and granular, are present in the dermis. The mucous glands are densely packed with mucous vesicles. Darkly stained mucous producing cells are located around the periphery of the gland. Secretory mucous vesicles differ in their organization and distribution. The granular glands are located perpendicular to the skin surface. The granule producing cells of the gland are located near the periphery. There are differently stained spherical secretory granules of various sizes in the cytoplasm. Thus, the use of different microscopic techniques contributed fascinatingly to the first ever understanding of organization of the skin of two selected caecilian species from Western Ghats, revealing certain features to differ between them.


Assuntos
Anfíbios/anatomia & histologia , Derme/anatomia & histologia , Derme/ultraestrutura , Epiderme/anatomia & histologia , Epiderme/ultraestrutura , Escamas de Animais/anatomia & histologia , Animais , Derme/citologia , Células Epidérmicas/ultraestrutura , Células Epiteliais/ultraestrutura , Índia , Melanócitos/citologia , Células de Merkel/citologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA