Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 713
Filtrar
1.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38811164

RESUMO

The canonical visual cycle employing RPE65 as the retinoid isomerase regenerates 11-cis-retinal to support both rod- and cone-mediated vision. Mutations of RPE65 are associated with Leber congenital amaurosis that results in rod and cone photoreceptor degeneration and vision loss of affected patients at an early age. Dark-reared Rpe65-/- mouse has been known to form isorhodopsin that employs 9-cis-retinal as the photosensitive chromophore. The mechanism regulating 9-cis-retinal synthesis and the role of the endogenous 9-cis-retinal in cone survival and function remain largely unknown. In this study, we found that ablation of fatty acid transport protein-4 (FATP4), a negative regulator of 11-cis-retinol synthesis catalyzed by RPE65, increased the formation of 9-cis-retinal, but not 11-cis-retinal, in a light-independent mechanism in both sexes of RPE65-null rd12 mice. Both rd12 and rd12;Fatp4-/- mice contained a massive amount of all-trans-retinyl esters in the eyes, exhibiting comparable scotopic vision and rod degeneration. However, expression levels of M- and S-opsins as well as numbers of M- and S-cones surviving in the superior retinas of rd12;Fatp4-/ - mice were at least twofold greater than those in age-matched rd12 mice. Moreover, FATP4 deficiency significantly shortened photopic b-wave implicit time, improved M-cone visual function, and substantially deaccelerated the progression of cone degeneration in rd12 mice, whereas FATP4 deficiency in mice with wild-type Rpe65 alleles neither induced 9-cis-retinal formation nor influenced cone survival and function. These results identify FATP4 as a new regulator of synthesis of 9-cis-retinal, which is a "cone-tropic" chromophore supporting cone survival and function in the retinas with defective RPE65.


Assuntos
Proteínas de Transporte de Ácido Graxo , Amaurose Congênita de Leber , Células Fotorreceptoras Retinianas Cones , Animais , Células Fotorreceptoras Retinianas Cones/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Camundongos , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Masculino , Feminino , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , cis-trans-Isomerases/deficiência , Sobrevivência Celular , Camundongos Knockout , Diterpenos , Visão Ocular/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Retinaldeído
2.
Vis Neurosci ; 41: E002, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725382

RESUMO

Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.


Assuntos
Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Sciuridae , Tomografia de Coerência Óptica , Animais , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Modelos Animais de Doenças , Injeções Intravítreas , Oftalmoscopia , Nitroprussiato/farmacologia , Feminino , Masculino
3.
Cell Rep Med ; 5(4): 101459, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38518771

RESUMO

Retinitis pigmentosa (RP) is one of the most common forms of hereditary neurodegeneration. It is caused by one or more of at least 3,100 mutations in over 80 genes that are primarily expressed in rod photoreceptors. In RP, the primary rod-death phase is followed by cone death, regardless of the underlying gene mutation that drove the initial rod degeneration. Dampening the oxidation of glycolytic end products in rod mitochondria enhances cone survival in divergent etiological disease models independent of the underlying rod-specific gene mutations. Therapeutic editing of the prolyl hydroxylase domain-containing protein gene (PHD2, also known as Egln1) in rod photoreceptors led to the sustained survival of both diseased rods and cones in both preclinical autosomal-recessive and dominant RP models. Adeno-associated virus-mediated CRISPR-based therapeutic reprogramming of the aerobic glycolysis node may serve as a gene-agnostic treatment for patients with various forms of RP.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes , Retinose Pigmentar , Animais , Humanos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/terapia , Células Fotorreceptoras Retinianas Cones/metabolismo , Modelos Animais de Doenças
4.
Stem Cell Reports ; 19(3): 331-342, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38335965

RESUMO

Several retinal degenerations affect the human central retina, which is primarily comprised of cones and is essential for high acuity and color vision. Transplanting cone photoreceptors is a promising strategy to replace degenerated cones in this region. Although this approach has been investigated in a handful of animal models, commonly used rodent models lack a cone-rich region and larger models can be expensive and inaccessible, impeding the translation of therapies. Here, we transplanted dissociated GFP-expressing photoreceptors from retinal organoids differentiated from human induced pluripotent stem cells into the subretinal space of damaged and undamaged cone-dominant 13-lined ground squirrel eyes. Transplanted cell survival was documented via noninvasive high-resolution imaging and immunohistochemistry to confirm the presence of human donor photoreceptors for up to 4 months posttransplantation. These results demonstrate the utility of a cone-dominant rodent model for advancing the clinical translation of cell replacement therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Animais , Humanos , Células Fotorreceptoras Retinianas Cones/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Retina , Degeneração Retiniana/terapia , Sciuridae
5.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38060327

RESUMO

An arginine to cysteine substitution at amino acid position 203 (C203R) is the most common missense mutation in human cone opsin. Linked to color blindness and blue cone monochromacy (BCM), C203 is involved in a crucial disulfide bond required for proper folding. It has previously been postulated that expression of mutant C203R cone opsin exerts a toxic effect on cone photoreceptors, similar to some well-characterized missense mutations in rhodopsin that lead to protein misfolding. In this study, we generated and characterized a BCM mouse model carrying the equivalent C203R mutation (Opn1mwC198R Opn1sw-/-) to investigate the disease mechanism and develop a gene therapy approach for this disorder. Untreated Opn1mwC198R Opn1sw-/- cones phenocopied affected cones in human patients with the equivalent mutation, exhibiting shortened or absent cone outer segments and loss of function. We determined that gene augmentation targeting cones specifically yielded robust rescue of cone function and structure when Opn1mwC198R Opn1sw-/- mice were treated at early ages. Importantly, treated cones displayed elaborated outer segments and replenished expression of crucial cone phototransduction proteins. Interestingly, we were unable to detect OPN1MWC198R mutant opsin at any age. We believe this is the first proof-of-concept study exploring the efficacy of gene therapy in BCM associated with a C203R mutation.


Assuntos
Defeitos da Visão Cromática , Opsinas dos Cones , Células Fotorreceptoras Retinianas Cones , Humanos , Animais , Camundongos , Células Fotorreceptoras Retinianas Cones/metabolismo , Mutação de Sentido Incorreto , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Rodopsina/genética
6.
Stem Cells Transl Med ; 13(1): 83-99, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37935630

RESUMO

Cone cell death is a characteristic shared by various retinal degenerative disorders, such as cone-rod dystrophy, Stargardt disease, achromatopsia, and retinitis pigmentosa. This leads to conditions like color blindness and permanently impaired visual acuity. Stem cell therapy focused on photoreceptor replacement holds promise for addressing these conditions. However, identifying surface markers that aid in enriching retinal progenitor cells (RPCs) capable of differentiating into cones remains a complex task. In this study, we employed single-cell RNA sequencing to scrutinize the transcriptome of developing retinas in C57BL/6J mice. This revealed the distinctive expression of somatostatin receptor 2 (Sstr2), a surface protein, in late-stage RPCs exhibiting the potential for photoreceptor differentiation. In vivo lineage tracing experiments verified that Sstr2+ cells within the late embryonic retina gave rise to cones, amacrine and horizontal cells during the developmental process. Furthermore, Sstr2+ cells that were isolated from the late embryonic mouse retina displayed RPC markers and exhibited the capability to differentiate into cones in vitro. Upon subretinal transplantation into both wild-type and retinal degeneration 10 (rd10) mice, Sstr2+ cells survived and expressed cone-specific markers. This study underscores the ability of Sstr2 to enrich late-stage RPCs primed for cone differentiation to a large extent. It proposes the utility of Sstr2 as a biomarker for RPCs capable of generating cones for transplantation purposes.


Assuntos
Receptores de Somatostatina , Retina , Degeneração Retiniana , Animais , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/terapia , Degeneração Retiniana/metabolismo , Células-Tronco
7.
J Med Case Rep ; 17(1): 464, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936226

RESUMO

BACKGROUND: Tamoxifen is used in low dose concentrations (20-40 mg per day) as a therapy for breast cancer but is known to have ocular side effects. In this case report, the foveal cone integrity in a tamoxifen-treated patient who complained of a small central scotoma in the left eye while reading was examined using high resolution adaptive optics imaging. CASE PRESENTATION: Both eyes of a 54-year-old Caucasian, non-hispanic female who had been treated with tamoxifen for 1.5 years were examined using various imaging modalities including fundus photography, fundus autofluorescence, fluorescein angiography, spectral-domain optical coherence tomography, and adaptive optics scanning laser ophthalmoscopy. Clinical spectral-domain optical coherence tomography showed a very small disruption to the photoreceptor layer at the fovea in the left eye only. However, adaptive optics scanning laser ophthalmoscopy imaging revealed foveal cone loss in both eyes, but to a lesser extent in the right eye. Inner retinal changes were not observed in either eye. CONCLUSION: The area of cone loss was similar in size to a single newsprint letter when projected onto the retina, matching the patient's description of a scotoma in the left eye. Given the isolated loss of foveal cone photoreceptors with the absence of previously reported inner retinal and vascular changes, our results may indicate the earliest retinal changes associated with tamoxifen retinopathy.


Assuntos
Degeneração Macular , Doenças Retinianas , Humanos , Feminino , Pessoa de Meia-Idade , Células Fotorreceptoras Retinianas Cones , Tamoxifeno/efeitos adversos , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/diagnóstico por imagem , Escotoma , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos
8.
Clin Epigenetics ; 15(1): 158, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798757

RESUMO

BACKGROUND: MTR gene encodes the cytoplasmic enzyme methionine synthase, which plays a pivotal role in the methionine cycle of one-carbon metabolism. This cycle holds a significant importance in generating S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the respective universal methyl donor and end-product of epigenetic transmethylation reactions. cblG type of inherited disorders of vitamin B12 metabolism due to mutations in MTR gene exhibits a wide spectrum of symptoms, including a retinopathy unresponsive to conventional therapies. METHODS: To unveil the underlying epigenetic pathological mechanisms, we conducted a comprehensive study of epigenomic-wide alterations of DNA methylation by NGS of bisulfited retinal DNA in an original murine model with conditional Mtr deletion in retinal tissue. Our focus was on postnatal day 21, a critical developmental juncture for ocular structure refinement and functional maturation. RESULTS: We observed delayed eye opening and impaired visual acuity and alterations in the one-carbon metabolomic profile, with a notable dramatic decline in SAM/SAH ratio predicted to impair DNA methylation. This metabolic disruption led to epigenome-wide changes in genes involved in eye development, synaptic plasticity, and retinoid metabolism, including promoter hypermethylation of Rarα, a regulator of Lrat expression. Consistently, we observed a decline in cone photoreceptor cells and reduced expression of Lrat, Rpe65, and Rdh5, three pivotal genes of eye retinoid metabolism. CONCLUSION: We introduced an original in vivo model for studying cblG retinopathy, which highlighted the pivotal role of altered DNA methylation in eye development, cone differentiation, and retinoid metabolism. This model can be used for preclinical studies of novel therapeutic targets.


Assuntos
Células Fotorreceptoras Retinianas Cones , Doenças Retinianas , Camundongos , Animais , Células Fotorreceptoras Retinianas Cones/metabolismo , Camundongos Transgênicos , Epigenoma , Metilação de DNA , S-Adenosilmetionina/metabolismo , Doenças Retinianas/metabolismo , Carbono/metabolismo , Retinoides/metabolismo
9.
Cell Rep ; 42(9): 113054, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656622

RESUMO

Most mutations in retinitis pigmentosa (RP) arise in rod photoreceptors, but cone photoreceptors, responsible for high-resolution daylight and color vision, are subsequently affected, causing the most debilitating features of the disease. We used mass spectroscopy to follow 13C metabolites delivered to the outer retina and single-cell RNA sequencing to assess photoreceptor transcriptomes. The S cone metabolic transcriptome suggests engagement of the TCA cycle and ongoing response to ROS characteristic of oxidative phosphorylation, which we link to their histone modification transcriptome. Tumor necrosis factor (TNF) and its downstream effector RIP3, which drive ROS generation via mitochondrial dysfunction, are induced and activated as S cones undergo early apoptosis in RP. The long/medium-wavelength (L/M) cone transcriptome shows enhanced glycolytic capacity, which maintains their function as RP progresses. Then, as extracellular glucose eventually diminishes, L/M cones are sustained in long-term dormancy by lactate metabolism.


Assuntos
Células Fotorreceptoras Retinianas Cones , Retinose Pigmentar , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Transcriptoma/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retinose Pigmentar/patologia
10.
Sci Rep ; 13(1): 16475, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777551

RESUMO

Retinoblastoma is the most frequent intraocular malignancy in children. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using gene expression profiles, we demonstrate the existence of two major retinoblastoma subtypes that can be divided into six subgroups. Subtype 1 has higher expression of cone related genes and higher percentage of RB1 germline mutation. By contrast, subtype 2 tumors harbor more genes with ganglion/neuronal features. The dedifferentiation in subtype 2 is associated with stemness features including low immune infiltration. Gene Otology analysis demonstrates that immune response regulations and visual related pathways are the key molecular difference between subtypes. Subtype 1b has the highest risk of invasiveness across all subtypes. The recognition of these molecular subtypes shed a light on the important biological and clinical perspectives for retinoblastomas.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Retinoblastoma/patologia , Perfilação da Expressão Gênica , Mutação em Linhagem Germinativa , Células Fotorreceptoras Retinianas Cones/metabolismo , Transcriptoma , Neoplasias da Retina/genética , Neoplasias da Retina/patologia
11.
Exp Eye Res ; 235: 109630, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625575

RESUMO

CRX is a transcription factor essential for normal photoreceptor development and survival. The CRXRdy cat has a naturally occurring truncating mutation in CRX and is a large animal model for dominant Leber congenital amaurosis. This study investigated retinal remodeling that occurs as photoreceptors degenerate. CRXRdy/+ cats from 6 weeks to 10 years of age were investigated. In vivo structural changes of retinas were analyzed by fundus examination, confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Histologic analyses included immunohistochemistry for computational molecular phenotyping with macromolecules and small molecules. Affected cats had a cone-led photoreceptor degeneration starting in the area centralis. Initially there was preservation of inner retinal cells such as bipolar, amacrine and horizontal cells but with time migration of the deafferented neurons occurred. Early in the process of degeneration glial activation occurs ultimately resulting in formation of a glial seal. With progression the macula-equivalent area centralis developed severe atrophy including loss of retinal pigmentary epithelium. Microneuroma formation occured in advanced stages as more marked retinal remodeling occurred. This study indicates that retinal degeneration in the CrxRdy/+ cat retina follows the progressive, phased revision of retina that have been previously described for retinal remodeling. These findings suggest that therapy dependent on targeting inner retinal cells may be useful in young adults with preserved inner retinas prior to advanced stages of retinal remodeling and neuronal cell loss.


Assuntos
Amaurose Congênita de Leber , Degeneração Retiniana , Animais , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Amaurose Congênita de Leber/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
12.
Dokl Biol Sci ; 510(1): 167-171, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37582993

RESUMO

The study explored the potential of an animal opsin nonselectively expressed in various neuronal elements of the degenerative retina to restore the impaired visual function. A knockout murine model of inherited retinal dystrophy was used. Mice were injected intravitreally with either a virus carrying the gene of short-wavelength cone opsin associated with a reporter fluorescent protein or a control virus carrying the sequence of a modified fluorescent protein with enhanced membrane tropism. Viral transduction induced pronounced opsin expression in ganglion, bipolar, and horizontal retinal neurons. Behavioral testing included the visually guided task in the trapezoid Morris water maze and showed a partial recovery of the learning ability in the mice whose retinas had been transduced with cone opsin.


Assuntos
Opsinas dos Cones , Degeneração Retiniana , Camundongos , Animais , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Retina , Opsinas/metabolismo , Camundongos Knockout
13.
Cell Mol Life Sci ; 80(8): 214, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466729

RESUMO

Mutations in the photoreceptor-specific tetraspanin gene peripherin-2 (PRPH2) lead to widely varying forms of retinal degeneration ranging from retinitis pigmentosa to macular dystrophy. Both inter- and intra-familial phenotypic heterogeneity has led to much interest in uncovering the complex pathogenic mechanisms of PRPH2-associated disease. Majority of disease-causing mutations in PRPH2 reside in the second intradiscal loop, wherein seven cysteines control protein folding and oligomerization. Here, we utilize knockin models to evaluate the role of three D2 loop cysteine mutants (Y141C, C213Y and C150S), alone or in combination. We elucidated how these mutations affect PRPH2 properties, including oligomerization and subcellular localization, and contribute to disease processes. Results from our structural, functional and molecular studies revealed that, in contrast to our understanding from prior investigations, rods are highly affected by PRPH2 mutations interfering with oligomerization and not merely by the haploinsufficiency associated with these mutations. On the other hand, cones are less affected by the toxicity of the mutant protein and significantly reduced protein levels, suggesting that knockdown therapeutic strategies may sustain cone functionality for a longer period. This observation provides useful data to guide and simplify the current development of effective therapeutic approaches for PRPH2-associated diseases that combine knockdown with high levels of gene supplementation needed to generate prolonged rod improvement.


Assuntos
Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismo , Degeneração Macular/patologia , Tetraspaninas/metabolismo , Mutação/genética
14.
Adv Exp Med Biol ; 1415: 143-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440027

RESUMO

Retinitis pigmentosa (RP) is a hereditary retinal degenerative disease that can lead to blindness. In RP, rod photoreceptors die first, followed by cone photoreceptors death due to unknown mechanisms. However, one clue for cone death concerns their metabolism. Early changes suggest that they do not have enough glucose, which normally fuels their metabolism. We sought to design adeno-associated virus (AAV)-based gene therapy to address their metabolic challenges and found that overexpressing Txnip is an effective gene therapy that extends cone survival and vision in three strains of RP mice. The Txnip-mediated rescue was found to be dependent upon lactate dehydrogenase b (Ldhb), which is required for lactate catabolism. Txnip also was found to improve mitochondrial health. Herein, we propose a model in which Txnip shifts cones from their normal reliance on glucose to enhanced utilization of lactate to benefit cones in a condition where the glucose supply is limiting.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Camundongos , Animais , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Degeneração Retiniana/terapia , Terapia Genética , Glucose/metabolismo , Modelos Animais de Doenças , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Tiorredoxinas/genética
15.
Curr Biol ; 33(16): 3489-3494.e2, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37433300

RESUMO

How will people who spent their visual lives with only rods respond to cone function restoration? Will they be able suddenly see the colors of the rainbow? CNGA3-achromatopsia is a congenital hereditary disease in which cone dysfunction leads patients to have rod photoreceptor-driven vision only in daylight,1,2,3,4 seeing the world in blurry shades of gray.5,6 We studied color perception in four CNGA3-achromatopsia patients following monocular retinal gene augmentation therapy.7,8,9 Following treatment, although some cortical changes were reported,3,4 patients did not report a dramatic change in their vision.3,9 However, in accordance with the fact that sensitivity of rods and cones is most different at long wavelengths, they consistently reported seeing red objects on dark backgrounds differently than they did before surgery.3 Because clinical color assessments failed to find any indication of color vision, we conducted a gamut of tailored tests to better define patients' descriptions. We evaluated patients' perceived lightness of different colors, color detection, and saliency, comparing their treated with their untreated eyes. Although the perceived lightness of different colors was generally similar between the eyes and matched a rod-input model, patients could detect a colored stimulus only in their treated eyes. In a search task, long response times, which were further extended with array size, suggested low saliency. We suggest that treated CNGA3-achromatopsia patients can perceive a stimulus's color attribute, although in a manner that is different and very limited compared with sighted individuals. We discuss the retinal and cortical obstacles that might explain this perceptual gap.


Assuntos
Defeitos da Visão Cromática , Humanos , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Visão Ocular , Células Fotorreceptoras Retinianas Cones/metabolismo
16.
Genomics ; 115(4): 110644, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37279838

RESUMO

Single-cell RNA sequencing (scRNA-seq) analysis have provided an unprecedented resolution for the studies on diabetic retinopathy (DR). However, the early changes in the retina in diabetes remain unclear. A total of 8 human and mouse scRNA-seq datasets, containing 276,402 cells were analyzed individually to comprehensively delineate the retinal cell atlas. The neural retinas were isolated from the type 2 diabetes (T2D) and control mice, and scRNA-seq analysis was conducted to evaluate the early effects of diabetes on the retina. Bipolar cell (BC) heterogeneity were identified. We found some stable BCs across multiple datasets, and explored their biological functions. A new RBC subtype (Car8_RBC) in the mouse retina was validated using the multi-color immunohistochemistry. AC149090.1 was significantly upregulated in the rod cells, ON cone BCs (CBCs), OFF CBCs, and RBCs in T2D mice. Additionally, the interneurons, especially BCs, were the most vulnerable cells to diabetes by integrating scRNA-seq and genome-wide association studies (GWAS) analyses. In conclusion, this study delineated a cross-species retinal cell atlas and uncovered the early pathological alterations in the retina of T2D mice.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Análise da Expressão Gênica de Célula Única , Retina , Células Fotorreceptoras Retinianas Cones/metabolismo , Análise de Célula Única , Análise de Sequência de RNA , Proteínas do Tecido Nervoso/metabolismo , Biomarcadores Tumorais/metabolismo
17.
Stem Cell Reports ; 18(5): 1138-1154, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37163980

RESUMO

Human retinal organoid transplantation could potentially be a treatment for degenerative retinal diseases. How the recipient retina regulates the survival, maturation, and proliferation of transplanted organoid cells is unknown. We transplanted human retinal organoid-derived cells into photoreceptor-deficient mice and conducted histology and single-cell RNA sequencing alongside time-matched cultured retinal organoids. Unexpectedly, we observed human cells that migrated into all recipient retinal layers and traveled long distances. Using an unbiased approach, we identified these cells as astrocytes and brain/spinal cord-like neural precursors that were absent or rare in stage-matched cultured organoids. In contrast, retinal progenitor-derived rods and cones remained in the subretinal space, maturing more rapidly than those in the cultured controls. These data suggest that recipient microenvironment promotes the maturation of transplanted photoreceptors while inducing or facilitating the survival of migratory cell populations that are not normally derived from retinal progenitors. These findings have important implications for potential cell-based treatments of retinal diseases.


Assuntos
Degeneração Retiniana , Análise da Expressão Gênica de Célula Única , Humanos , Camundongos , Animais , Diferenciação Celular/fisiologia , Retina , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/terapia , Organoides/transplante
19.
Sci Rep ; 13(1): 6309, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072549

RESUMO

Anti-Cytotoxic T-Lymphocyte Associated protein 4 agents, such as ipilimumab, are widely applied to various cancers. However, they cause immune-related adverse effects throughout the body, including the eye. This study examined whether ipilimumab induces retinal and choroidal abnormalities in rodents, and investigated potential underlying mechanisms. Female wild-type mice were injected with ipilimumab three times/week for 5 weeks. The mice underwent optical coherence tomography (OCT) on the first day of the 6th week. Retinal function and morphology were evaluated by light microscopy, immunohistochemistry and electroretinography (ERG). On OCT, the lines indicating the ellipsoid and interdigitation were obscure in treated mice, suggesting outer retina destruction. Haematoxylin-eosin staining revealed destruction, shortening, and outer segment vacuolization. Treated mice exhibited weaker, fragmented rhodamine peanut agglutinin staining in outer photoreceptor structures. The choroid of treated mice showed severe infiltration of CD45-positive cells. In addition, CD8-positive cells invaded into the outer retina. On ERG, rod, maximum responses of combined rods and cones, and cone response wave amplitudes were significantly reduced in treated mice. Ipilimumab may induce impairments in outer photoreceptor architecture accompanied with CD8- positive infiltration in the retina and CD45-positive cell infiltration in the choroid, which may contribute to retinal function deterioration.


Assuntos
Retina , Células Fotorreceptoras Retinianas Cones , Feminino , Animais , Camundongos , Ipilimumab/farmacologia , Eletrorretinografia , Corioide , Tomografia de Coerência Óptica
20.
Vision Res ; 208: 108221, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37001420

RESUMO

Blue cone monochromacy (BCM) is a congenital vision disorder characterized by complete loss or severely reduced long- and middle-wavelength cone function, caused by mutations in the OPN1LW/OPN1MW gene cluster on the X-chromosome. BCM patients typically suffer from poor visual acuity, severely impaired color discrimination, myopia, and nystagmus. In this review, we cover the genetic causes of BCM, clinical features of BCM patients, genetic testing, and clinical outcome measurements for future BCM clinical trials. However, our emphasis is on detailing the animal models for BCM and gene therapy using adeno-associated vectors (AAV). We describe two mouse models resembling the two most common causes of BCM, current progress in proof-of-concept studies to treat BCM with deletion mutations, the challenges we face, and future directions.


Assuntos
Defeitos da Visão Cromática , Animais , Camundongos , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia , Mutação , Terapia Genética , Células Fotorreceptoras Retinianas Cones , Opsinas de Bastonetes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA