Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
Nature ; 620(7974): 615-624, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558872

RESUMO

The concomitant occurrence of tissue growth and organization is a hallmark of organismal development1-3. This often means that proliferating and differentiating cells are found at the same time in a continuously changing tissue environment. How cells adapt to architectural changes to prevent spatial interference remains unclear. Here, to understand how cell movements that are key for growth and organization are orchestrated, we study the emergence of photoreceptor neurons that occur during the peak of retinal growth, using zebrafish, human tissue and human organoids. Quantitative imaging reveals that successful retinal morphogenesis depends on the active bidirectional translocation of photoreceptors, leading to a transient transfer of the entire cell population away from the apical proliferative zone. This pattern of migration is driven by cytoskeletal machineries that differ depending on the direction: microtubules are exclusively required for basal translocation, whereas actomyosin is involved in apical movement. Blocking the basal translocation of photoreceptors induces apical congestion, which hampers the apical divisions of progenitor cells and leads to secondary defects in lamination. Thus, photoreceptor migration is crucial to prevent competition for space, and to allow concurrent tissue growth and lamination. This shows that neuronal migration, in addition to its canonical role in cell positioning4, can be involved in coordinating morphogenesis.


Assuntos
Movimento Celular , Morfogênese , Células Fotorreceptoras , Retina , Animais , Humanos , Actomiosina/metabolismo , Competição entre as Células , Diferenciação Celular , Movimento Celular/fisiologia , Proliferação de Células , Microtúbulos/metabolismo , Morfogênese/fisiologia , Organoides/citologia , Organoides/embriologia , Células Fotorreceptoras/citologia , Células Fotorreceptoras/fisiologia , Retina/citologia , Retina/embriologia , Peixe-Zebra/embriologia
2.
Nat Med ; 27(7): 1223-1229, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031601

RESUMO

Optogenetics may enable mutation-independent, circuit-specific restoration of neuronal function in neurological diseases. Retinitis pigmentosa is a neurodegenerative eye disease where loss of photoreceptors can lead to complete blindness. In a blind patient, we combined intraocular injection of an adeno-associated viral vector encoding ChrimsonR with light stimulation via engineered goggles. The goggles detect local changes in light intensity and project corresponding light pulses onto the retina in real time to activate optogenetically transduced retinal ganglion cells. The patient perceived, located, counted and touched different objects using the vector-treated eye alone while wearing the goggles. During visual perception, multichannel electroencephalographic recordings revealed object-related activity above the visual cortex. The patient could not visually detect any objects before injection with or without the goggles or after injection without the goggles. This is the first reported case of partial functional recovery in a neurodegenerative disease after optogenetic therapy.


Assuntos
Cegueira/fisiopatologia , Cegueira/terapia , Terapia Genética/métodos , Optogenética/métodos , Retinose Pigmentar/patologia , Ondas Encefálicas/fisiologia , Dependovirus/genética , Dispositivos de Proteção dos Olhos , Vetores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Células Fotorreceptoras/fisiologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
3.
Stem Cell Reports ; 16(2): 237-251, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33450191

RESUMO

Recent trials of retinal pigment epithelium (RPE) transplantation for the treatment of disorders such as age-related macular degeneration have been promising. However, limitations of existing strategies include the uncertain survival of RPE cells delivered by cell suspension and the inherent risk of uncontrolled cell proliferation in the vitreous cavity. Human RPE stem cell-derived RPE (hRPESC-RPE) transplantation can rescue vision in a rat model of retinal dystrophy and survive in the rabbit retina for at least 1 month. The present study placed hRPESC-RPE monolayers under the macula of a non-human primate model for 3 months. The transplant was able to recover in vivo and maintained healthy photoreceptors. Importantly, there was no evidence that subretinally transplanted monolayers underwent an epithelial-mesenchymal transition. Neither gliosis in adjacent retina nor epiretinal membranes were observed. These findings suggest that hRPESC-RPE monolayers are safe and may be a useful source for RPE cell replacement therapy.


Assuntos
Xenoenxertos/transplante , Degeneração Macular/terapia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco/métodos , Idoso , Idoso de 80 Anos ou mais , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Feminino , Xenoenxertos/patologia , Humanos , Terapia de Imunossupressão , Macaca fascicularis , Masculino , Células Fotorreceptoras/fisiologia , Primatas , Retina/patologia , Retina/transplante , Epitélio Pigmentado da Retina/patologia
4.
Exp Eye Res ; 202: 108283, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010290

RESUMO

Neuroretinal diseases are the predominant cause of irreversible blindness worldwide, mainly due to photoreceptor loss. Currently, there are no radical treatments to fully reverse the degeneration or even stop the disease progression. Thus, it is urgent to develop new biological therapeutics for these diseases on the clinical side. Stem cell-based treatments have become a promising therapeutic for neuroretinal diseases through the replacement of damaged cells with photoreceptors and some allied cells. To date, considerable efforts have been made to regenerate the diseased retina based on stem cell technology. In this review, we overview the current status of stem cell-based treatments for photoreceptor regeneration, including the major cell sources derived from different stem cells in pre-clinical or clinical trial stages. Additionally, we discuss herein the major challenges ahead for and potential new strategy toward photoreceptor regeneration.


Assuntos
Células Fotorreceptoras/fisiologia , Regeneração/fisiologia , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Pessoas com Deficiência Visual/reabilitação , Animais , Humanos , Retina/fisiologia , Degeneração Retiniana/fisiopatologia
5.
Med Sci (Paris) ; 36(6-7): 600-606, 2020.
Artigo em Francês | MEDLINE | ID: mdl-32614311

RESUMO

In inherited retinal diseases such retinitis pigmentosa, characterized by progressive loss of light sensitive neurons (photoreceptors), cell therapy is now considered as an attractive strategy. Photoreceptor cell replacement would be valuable for restoring function to retinas in a way that is independent from the cause of the disease. With advances in stem cell biology, considerable strides have been made towards the generation of retinal cells, in particular with the development of 3D culture systems allowing the generation of retinal organoids from pluripotent stem cells. In this review, we present a state-of-the art of preclinical strategies conducted in animal models for photoreceptor replacement from stem cell-derived photoreceptors and we discuss the important obstacles to overcome in the future.


TITLE: Nouvelle approche thérapeutique pour les rétinites pigmentaires - La transplantation de photorécepteurs dérivés de cellules souches. ABSTRACT: Dans les maladies dégénératives de la rétine affectant les photorécepteurs, la transplantation de cellules permettant la restauration de la vision est aujourd'hui envisagée. La dernière décennie a vu des progrès remarquables dans la génération de cellules de rétine à partir de cellules souches pluripotentes humaines avec, en particulier, le développement de systèmes de culture en trois dimensions (3D) permettant la génération d'organoïdes de rétine. Dans cette revue, nous faisons un état des lieux sur les stratégies précliniques menées dans des modèles animaux pour le remplacement des photorécepteurs par des photorécepteurs dérivés de cellules souches et présentons les obstacles importants qui restent à être surmontés.


Assuntos
Células Fotorreceptoras/transplante , Retinose Pigmentar/terapia , Terapias em Estudo/métodos , Terapias em Estudo/tendências , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Organoides/citologia , Organoides/fisiologia , Células Fotorreceptoras/citologia , Células Fotorreceptoras/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Retina/citologia , Retina/embriologia , Retina/transplante , Degeneração Retiniana/terapia , Retinose Pigmentar/patologia , Índice de Gravidade de Doença , Técnicas de Cultura de Tecidos , Coleta de Tecidos e Órgãos/métodos , Coleta de Tecidos e Órgãos/normas , Coleta de Tecidos e Órgãos/tendências
6.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254022

RESUMO

We report the in vivo regulation of Inosine-5´-monophosphate dehydrogenase 1 (IMPDH1) in the retina. IMPDH1 catalyzes the rate-limiting step in the de novo synthesis of guanine nucleotides, impacting the cellular pools of GMP, GDP and GTP. Guanine nucleotide homeostasis is central to photoreceptor cells, where cGMP is the signal transducing molecule in the light response. Mutations in IMPDH1 lead to inherited blindness. We unveil a light-dependent phosphorylation of retinal IMPDH1 at Thr159/Ser160 in the Bateman domain that desensitizes the enzyme to allosteric inhibition by GDP/GTP. When exposed to bright light, living mice increase the rate of GTP and ATP synthesis in their retinas; concomitant with IMPDH1 aggregate formation at the outer segment layer. Inhibiting IMPDH activity in living mice delays rod mass recovery. We unveil a novel mechanism of regulation of IMPDH1 in vivo, important for understanding GTP homeostasis in the retina and the pathogenesis of adRP10 IMPDH1 mutations.


Assuntos
Guanosina Trifosfato/biossíntese , IMP Desidrogenase/genética , Luz , Processamento de Proteína Pós-Traducional , Retina/metabolismo , Retina/efeitos da radiação , Trifosfato de Adenosina/biossíntese , Animais , Fenômenos Bioquímicos , Regulação da Expressão Gênica , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosforilação , Estimulação Luminosa , Células Fotorreceptoras/fisiologia
7.
Hum Exp Toxicol ; 39(5): 712-720, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31928234

RESUMO

As an extremely addictive psychostimulant drug and an illicit dopaminergic neurotoxin, methamphetamine (METH) conducts to enhance satisfaction, feelings of alertness through influencing monoamine neurotransmitter systems. Long-lasting exposure to METH causes psychosis and increases the risk of neurodegeneration. 6-Formyl-5-isopropyl-3-hydroxymethyl-7-methyl-1H-indene (FIHMI) is a novel compound with potent antioxidant properties. This study was to investigate whether FIHMI could mitigate METH-induced photoreceptor cell toxicity. METH-caused cell toxicity was established in 661W cells and protective effects of FIHMI at different concentrations (1-10 µM) was examined. FIHMI significantly attenuated the METH-caused cell damage in 661W cells, evidenced by increasing cell viability and mitochondrial membrane potential, decreasing cytochrome c release and DNA fragmentation, inhibiting activities of caspase 3/9, and changing expression of apoptosis-related protein. Furthermore, FIHMI treatment decreased mRNA expression of Beclin-1 and LC3B protein expression in METH-induced 661W cells suggesting autophagy is reduced. FIHMI decreased the oxidative stress through increasing protein expression of nuclear factor (erythroid-derived 2)-like 2. These data demonstrated FIHMI could inhibit oxidative stress, which may also play an essential role in the regulation of METH-triggered apoptotic response, providing the scientific rational to develop FIHMI as the therapeutic agent to alleviate METH-induced photoreceptor cell toxicity.


Assuntos
Antioxidantes/farmacologia , Indenos/farmacologia , Metanfetamina/toxicidade , Células Fotorreceptoras/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células Fotorreceptoras/fisiologia
8.
J Photochem Photobiol B ; 203: 111727, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31862637

RESUMO

Blindness and vision impairment are caused by irremediable retinal degeneration in affected individuals worldwide. Cell therapy for a retinal replacement can potentially rescue their vision, specifically for those who lost the light sensing photoreceptors in the eye. As such, well-characterized retinal cells are required for the replacement purposes. Stem cell-based therapy in photoreceptor and retinal pigment epithelium transplantation is well received, however, the drawbacks of retinal transplantation is the limited clinical protocols development, insufficient number of transplanted cells for recovery, the selection of potential stem cell sources that can be differentiated into the target cells, and the ability of cells to migrate to the host tissue. Dental pulp stem cells (DPSC) belong to a subset of mesenchymal stem cells, and are recently being studied due to its high capability of differentiating into cells of the neuronal lineage. In this review, we look into the potential uses of DPSC in treating retinal degeneration, and also the current data supporting its application.


Assuntos
Polpa Dentária/citologia , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Humanos , Células Fotorreceptoras/fisiologia , Retina/fisiologia , Células-Tronco/citologia
9.
Elife ; 82019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31635694

RESUMO

Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane.


Assuntos
Peptídeos/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Platelmintos/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Encéfalo , Membrana Celular/metabolismo , Evolução Molecular , Olho/citologia , Olho/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP , Humanos , Larva , Transdução de Sinal Luminoso/fisiologia , Opsinas/classificação , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras/citologia , Células Fotorreceptoras/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Filogenia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Alinhamento de Sequência , Análise de Sequência de Proteína
10.
Dev Biol ; 454(2): 181-189, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31207209

RESUMO

Sevenless (Sev) is a Receptor Tyrosine Kinase (RTK) that is required for the specification of the Drosophila R7 photoreceptor. Other Drosophila photoreceptors are specified by the action of another RTK; the Drosophila EGF Receptor (DER). Why Sev is required specifically in the R7 precursor, and the exact role it plays in the cell's fate assignment have long remained unclear. Notch (N) signaling plays many roles in R7 specification, one of which is to prevent DER activity from establishing the photoreceptor fate. Our current model of Sev function is that it hyperactivates the RTK pathway in the R7 precursor to overcome the N-imposed block on photoreceptor specification. From this perspective DER and Sev are viewed as engaging the same transduction machinery, the only difference between them being the level of pathway activation that they induce. To test this model, we generated a Sev/DER chimera in which the intracellular domain of Sev is replaced with that of DER. This chimerical receptor acts indistinguishably from Sev itself; a result that is entirely consistent with the two RTKs sharing identical transduction abilities. A long-standing question in regard to Sev is the function of a hydrophobic domain some 60 amino acids from the initiating Methionine. If this represents a transmembrane domain, it would endow Sev with N-terminal intracellular sequences through which it could engage internal transduction pathways. However, we find that this domain acts as an internal signal peptide, and that there is no Sev N-terminal intracellular domain. phyllopod (phyl) is the target gene of the RTK pathway, and we show that R7 precursors are selectively lost when phyl gene function is mildly compromised, and that other photoreceptors are removed when the gene function is further reduced. This result adds a key piece of evidence for the hyperactivation of the RTK pathway in the R7 precursor. To facilitate the hyperactivation of the RTK pathway, Sev is expressed at high levels. However, when we express DER at the levels at which Sev is expressed, strong gain-of-function effects result, consistent with ligand-independent activation of the receptor. This highlights another key feature of Sev; that it is expressed at high levels yet remains strictly ligand dependent. Finally, we find that activated Sev can rescue R3/4 photoreceptors when their DER function is abrogated. These results are collectively consistent with Sev and DER activating the same transduction machinery, with Sev generating a pathway hyperactivation to overcome the N-imposed block to photoreceptor specification in R7 precursors.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Olho/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Fosforilação , Células Fotorreceptoras/fisiologia , Células Fotorreceptoras de Invertebrados/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Receptores Notch/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia
11.
ACS Synth Biol ; 8(7): 1679-1684, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31185174

RESUMO

Subcellular localization of signal molecules is a hallmark in organizing the signaling network. OpEn-Tag is a modular optogenetic endomembrane targeting toolbox that allows alteration of the localization and therefore the activity of signaling processes with the spatiotemporal resolution of optogenetics. OpEn-Tag is a two-component system employing (1) a variety of targeting peptides fused to and thereby dictating the localization of mCherry-labeled cryptochrome 2 binding protein CIBN toward distinct endomembranes and (2) the cytosolic, fluorescence-labeled blue light photoreceptor cryptochrome 2 as a customizable building block that can be fused to proteins of interest. The combination of OpEn-Tag with growth factor stimulation or the use of two membrane anchor sequences allows investigation of multilayered signal transduction processes as demonstrated here for the protein kinase AKT.


Assuntos
Proteínas de Transporte/metabolismo , Criptocromos/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Luz , Optogenética/métodos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Elife ; 72018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30015618

RESUMO

In response to environmental, developmental, and pathological stressors, cells engage homeostatic pathways to maintain their function. Among these pathways, the Unfolded Protein Response protects cells from the accumulation of misfolded proteins in the ER. Depending on ER stress levels, the ER-resident Fic protein catalyzes AMPylation or de-AMPylation of BiP, the major ER chaperone and regulator of the Unfolded Protein Response. This work elucidates the importance of the reversible AMPylation of BiP in maintaining the Drosophila visual system in response to stress. After 72 hr of constant light, photoreceptors of fic-null and AMPylation-resistant BiPT366A mutants, but not wild-type flies, display loss of synaptic function, disintegration of rhabdomeres, and excessive activation of ER stress reporters. Strikingly, this phenotype is reversible: photoreceptors regain their structure and function within 72 hr once returned to a standard light:dark cycle. These findings show that Fic-mediated AMPylation of BiP is required for neurons to adapt to transient stress demands.


Assuntos
Adaptação Fisiológica , Monofosfato de Adenosina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Luz , Nucleotidiltransferases/metabolismo , Células Fotorreceptoras/fisiologia , Processamento de Proteína Pós-Traducional , Animais , Drosophila , Células Fotorreceptoras/efeitos da radiação
14.
J Nippon Med Sch ; 85(2): 110-116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731494

RESUMO

BACKGROUND: Photoreceptors differentiated from somatic cells are a useful tool for transplantation and drug screening. We previously showed that photosensitive cells are differentiated from human fibroblasts by direct reprogramming. In induced pluripotent stem (iPS) cells or embryonic stem (ES) cells, the properties of differentiated cells differ among the source of cell lines. However, whether or not the properties of the photosensitive cells produced by direct reprogramming are controlled by the origin of the cell line remains unknown. METHODS: We compared the morphological and physiological properties of photosensitive cells induced by two fibroblast cell lines. RESULTS: The differentiated cells had larger somas and more primary processes than the non-infected cells in both cell lines. The degree of morphological change was statistically different between the two cell lines. In addition, physiological responses to light differed between the two cell lines. An outward current (photoreceptor-like response) was observed in both cell lines, while an inward current (intrinsically photosensitive retinal ganglion cell-like response) was observed only in one cell line under light stimulation. CONCLUSIONS: These results suggest that photosensitive cells produced from different cell lines by direct reprogramming might express different phenotypes.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Fenótipo , Células Fotorreceptoras , Linhagem Celular , Técnicas de Reprogramação Celular/métodos , Derme , Humanos , Células Fotorreceptoras/citologia , Células Fotorreceptoras/fisiologia
15.
Sci Rep ; 8(1): 2272, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396515

RESUMO

Age-related macular degeneration (AMD) is characterized by pathological changes in the retinal pigment epithelium (RPE) and loss of photoreceptors. Growing evidence has demonstrated that reactive microglial cells trigger RPE dysfunction and loss of photoreceptors, and inflammasome pathways and complement activation contribute to AMD pathogenesis. We and others have previously shown that adenosine A2A receptor (A2AR) blockade prevents microglia-mediated neuroinflammatory processes and mediates protection to the retina. However, it is still unknown whether blocking A2AR in microglia protects against the pathological features of AMD. Herein, we show that an A2AR antagonist, SCH58261, prevents the upregulation of the expression of pro-inflammatory mediators and the alterations in the complement system triggered by an inflammatory challenge in human microglial cells. Furthermore, blockade of A2AR in microglia decreases the inflammatory response, as well as complement and inflammasome activation, in ARPE-19 cells exposed to conditioned medium of activated microglia. Finally, we also show that blocking A2AR in human microglia increases the clearance of apoptotic photoreceptors. This study opens the possibility of using selective A2AR antagonists in therapy for AMD, by modulating the interplay between microglia, RPE and photoreceptors.


Assuntos
Antagonistas do Receptor A2 de Adenosina/metabolismo , Células Epiteliais/fisiologia , Degeneração Macular/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Células Fotorreceptoras/fisiologia , Pirimidinas/metabolismo , Triazóis/metabolismo , Células Cultivadas , Proteínas do Sistema Complemento/metabolismo , Meios de Cultivo Condicionados , Citocinas/metabolismo , Humanos , Modelos Biológicos
16.
Optom Vis Sci ; 94(10): 939-945, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28858048

RESUMO

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss in those older than 80 years. Understanding the mechanisms that cause this condition or its progression is critical for developing novel treatments. Here we summarize our studies evaluating the role of purine, adenosine triphosphate (ATP), in early AMD as well as photoreceptor loss and have also provided some insights to our investigations of a new laser treatment for those with early AMD. One of the receptors that are activated by ATP, P2X7, is expressed by neurons and immune cells and has a different function in each cell type. In neurons, P2X7 receptors form a ligand-gated ion channel, whereas on immune cells P2X7 receptors act as a scavenger receptor. These distinct functions have provided new insights to the mechanisms of AMD. On the one hand, high concentrations of ATP can cause photoreceptor death, most likely via stimulation of P2X7 receptors localized on photoreceptor terminals. On the other hand, P2X7 receptors mediate removal of dead and dying cells by monocytes. By understanding the fundamental cell biological changes that occur in patients and animal models of disease, we have uncovered mechanisms that may help us manage and treat patients in the future.


Assuntos
Distinções e Prêmios , Degeneração Macular/etiologia , Degeneração Macular/terapia , Células Fotorreceptoras/fisiologia , Animais , Gerenciamento Clínico , Humanos
17.
Sci Rep ; 7: 43067, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28216676

RESUMO

Retinitis pigmentosa (RP) encompasses a group of retinal diseases resulting in photoreceptor loss and blindness. We have previously shown in the rd10 mouse model of RP, that rd10 microglia drive degeneration of viable neurons. Norgestrel, a progesterone analogue, primes viable neurons against potential microglial damage. In the current study we wished to investigate this neuroprotective effect further. We were particularly interested in the role of fractalkine-CX3CR1 signaling, previously shown to mediate photoreceptor-microglia crosstalk and promote survival in the rd10 retina. Norgestrel upregulates fractalkine-CX3CR1 signaling in the rd10 retina, coinciding with photoreceptor survival. We show that Norgestrel-treated photoreceptor-like cells, 661Ws, and C57 explants modulate rd10 microglial activity in co-culture, resulting in increased photoreceptor survival. Assessment of Norgestrel's neuroprotective effects when fractalkine was knocked-down in 661 W cells and release of fractalkine was reduced in rd10 explants confirms a crucial role for fractalkine-CX3CR1 signaling in Norgestrel-mediated neuroprotection. To further understand the role of fractalkine in neuroprotection, we assessed the release of 40 cytokines in fractalkine-treated rd10 microglia and explants. In both cases, treatment with fractalkine reduced a variety of pro-inflammatory cytokines. These findings further our understanding of Norgestrel's neuroprotective properties, capable of modulating harmful microglial activity indirectly through photoreceptors, leading to increased neuroprotection.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Neuroproteção , Norgestrel/farmacologia , Retina/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Citocinas , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiologia , Progesterona/farmacologia , Retina/efeitos dos fármacos , Retina/fisiologia
18.
Cutan Ocul Toxicol ; 36(3): 273-277, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27892714

RESUMO

As an inherited disorder caused by initial death of rod photoreceptors, retinitis pigmentosa is currently untreatable and usually leads to partial or complete blindness. (2R, 3S)-Pinobanksin-3-cinnamate (PC) is a new flavonone isolated from the seed of Alpinia galanga Willd, and has been reported to exert neuroprotective effects by upregulating endogenous antioxidant enzymes. In this study, the anti-oxidative and neuroprotective activity of PC against photoreceptor apoptosis in rd10 mouse model of retinitis pigmentosa was explored. PC showed to produce significant improvement in histology and function in rd10 mice through reducing oxidative stress. For the first time, the protective effects of PC were demonstrated against retina degeneration in rd10 mice and our study provides scientific rationale on using PC as the supplementary treatment to the outer retina diseases, including retinitis pigmentosa, in which oxidative stress is thought to contribute to disease progression.


Assuntos
Antioxidantes/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Células Fotorreceptoras/efeitos dos fármacos , Retinose Pigmentar/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Citocromos c/metabolismo , Fragmentação do DNA , Modelos Animais de Doenças , Eletrorretinografia , Glutationa/metabolismo , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia , Superóxido Dismutase/metabolismo
19.
Elife ; 52016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27669145

RESUMO

Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate, but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics.


Assuntos
Luz , Células Fotorreceptoras/fisiologia , Células Fotorreceptoras/efeitos da radiação , Pupila/fisiologia , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Ácido Glutâmico/metabolismo , Neurotransmissores/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
20.
Elife ; 52016 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26978795

RESUMO

Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies.


Assuntos
Células Epiteliais/fisiologia , Hipóxia , Degeneração Macular/fisiopatologia , Células Fotorreceptoras/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Estresse Fisiológico , Animais , Modelos Animais de Doenças , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA