Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096955

RESUMO

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Células Estreladas do Fígado , Proteína-Lisina 6-Oxidase , Microambiente Tumoral , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/enzimologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/enzimologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosforilação Oxidativa , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais
2.
Biomed Pharmacother ; 144: 112281, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34624676

RESUMO

Schistosomiasis is a serious parasitic infection caused by Schistosoma. The parasite deposits eggs in the host liver, causing inflammation that activates hepatic stellate cells (HSCs), which leads to liver fibrosis. Currently, there is no effective therapy for liver fibrosis; thus, treatments are urgently needed. Therefore, in the present study, mice infected with Schistosoma japonicum were treated with JQ-1, a small-molecule bromodomain inhibitor with reliable anti-tumor and anti-inflammatory activities. The fibrotic area of the liver measured by computer-assisted morphometric analysis and the expression levels of the cytoskeletal protein alpha smooth muscle actin (α-SMA) and of collagen assessed by quantitative PCR, Western blot and immunohistochemistry were significantly decreased in the liver following JQ-1 treatment compared with vehicle-treated controls. Total RNA was extracted from the liver of JQ-1-treated Schistosoma-infected mice for RNA-sequencing analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that JQ-1 affected biological processes and the expression of cellular components known to play key roles in the transdifferentiation of HSCs to myofibroblasts. In vitro treatment with JQ-1 of JS-1 cells, a mouse HSC line, indicated that JQ-1 significantly inhibited JS-1 proliferation but had no effect on JS-1 activity, senescence, or apoptosis. Western blot results showed that JQ-1 inhibited the expression levels of phosphorylated JAK2 and phosphorylated STAT3 without altering expression levels of these non-phosphorylated proteins. Taken together, these findings suggested that JQ-1 treatment ameliorated S. japonicum egg-induced liver fibrosis, at least in part, by suppressing HSC activation and proliferation through the inhibition of JAK2/STAT3 signaling. These results lay a foundation for the development of novel approaches to treat and control liver fibrosis caused by S. japonicum.


Assuntos
Antifibróticos/farmacologia , Azepinas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Janus Quinase 2/metabolismo , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Schistosoma japonicum/patogenicidade , Esquistossomose/tratamento farmacológico , Triazóis/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/parasitologia , Células Estreladas do Fígado/patologia , Interações Hospedeiro-Patógeno , Fígado/enzimologia , Fígado/parasitologia , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Fosforilação , Esquistossomose/enzimologia , Esquistossomose/parasitologia , Esquistossomose/patologia , Transdução de Sinais
3.
Eur J Pharmacol ; 898: 173982, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33647257

RESUMO

Liver fibrosis is a compensatory response to the tissue repair process. The activation and proliferation of hepatic stellate cells (HSCs) are thought to be related to the occurrence of hepatic fibrosis. Therefore, inhibiting the activation and proliferation of HSCs is a key step in alleviating liver fibrosis. As a non-specific inhibitor of transient receptor potential melastatin 7 (TRPM7), carvacrol has anti-tumor, anti-inflammatory and anti-hepatic fibrosis activities. This study aimed to explore the protective effect of carvacrol on liver fibrosis and related molecular mechanisms. A CCl4-induced liver fibrosis mouse model and platelet-derived growth factor (PDGF-BB)-activated HSC-T6 cells (a rat hepatic stellate cell line) were employed for in vivo and in vitro experiments. C57BL/6J mice were orally administered different concentrations of carvacrol every day for 6 weeks during the development of CCl4-induced liver fibrosis. The results show that carvacrol could effectively reduce liver damage and the progression of liver fibrosis in mice, which are expressed as fibrotic markers levels were reduced and histopathological characteristics were improved. Moreover, carvacrol inhibited the proliferation and activation of HSC-T6 cells induced by PDGF-BB. In addition, it was found that carvacrol inhibits the expression of TRPM7 and mediated through mitogen-activated protein kinases (MAPK). Collectively, our study shows that carvacrol can reduce liver fibrosis by inhibiting the activation and proliferation of hepatic stellate cells, and the MAPK signaling pathway might be involved in this process.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cimenos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Becaplermina/farmacologia , Tetracloreto de Carbono , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Ratos , Transdução de Sinais , Canais de Cátion TRPM/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G543-G556, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406006

RESUMO

Tumor stroma and microenvironment have been shown to affect hepatocellular carcinoma (HCC) growth, with activated hepatic stellate cells (HSC) as a major contributor in this process. Recent evidence suggests that the energy sensor adenosine monophosphate-activated kinase (AMPK) may mediate a series of essential processes during carcinogenesis and HCC progression. Here, we investigated the effect of different HCC cell lines with known TP53 or CTNBB1 mutations on primary human HSC activation, proliferation, and AMPK activation. We show that conditioned media obtained from multiple HCC cell lines differently modulate human hepatic stellate cell (hHSC) proliferation and hHSC AMPK activity in a paracrine manner. Pharmacological treatment of hHSC with AICAR and Compound C inhibited the HCC-induced proliferation/activation of hHSC through AMPK-dependent and AMPK-independent mechanisms, which was further confirmed using mouse embryonic fibroblasts (MEFs) deficient of both catalytic AMPKα isoforms (AMPKα1/α2-/-) and wild type (wt) MEF. Both compounds induced S-phase cell-cycle arrest and, in addition, AICAR inhibited the mTORC1 pathway by inhibiting phosphorylation of 4E-BP1 and S6 in hHSC and wt MEF. Data mining of the Cancer Genome Atlas (TCGA) and the Liver Cancer (LICA-FR) showed that AMPKα1 (PRKAA1) and AMPKα2 (PRKAA2) expression differed depending on the mutation (TP53 or CTNNB1), tumor grading, and G1-G6 classification, reflecting the heterogeneity in human HCC. Overall, we provide evidence that AMPK modulating pharmacological agents negatively modulate HCC-induced hHSC activation and may therefore provide a novel approach to target the mutual, tumor-promoting interactions between hHSC and HCC.NEW & NOTEWORTHY HCC is marked by genetic heterogeneity and activated hepatic stellate cells (HSC) are considered key players during HCC development. The paracrine effect of different HCC cell lines on the activation of primary hHSC was accompanied by differential AMPK activation depending on the HCC line used. Pharmacological treatment inhibited the HCC-induced hHSC activation through AMPK-dependent and AMPK-independent mechanisms. This heterogenic effect on HCC-induced AMPK activation was confirmed by data mining TCGA and LICA-FR databases.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Aminoimidazol Carboxamida/análogos & derivados , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Comunicação Parácrina , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Meios de Cultivo Condicionados , Bases de Dados Genéticas , Ativação Enzimática , Células Hep G2 , Células Estreladas do Fígado/enzimologia , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , Fosforilação , Transdução de Sinais , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , beta Catenina/genética
5.
J Cell Physiol ; 236(6): 4313-4329, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33230845

RESUMO

Hepatic stellate cell (HSC) activation plays an important role in the pathogenesis of liver fibrosis, and epithelial-mesenchymal transition (EMT) is suggested to potentially promote HSC activation. Superoxide dismutase 3 (SOD3) is an extracellular antioxidant defense against oxidative damage. Here, we found downregulation of SOD3 in a mouse model of liver fibrosis induced by carbon tetrachloride (CCl4 ). SOD3 deficiency induced spontaneous liver injury and fibrosis with increased collagen deposition, and further aggravated CCl4 -induced liver injury in mice. Depletion of SOD3 enhanced HSC activation marked by increased α-smooth muscle actin and subsequent collagen synthesis primarily collagen type I in vivo, and promoted transforming growth factor-ß1 (TGF-ß1)-induced HSC activation in vitro. SOD3 deficiency accelerated EMT process in the liver and TGF-ß1-induced EMT of AML12 hepatocytes, as evidenced by loss of E-cadherin and gain of N-cadherin and vimentin. Notably, SOD3 expression and its pro-fibrogenic effect were positively associated with sirtuin 1 (SIRT1) expression. SOD3 deficiency inhibited adenosine monophosphate-activated protein kinase (AMPK) signaling to downregulate SIRT1 expression and thus involving in liver fibrosis. Enforced expression of SIRT1 inhibited SOD3 deficiency-induced HSC activation and EMT, whereas depletion of SIRT1 counteracted the inhibitory effect of SOD3 in vitro. These findings demonstrate that SOD3 deficiency contributes to liver fibrogenesis by promoting HSC activation and EMT process, and suggest a possibility that SOD3 may function through modulating SIRT1 via the AMPK pathway in liver fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Colágeno Tipo I/metabolismo , Transição Epitelial-Mesenquimal , Células Estreladas do Fígado/enzimologia , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Superóxido Dismutase/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Tetracloreto de Carbono , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Estreladas do Fígado/patologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Sirtuína 1/metabolismo , Superóxido Dismutase/genética
6.
Am J Pathol ; 190(11): 2267-2281, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32805235

RESUMO

Liver fibrosis is an increasing health problem worldwide, for which no effective antifibrosis drugs are available. Although the involvement of aerobic glycolysis in hepatic stellate cell (HSC) activation has been reported, the role of pyruvate kinase M2 (PKM2) in liver fibrogenesis still remains unknown. We examined PKM2 expression and location in liver tissues and primary hepatic cells. The in vitro and in vivo effects of a PKM2 antagonist (shikonin) and its allosteric agent (TEPP-46) on liver fibrosis were investigated in HSCs and liver fibrosis mouse model. Chromatin immunoprecipitation sequencing and immunoprecipitation were performed to identify the relevant molecular mechanisms. PKM2 expression was significantly up-regulated in both mouse and human fibrotic livers compared with normal livers, and mainly detected in activated, rather than quiescent, HSCs. PKM2 knockdown markedly inhibited the activation and proliferation of HSCs in vitro. Interestingly, the PKM2 dimer, rather than the tetramer, induced HSC activation. PKM2 tetramerization induced by TEPP-46 effectively inhibited HSC activation, reduced aerobic glycolysis, and decreased MYC and CCND1 expression via regulating histone H3K9 acetylation in activated HSCs. TEPP-46 and shikonin dramatically attenuated liver fibrosis in vivo. Our findings demonstrate a nonmetabolic role of PKM2 in liver fibrosis. PKM2 tetramerization or suppression could prevent HSC activation and protects against liver fibrosis.


Assuntos
Células Estreladas do Fígado/enzimologia , Cirrose Hepática/enzimologia , Multimerização Proteica , Piruvato Quinase/metabolismo , Acetilação , Animais , Ciclina D1/metabolismo , Feminino , Células Estreladas do Fígado/patologia , Histonas/metabolismo , Humanos , Cirrose Hepática/patologia , Masculino , Camundongos , Compostos Orgânicos/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridazinas , Pirróis
7.
Eur J Pharmacol ; 886: 173424, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32738342

RESUMO

The active polyphenol curcumin demonstrates therapeutic effects against various different diseases. Researches revealed the inhibitory roles of curcumin in hepatic stellate cell (HSC) activation and fibrogenesis. HSC activation, a key step in liver fibrogenesis, requires the remodeling of DNA methylation, which is associated with methionine adenosyltransferase II (MATII) composed of catalytic subunit MAT2A and regulatory subunit MAT2B. MATII is essential for HSC activation in vitro. The present researches aimed to investigate the effect of curcumin on MAT2B expression in HSCs in vivo and in vitro. Results demonstrated that curcumin could reduce MAT2B expression in HSCs at multiple levels. The activation of p38 MAPK pathway promoted MAT2B expression in HSCs. The effect of curcumin on MAT2B was through its interruption of p38 MAPK signaling pathway. Knockdown of MAT2B inhibited HSC activation and reduced collagen level in the model of liver fibrosis. Curcumin down-regulation of MAT2B contributed to the inhibitory role of curcumin on HSC activation and collagen expression in mouse livers. This study provided evidences for the effect of curcumin on the expression of MAT2B, an enzyme for the biosynthesis of methyl donor S-adenosylmethionine, in HSCs and demonstrated the function significance of curcumin-induced downregulation of MAT2B in curcumin inhibition of liver fibrosis.


Assuntos
Curcumina/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/enzimologia , Metionina Adenosiltransferase/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Animais , Colágeno/metabolismo , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Masculino , Metionina Adenosiltransferase/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , S-Adenosilmetionina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Cell Mol Med ; 24(13): 7405-7416, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463161

RESUMO

As an outcome of chronic liver disease, liver fibrosis involves the activation of hepatic stellate cells (HSCs) caused by a variety of chronic liver injuries. It is important to explore approaches to inhibit the activation and proliferation of HSCs for the treatment of liver fibrosis. PLK1 is overexpressed in many human tumour cells and has become a popular drug target in tumour therapy. Therefore, further study of the function of PLK1 in the cell cycle is valid. In the present study, we found that PLK1 expression was elevated in primary HSCs isolated from CCl4 -induced liver fibrosis mice and LX-2 cells stimulated with TGF-ß1. Knockdown of PLK1 inhibited α-SMA and Col1α1 expression and reduced the activation of HSCs in CCl4 -induced liver fibrosis mice and LX-2 cells stimulated with TGF-ß1. We further showed that inhibiting the expression of PLK1 reduced the proliferation of HSCs and promoted HSCs apoptosis in vivo and in vitro. Furthermore, we found that the Wnt/ß-catenin signalling pathway may be essential for PLK1-mediated HSCs activation. Together, blocking PLK1 effectively suppressed liver fibrosis by inhibiting HSC activation, which may provide a new treatment strategy for liver fibrosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Via de Sinalização Wnt , Animais , Apoptose , Tetracloreto de Carbono , Linhagem Celular , Proliferação de Células , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Quinase 1 Polo-Like
9.
World J Gastroenterol ; 26(10): 1005-1019, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32205992

RESUMO

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase expressed in most hematopoietic cells and non-hematopoietic cells and play a crucial role in both immune and non-immune biological responses. SYK mediate diverse cellular responses via an immune-receptor tyrosine-based activation motifs (ITAMs)-dependent signalling pathways, ITAMs-independent and ITAMs-semi-dependent signalling pathways. In liver, SYK expression has been observed in parenchymal (hepatocytes) and non-parenchymal cells (hepatic stellate cells and Kupffer cells), and found to be positively correlated with the disease severity. The implication of SYK pathway has been reported in different liver diseases including liver fibrosis, viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis and hepatocellular carcinoma. Antagonism of SYK pathway using kinase inhibitors have shown to attenuate the progression of liver diseases thereby suggesting SYK as a highly promising therapeutic target. This review summarizes the current understanding of SYK and its therapeutic implication in liver diseases.


Assuntos
Hepatopatias/enzimologia , Quinase Syk/metabolismo , Células Estreladas do Fígado/enzimologia , Hepatócitos/enzimologia , Humanos , Células de Kupffer/enzimologia , Fígado/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/fisiologia
10.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092977

RESUMO

AGAP2 (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat and PH domain 2) isoform 2 is a protein that belongs to the Arf GAP (GTPase activating protein) protein family. These proteins act as GTPase switches for Arfs, which are Ras superfamily members, being therefore involved in signaling regulation. Arf GAP proteins have been shown to participate in several cellular functions including membrane trafficking and actin cytoskeleton remodeling. AGAP2 is a multi-tasking Arf GAP that also presents GTPase activity and is involved in several signaling pathways related with apoptosis, cell survival, migration, and receptor trafficking. The increase of AGAP2 levels is associated with pathologies as cancer and fibrosis. Transforming growth factor beta-1 (TGF-ß1) is the most potent pro-fibrotic cytokine identified to date, currently accepted as the principal mediator of the fibrotic response in liver, lung, and kidney. Recent literature has described that the expression of AGAP2 modulates some of the pro-fibrotic effects described for TGF-ß1 in the liver. The present review is focused on the interrelated molecular effects between AGAP2 and TGFß1 expression, presenting AGAP2 as a new player in the signaling of this pro-fibrotic cytokine, thereby contributing to the progression of hepatic fibrosis.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Células Estreladas do Fígado/enzimologia , Humanos , Cirrose Hepática/enzimologia , Cirrose Hepática/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/genética , Fator de Crescimento Transformador beta1/genética
11.
Cell Death Dis ; 11(2): 118, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051399

RESUMO

Recent studies suggest that Src family kinase (SFK) plays important roles in systemic sclerosis and pulmonary fibrosis. However, how SFKs contributed to the pathogenesis of liver fibrosis remains largely unknown. Here, we investigated the role of Fyn, a member of SFK, in hepatic stellate cell (HSC) activation and liver fibrosis, and evaluated the anti-fibrotic effects of Saracatinib, a clinically proven safe Fyn inhibitor. Fyn activation was examined in human normal and fibrotic liver tissues. The roles of Fyn in HSC activation and liver fibrosis were evaluated in HSC cell lines by using Fyn siRNA and in Fyn knockout mice. The effects of Saracatinib on HSC activation and liver fibrosis were determined in primary HSCs and CCl4 induced liver fibrosis model. We showed that the Fyn was activated in the liver of human fibrosis patients. TGF-ß induced the activation of Fyn in HSC cell lines. Knockdown of Fyn significantly blocked HSC activation, proliferation, and migration. Fyn deficient mice were resistant to CCl4 induced liver fibrosis. Saracatinib treatment abolished the activation of Fyn, downregulated the Fyn/FAK/N-WASP signaling in HSCs, and subsequently prevented the activation of HSCs. Saracatinib treatment significantly reduced the severity liver fibrosis induced by CCl4 in mice. In conclusions, our findings supported the critical role of Fyn in HSC activation and development of liver fibrosis. Fyn could serve as a promising drug target for liver fibrosis treatment. Fyn inhibitor Saracatinib significantly inhibited HSC activation and attenuated liver fibrosis in mouse model.


Assuntos
Benzodioxóis/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Tetracloreto de Carbono , Estudos de Casos e Controles , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Humanos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Transdução de Sinais
12.
Cell Death Dis ; 10(4): 318, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962418

RESUMO

Senescent cells accumulate in several tissues during ageing and contribute to several pathological processes such as ageing and cancer. Senescence induction is a complex process not well defined yet and is characterized by a series of molecular changes acquired after an initial growth arrest. We found that fatty acid synthase (FASN) levels increase during the induction of senescence in mouse hepatic stellate cells and human primary fibroblasts. Importantly, we also observed a significant increase in FASN levels during ageing in mouse liver tissues. To probe the central role of FASN in senescence induction, we used a small-molecule inhibitor of FASN activity, C75. We found that C75 treatment prevented the induction of senescence in mouse and human senescent cells. Importantly, C75 also reduced the expression of the signature SASP factors interleukin 1α (IL-1α), IL-1ß and IL-6, and suppressed the secretion of small extracellular vesicles. These findings were confirmed using a shRNA targeting FASN. In addition, we find that FASN inhibition induces metabolic changes in senescent cells. Our work underscores the importance of C75 as a pharmacological inhibitor for reducing the impact of senescent cell accumulation.


Assuntos
Senescência Celular , Ácido Graxo Sintase Tipo I/metabolismo , Fibroblastos/metabolismo , Células Estreladas do Fígado/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Senescência Celular/genética , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Feminino , Fibroblastos/enzimologia , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/fisiologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Toxicol Appl Pharmacol ; 371: 63-73, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30953615

RESUMO

Gambogic acid (GA), a major ingredient of Garcinia hanburryi, is known to have diverse biological effects. The present study was designed to evaluate the anti-fibrotic effects of GA on hepatic fibrosis and reveal its underlying mechanism. We investigated the anti-fibrotic effect of GA on dimethylnitrosamine and bile duct ligation induced liver fibrosis in rats in vivo. The rat and human hepatic stellate cell lines (HSCs) lines were chose to evaluate the effect of GA in vitro. Our results indicated that GA could significantly ameliorate liver fibrosis associated with improving serum markers, decrease in extracellular matrix accumulation and HSCs activation in vivo. GA significantly inhibited the proliferation of HSC cells and induced the cell cycle arrest at the G1 phase. Moreover, GA triggered autophagy at early time point and subsequent initiates mitochondrial mediated apoptotic pathway resulting in HSC cell death. The mechanism of GA was related to inhibit heat shock protein 90 (HSP90) and degradation of the client proteins inducing PI3K/AKT and MAPK signaling pathways inhibition. This study demonstrated that GA effectively ameliorated liver fibrosis in vitro and in vivo, which provided new insights into the application of GA for liver fibrosis.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Xantonas/farmacologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ducto Colédoco/cirurgia , Dimetilnitrosamina , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/ultraestrutura , Humanos , Ligadura , Fígado/enzimologia , Fígado/ultraestrutura , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Ratos Sprague-Dawley , Transdução de Sinais
14.
J Cell Mol Med ; 23(6): 3824-3832, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30945448

RESUMO

MicroRNAs (miRNAs) have been confirmed to participate in liver fibrosis progression and activation of hepatic stellate cells (HSCs). In this study, the role of miR-193a/b-3p in concanavalin A (ConA)-induced liver fibrosis in mice was evaluated. According to the results, the expression of miR-193a/b-3p was down-regulated in liver tissues after exposure to ConA. Lentivirus-mediated overexpression of miR-193a/b-3p reduced ConA-induced liver injury as demonstrated by decreasing ALT and AST levels. Moreover, ConA-induced liver fibrosis was restrained by the up-regulation of miR-193a/b-3 through inhibiting collagen deposition, decreasing desmin and proliferating cell nuclear antigen (PCNA) expression and lessening the content of hydroxyproline, transforming growth factor-ß1 (TGF-ß1) and activin A in liver tissues. Furthermore, miR-193a/b-3p mimics suppressed the proliferation of human HSCs LX-2 via inducing the apoptosis of LX-2 cells and lowering the levels of cell cycle-related proteins Cyclin D1, Cyclin E1, p-Rb and CAPRIN1. Finally, TGF-ß1 and activin A-mediated activation of LX-2 cells was reversed by miR-193a/b-3p mimics via repressing COL1A1 and α-SMA expression, and restraining the activation of TGF-ß/Smad2/3 signalling pathway. CAPRIN1 and TGF-ß2 were demonstrated to be the direct target genes of miR-193a/b-3p. We conclude that miR-193a/b-3p overexpression attenuates liver fibrosis through suppressing the proliferation and activation of HSCs. Our data suggest that miR-193a-3p and miR-193b-3p may be new therapeutic targets for liver fibrosis.


Assuntos
Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , MicroRNAs/metabolismo , Alanina Transaminase/sangue , Animais , Apoptose , Aspartato Aminotransferases/sangue , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Concanavalina A , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/enzimologia , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Regulação para Cima
15.
Cell Commun Signal ; 17(1): 11, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744642

RESUMO

BACKGROUND: Contraction of hepatic stellate cells (HSCs) plays an important role in the pathogenesis of liver fibrosis by regulating sinusoidal blood flow and extracellular matrix remodeling. Here, we investigated how HSC contraction was affected by the natural compound oroxylin A, and elucidated the underlying mechanism. METHODS: Cell contraction and glycolysis were examined in cultured human HSCs and mouse liver fibrosis model upon oroxylin A intervention using diversified cellular and molecular assays, as well as genetic approaches. RESULTS: Oroxylin A limited HSC contraction associated with inhibiting myosin light chain 2 phosphorylation. Oroxylin A blocked aerobic glycolysis in HSCs evidenced by reduction in glucose uptake and consumption and lactate production. Oroxylin A also decreased extracellular acidification rate and inhibited the expression and activity of glycolysis rate-limiting enzymes (hexose kinase 2, phosphofructokinase 1 and pyruvate kinas type M2) in HSCs. Then, we identified that oroxylin A blockade of aerobic glycolysis contributed to inhibition of HSC contraction. Furthermore, oroxylin A inhibited the expression and activity of lactate dehydrogenase-A (LDH-A) in HSCs, which was required for oroxylin A blockade of glycolysis and suppression of contraction. Oral administration of oroxylin A at 40 mg/kg reduced liver injury and fibrosis, and inhibited HSC glycolysis and contraction in mice with carbon tetrachloride-induced hepatic fibrosis. However, adenovirus-mediated overexpression of LDH-A significantly counteracted the oroxylin A's effects in fibrotic mice. CONCLUSIONS: Blockade of aerobic glycolysis by oroxylin A via inhibition of LDH-A reduced HSC contraction and attenuated liver fibrosis, suggesting LDH-A as a promising target for intervention of hepatic fibrosis.


Assuntos
Flavonoides/farmacologia , Glicólise/efeitos dos fármacos , Células Estreladas do Fígado/enzimologia , L-Lactato Desidrogenase/antagonistas & inibidores , Aerobiose , Linhagem Celular , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Fígado/lesões , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia
16.
PLoS One ; 14(2): e0212589, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794626

RESUMO

Hepatic stellate cells (HSCs) were reported to promote the progression of hepatocellular carcinoma (HCC), however its mechanism is uncertain. We previously reported that protein kinase R (PKR) in hepatocytes regulated HCC proliferation. In this study, we focused on the role of PKR in HSCs, and clarified the mechanism of its association with HCC progression. We confirmed the activation of PKR in a human HSC cell line (LX-2 cell). IL-1ß is produced from HSCs stimulated by lipopolysaccharide (LPS) or palmitic acid which are likely activators of PKR in non-alcoholic steatohepatitis (NASH). Production was assessed by real-time PCR and ELISA. C16 and small interfering RNA (siRNA) were used to inhibit PKR in HSCs. The HCC cell line (HepG2 cell) was cultured with HSC conditioning medium to assess HCC progression, which was evaluated by proliferation and scratch assays. Expression of PKR was increased and activated in stimulated HSCs, and IL-1ß production was also increased molecular. Key molecules of the mitogen-activated protein kinase pathway were also upregulated and activated by LPS. Otherwise, PKR inhibition by C16 and PKR siRNA decreased IL-1ß production. HCC progression was promoted by HSC-stimulated conditioning medium although it was reduced by the conditioning medium from PKR-inhibited HSCs. Moreover, palmitic acid also upregulated IL-1ß expression in HSCs, and conditioning medium from palmitic acid-stimulated HSCs promoted HCC proliferation. Stimulated HSCs by activators of PKR in NASH could play a role in promoting HCC progression through the production of IL-1ß, via a mechanism that seems to be dependent on PKR activation.


Assuntos
Carcinoma Hepatocelular/enzimologia , Proliferação de Células , Células Estreladas do Fígado/enzimologia , Neoplasias Hepáticas/enzimologia , Proteínas de Neoplasias/metabolismo , eIF-2 Quinase/metabolismo , Carcinoma Hepatocelular/patologia , Ativação Enzimática , Células Hep G2 , Células Estreladas do Fígado/patologia , Humanos , Interleucina-1beta/metabolismo , Neoplasias Hepáticas/patologia
17.
Hepatology ; 68(3): 1140-1153, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663481

RESUMO

Liver fibrosis and cirrhosis are characterized by activation of hepatic stellate cells (HSCs), which is associated with higher intracellular pH (pHi). The vacuolar H+ adenosine-triphosphatase (v-ATPase) multisubunit complex is a key regulator of pHi homeostasis. The present work investigated the functional role of v-ATPase in primary human HSC (hHSC) activation and its modulation by specific adenosine monophosphate-activated protein kinase (AMPK) subunits. We demonstrate that the expression of different v-ATPase subunits was increased in in vivo and in vitro activated hHSCs compared to nonactivated hHSCs. Specific inhibition of v-ATPase with bafilomycin and KM91104 induced a down-regulation of the HSC fibrogenic gene profile, which coincided with increased lysosomal pH, decreased pHi, activation of AMPK, reduced proliferation, and lower metabolic activity. Similarly, pharmacological activation of AMPK by treatment with diflunisal, A769662, and ZLN024 reduced the expression of v-ATPase subunits and profibrogenic markers. v-ATPase expression was differently regulated by the AMPK α1 subunit (AMPKα1) and AMPKα2, as demonstrated in mouse embryo fibroblasts specifically deficient for AMPK α subunits. In addition, activation of v-ATPase in hHSCs was shown to be AMPKα1-dependent. Accordingly, pharmacological activation of AMPK in AMPKα1-depleted hHSCs prevented v-ATPase down-regulation. Finally, we showed that v-ATPase expression was increased in fibrotic livers from bile duct-ligated mice and in human cirrhotic livers. CONCLUSION: The down-regulation of v-ATPase might represent a promising target for the development of antifibrotic strategies. (Hepatology 2018).


Assuntos
Células Estreladas do Fígado/enzimologia , Cirrose Hepática/etiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos BALB C
18.
Hum Pathol ; 76: 37-46, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514109

RESUMO

Propranolol is known to reduce portal pressure by decreasing blood flow to the splanchnic circulation and the liver. However, it is unknown if propranolol improves fibrogenesis and sinusoidal remodeling in the cirrhotic liver. The aim of this study was to investigate the therapeutic effects of propranolol on carbon tetrachloride (CCl4)-induced liver fibrosis in a mouse model and the intrinsic mechanisms underlying those effects. In this study, a hepatic cirrhosis mouse model was induced by CCl4 administration for 6 weeks. Propranolol was simultaneously administered orally in the experimental group. Liver tissue and blood samples were collected for histological and molecular analyses. LX-2 cells induced by platelet-derived growth factor-BB (PDGF-BB) were used to evaluate the anti-fibrogenic effect of propranolol in vitro. The results showed that treatment of mice with CCl4 induced hepatic fibrosis, as evidenced by inflammatory cell infiltration, collagen deposition and abnormal vascular formation in the liver tissue. All these changes were significantly attenuated by propranolol treatment. Furthermore, we also found that propranolol inhibited PDGF-BB-induced hepatic stellate cell migration, fibrogenesis, and PDGFR/Akt phosphorylation. Taken together, propranolol might prevent CCl4-induced liver injury and fibrosis at least partially through inhibiting the PDGF-BB-induced PDGFR/Akt pathway. The anti-fibrogenic effect of propranolol may support its status as a first-line treatment in patients with chronic liver disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Propranolol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina/metabolismo , Tetracloreto de Carbono , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Humanos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais/efeitos dos fármacos
19.
Hepatology ; 68(3): 1070-1086, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29572892

RESUMO

Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) and Kupffer cells (KCs) leads to liver fibrosis. Here, we aimed to investigate the molecular mechanism and define the cell type involved in mediating the sphingosine kinase (SphK)1-dependent effect on liver fibrosis. The levels of expression and activity of SphK1 were significantly increased in fibrotic livers compared with the normal livers in human. SphK1 was coexpressed with a range of HSC/KC markers including desmin, α-smooth muscle actin (α-SMA) and F4/80 in fibrotic liver. Deficiency of SphK1 (SphK1-/- ) resulted in a marked amelioration of hepatic injury, including transaminase activities, histology, collagen deposition, α-SMA and inflammation, in CCl4 or bile duct ligation (BDL)-induced mice. Likewise, treatment with a specific inhibitor of SphK1, 5C, also significantly prevented liver injury and fibrosis in mice induced by CCl4 or BDL. In cellular levels, inhibition of SphK1 significantly blocked the activation and migration of HSCs and KCs. Moreover, SphK1 knockout in KCs reduced the secretion of CCL2, and SphK1 knockout in HSCs reduced C-C motif chemokine receptor 2 ([CCR2] CCL2 receptor) expression in HSCs. CCL2 in SphK1-/- mice was lower whereas microRNA-19b-3p in SphK1-/- mice was higher compared with wild-type (WT) mice. Furthermore, microRNA-19b-3p downregulated CCR2 in HSCs. The functional effect of SphK1 in HSCs on liver fibrosis was further strengthened by the results of animal experiments using a bone marrow transplantation (BMT) method. CONCLUSION: SphK1 has distinct roles in the activation of KCs and HSCs in liver fibrosis. Mechanistically, SphK1 in KCs mediates CCL2 secretion, and SphK1 in HSCs upregulates CCR2 by downregulation of miR-19b-3p. (Hepatology 2018).


Assuntos
Cirrose Hepática/etiologia , MicroRNAs/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores CCR2/metabolismo , Animais , Transplante de Medula Óssea , Quimiocina CCL2/metabolismo , Células Estreladas do Fígado/enzimologia , Humanos , Células de Kupffer/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Nat Commun ; 9(1): 1249, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593264

RESUMO

Accumulating evidence indicates that the senescence-associated secretory phenotype (SASP) contributes to many aspects of physiology and disease. Thus, controlling the SASP will have tremendous impacts on our health. However, our understanding of SASP regulation is far from complete. Here, we show that cytoplasmic accumulation of nuclear DNA plays key roles in the onset of SASP. Although both DNase2 and TREX1 rapidly remove the cytoplasmic DNA fragments emanating from the nucleus in pre-senescent cells, the expression of these DNases is downregulated in senescent cells, resulting in the cytoplasmic accumulation of nuclear DNA. This causes the aberrant activation of cGAS-STING cytoplasmic DNA sensors, provoking SASP through induction of interferon-ß. Notably, the blockage of this pathway prevents SASP in senescent hepatic stellate cells, accompanied by a decline of obesity-associated hepatocellular carcinoma development in mice. These findings provide valuable new insights into the roles and mechanisms of SASP and possibilities for their control.


Assuntos
Senescência Celular , Citoplasma/enzimologia , Desoxirribonucleases/metabolismo , Regulação para Baixo , Animais , Carcinoma Hepatocelular/enzimologia , Linhagem Celular , Dano ao DNA , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/metabolismo , Células Estreladas do Fígado/enzimologia , Humanos , Interferon beta/metabolismo , Fígado/enzimologia , Neoplasias Hepáticas/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA