Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 15(6): 556-566, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33779072

RESUMO

Cell replacement therapy is emerging as an important approach in novel treatments for neurodegenerative diseases. Many problems remain, in particular improvements are needed in the survival of transplanted cells and increasing functional integration into host tissue. These problems arise because of immune rejection, suboptimal precursor cell type, trauma during cell transplantation, and toxic compounds released by dying tissues and nutritional deficiencies. We recently developed an ex vivo system to facilitate identification of factors contributing to the death of transplanted neuronal (photoreceptor) and showed 2.8-fold improvement in transplant cell survival after pretreatment with a novel glycopeptide (PKX-001). In this study, we extended these studies to look at cell survival, maturation, and functional integration in an in vivo rat model of rhodopsin-mutant retinitis pigmentosa causing blindness. We found that only when human photoreceptor precursor cells were preincubated with PKX-001 prior to transplantation, did the cells integrate and mature into cone photoreceptors expressing S-opsin or L/M opsin. In addition, ribbon synapses were observed in the transplanted cells suggesting they were making synaptic connections with the host tissue. Furthermore, optokinetic tracking and electroretinography responses in vivo were significantly improved compared to cell transplants without PKX-001 pre-treatment. These data demonstrate that PKX-001 promotes significant long-term stem cell survival in vivo, providing a platform for further investigation towards the clinical application to repair damaged or diseased retina.


Assuntos
Glicopeptídeos/farmacologia , Células Fotorreceptoras de Vertebrados/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Eletrorretinografia , Feminino , Humanos , Masculino , Células Fotorreceptoras de Vertebrados/transplante , Ratos
3.
Nat Commun ; 10(1): 4524, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586094

RESUMO

A major challenge in the treatment of retinal degenerative diseases, with the transplantation of replacement photoreceptors, is the difficulty in inducing the grafted cells to grow and maintain light sensitive outer segments in the host retina, which depends on proper interaction with the underlying retinal pigment epithelium (RPE). Here, for an RPE-independent treatment approach, we introduce a hyperpolarizing microbial opsin into photoreceptor precursors from newborn mice, and transplant them into blind mice lacking the photoreceptor layer. These optogenetically-transformed photoreceptors are light responsive and their transplantation leads to the recovery of visual function, as shown by ganglion cell recordings and behavioral tests. Subsequently, we generate cone photoreceptors from human induced pluripotent stem cells, expressing the chloride pump Jaws. After transplantation into blind mice, we observe light-driven responses at the photoreceptor and ganglion cell levels. These results demonstrate that structural and functional retinal repair is possible by combining stem cell therapy and optogenetics.


Assuntos
Engenharia Celular/métodos , Optogenética/métodos , Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/terapia , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células/métodos , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Células HEK293 , Halorrodopsinas/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Knockout , Degeneração Retiniana/genética , Rodopsina/genética , Transfecção , Resultado do Tratamento
4.
Tissue Eng Part C Methods ; 25(9): 532-542, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31418341

RESUMO

IMPACT STATEMENT: This study describes the methods and results of superparamagnetic iron oxide nanoparticle (SPION) labeling and magnetic resonance imaging (MRI) tracking of human embryonic stem cell-derived photoreceptor precursors transplanted into the subretinal space of Royal College of Surgeons rats. SPION labeling and MRI tracking provide information about the biodistribution of transplanted photoreceptor precursors, which is necessary for improving the functional benefits of cell therapy for degenerative retinal diseases.


Assuntos
Rastreamento de Células , Meios de Contraste , Células-Tronco Embrionárias Humanas/metabolismo , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Células Fotorreceptoras de Vertebrados , Animais , Linhagem Celular , Meios de Contraste/química , Meios de Contraste/farmacologia , Xenoenxertos , Humanos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/transplante , Ratos
5.
Prog Retin Eye Res ; 69: 1-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30445193

RESUMO

The mammalian retina displays no intrinsic regenerative capacities, therefore retinal degenerative diseases such as age-related macular degeneration (AMD) or retinitis pigmentosa (RP) result in a permanent loss of the light-sensing photoreceptor cells. The degeneration of photoreceptors leads to vision impairment and, in later stages, complete blindness. Several therapeutic strategies have been developed to slow down or prevent further retinal degeneration, however a definitive cure i.e. replacement of the lost photoreceptors, has not yet been established. Cell-based treatment approaches, by means of photoreceptor transplantation, have been studied in pre-clinical animal models over the last three decades. The introduction of pluripotent stem cell-derived retinal organoids represents, in principle, an unlimited source for the generation of transplantable human photoreceptors. However, safety, immunological and reproducibility-related issues regarding the use of such cells still need to be solved. Moreover, the recent finding of cytoplasmic material transfer between donor and host photoreceptors demands reinterpretation of several former transplantation studies. At the same time, material transfer between healthy donor and dysfunctional patient photoreceptors also offers a potential alternative strategy for therapeutic intervention. In this review we discuss the history and current state of photoreceptor transplantation, the techniques used to assess rescue of visual function, the prerequisites for effective transplantation as well as the main roadblocks, including safety and immune response to the graft, that need to be overcome for successful clinical translation of photoreceptor transplantation approaches.


Assuntos
Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/terapia , Transplante de Células-Tronco/métodos , Animais , Comunicação Celular/fisiologia , Citoplasma/transplante , Humanos , Células Fotorreceptoras de Vertebrados/imunologia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco/tendências
6.
Doc Ophthalmol ; 137(2): 71-78, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30074097

RESUMO

AIM OF STUDY: To evaluate the feasibility of transplantation of embryonic stem cell (ESC)-derived retinal cells in the treatment of retinal degeneration. MATERIALS AND METHODS: Rat ESCs were isolated and induced into retinal progenitor cells (RPCs) in vitro, which were subsequently induced into retinal pigment epithelium cells (RPEs) and photoreceptors (PRCs). All cells were identified by Western blot detection of their specific markers. RPEs and PRCs were, respectively, injected into the retina of Royal College of Surgeons (RCSs) rats. Control group was injected with PBS. Post-transplantation visual function was determined by electroretinography (ERG). The histology of the whole eye was compared by H&E staining. RESULTS: RPEs and PRCs were successfully derived from rat ESCs through the two-step differentiation as indicated by the presence of ESC- (Oct-3/4, Nanog, TRA-1-60 and TRA-1-81), RPC- (Rx, Mitf, Pax6 and Chx10), RPE- (RPE65 and keratin) and PRC-specific markers (blue opsin, red/green opsin, recoverin and rhodopsin) in Western blot. The amplitude of ERG a- and b-wave in RPE- and PRC-transplanted groups at week 2 and 10 after transplantation was markedly higher compared with PBS controls. Retinal injury and vascular stress response was not detected in any of the RCS rats after transplantation. CONCLUSION: The developed stepwise protocol can derive retinal cells from ESCs. Transplantation of these retinal cells can restore visual function of RCS rats. Our study provides evidence for potential clinical application of ESC-based cell therapy for retinal degeneration.


Assuntos
Células-Tronco Embrionárias/transplante , Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/cirurgia , Epitélio Pigmentado da Retina/citologia , Transplante de Células-Tronco/métodos , Animais , Biomarcadores/análise , Modelos Animais de Doenças , Eletrorretinografia , Oftalmopatias Hereditárias , Ratos , Ratos Mutantes , Retina/fisiologia , Degeneração Retiniana/fisiopatologia , Opsinas de Bastonetes , Transtornos da Visão , Visão Ocular/fisiologia
7.
Stem Cell Rev Rep ; 14(4): 463-483, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29675776

RESUMO

The retina is a very fine and layered neural tissue, which vitally depends on the preservation of cells, structure, connectivity and vasculature to maintain vision. There is an urgent need to find technical and biological solutions to major challenges associated with functional replacement of retinal cells. The major unmet challenges include generating sufficient numbers of specific cell types, achieving functional integration of transplanted cells, especially photoreceptors, and surgical delivery of retinal cells or tissue without triggering immune responses, inflammation and/or remodeling. The advances of regenerative medicine enabled generation of three-dimensional tissues (organoids), partially recreating the anatomical structure, biological complexity and physiology of several tissues, which are important targets for stem cell replacement therapies. Derivation of retinal tissue in a dish creates new opportunities for cell replacement therapies of blindness and addresses the need to preserve retinal architecture to restore vision. Retinal cell therapies aimed at preserving and improving vision have achieved many improvements in the past ten years. Retinal organoid technologies provide a number of solutions to technical and biological challenges associated with functional replacement of retinal cells to achieve long-term vision restoration. Our review summarizes the progress in cell therapies of retina, with focus on human pluripotent stem cell-derived retinal tissue, and critically evaluates the potential of retinal organoid approaches to solve a major unmet clinical need-retinal repair and vision restoration in conditions caused by retinal degeneration and traumatic ocular injuries. We also analyze obstacles in commercialization of retinal organoid technology for clinical application.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Retina/citologia , Engenharia Tecidual/métodos , Humanos , Células Fotorreceptoras de Vertebrados/transplante , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Degeneração Retiniana/terapia , Transplante de Células-Tronco/métodos
8.
Eye (Lond) ; 32(5): 946-971, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29503449

RESUMO

Despite considerable effort and significant therapeutic advances, age-related macular degeneration (AMD) remains the commonest cause of blindness in the developed world. Progressive late-stage AMD with outer retinal degeneration currently has no proven treatment. There has been significant interest in the possibility that cellular treatments may slow or reverse visual loss in AMD. A number of modes of action have been suggested, including cell replacement and rescue, as well as immune modulation to delay the neurodegenerative process. Their appeal in this enigmatic disease relate to their generic, non-pathway-specific effects. The outer retina in particular has been at the forefront of developments in cellular regenerative therapies being surgically accessible, easily observable, as well as having a relatively simple architecture. Both the retinal pigment epithelium (RPE) and photoreceptors have been considered for replacement therapies as both sheets and cell suspensions. Studies using autologous RPE, and to a lesser extent, foetal retina, have shown proof of principle. A wide variety of cell sources have been proposed with pluripotent stem cell-derived cells currently holding the centre stage. Recent early-phase trials using these cells for RPE replacement have met safety endpoints and hinted at possible efficacy. Animal studies have confirmed the promise that photoreceptor replacement, even in a completely degenerated outer retina may restore some vision. Many challenges, however, remain, not least of which include avoiding immune rejection, ensuring long-term cellular survival and maximising effect. This review provides an overview of progress made, ongoing studies and challenges ahead.


Assuntos
Degeneração Macular/terapia , Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco/métodos , Humanos
9.
Dev Biol ; 433(2): 132-143, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29291970

RESUMO

A major cause for vision impairment and blindness in industrialized countries is the loss of the light-sensing retinal tissue in the eye. Photoreceptor damage is one of the main characteristics found in retinal degeneration diseases, such as Retinitis Pigmentosa or age-related macular degeneration. The lack of effective therapies to stop photoreceptor loss together with the absence of significant intrinsic regeneration in the human retina converts such degenerative diseases into permanent conditions that are currently irreversible. Cell replacement by means of photoreceptor transplantation has been proposed as a potential approach to tackle cell loss in the retina. Since the first attempt of photoreceptor transplantation in humans, about twenty years ago, several research groups have focused in the development and improvement of technologies necessary to bring cell transplantation for retinal degeneration diseases to reality. Progress in recent years in the generation of human tissue derived from pluripotent stem cells (PSCs) has significantly improved our tools to study human development and disease in the dish. Particularly the availability of 3D culture systems for the generation of PSC-derived organoids, including the human retina, has dramatically increased access to human material for basic and medical research. In this review, we focus on important milestones towards the generation of transplantable photoreceptor precursors from PSC-derived retinal organoids and discuss recent pre-clinical transplantation studies using organoid-derived photoreceptors in context to related in vivo work using primary photoreceptors as donor material. Additionally, we summarize remaining challenges for developing photoreceptor transplantation towards clinical application.


Assuntos
Organoides/transplante , Células-Tronco Pluripotentes/transplante , Degeneração Retiniana/terapia , Técnicas de Cultura de Tecidos , Animais , Técnicas de Reprogramação Celular , Meios de Cultura Livres de Soro/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Morfogênese , Células Fotorreceptoras de Vertebrados/transplante , Retina/citologia , Especificidade da Espécie , Pesquisa Translacional Biomédica
10.
Klin Monbl Augenheilkd ; 234(3): 343-353, 2017 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-28355662

RESUMO

Vision impairment and blindness due to photoreceptor loss represents one of the major causes for disability in industrialized societies. Whereas rod photoreceptors allow vision under dim light conditions, cone photoreceptors provide high-acuity vision in daylight conditions and color detection. Several therapeutic strategies are currently developed to repair vision loss, including cell-based interventions. Within the last decade, major progress regarding the replacement of photoreceptors by transplantation has been made in pre-clinical animal models. This includes defining the necessary conditions, like the optimal ontogenetic stage of transplantable donor photoreceptors, cell-specific enrichment procedures and robust transplantation technologies. Moreover, first studies provided evidence for functional improvements by photoreceptor transplantation in mouse models of retinal dysfunction. Furthermore, advances in cell culture technology were made by introducing methods to generate photoreceptor-containing retinal organoids, derived from pluripotent stem cells, that provide theoretically unlimited sources for the production of photoreceptor transplants. Interestingly, the recently identified transfer of cytoplasmic material between donor and host photoreceptors might represent an additional treatment option for cell transplantation approaches. Within this review, we focus on the main developments within the photoreceptor transplantation field and discuss important achievements, challenges and hurdles to develop photoreceptor transplantation towards clinical applications.


Assuntos
Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/terapia , Animais , Medicina Baseada em Evidências , Humanos , Resultado do Tratamento
11.
Stem Cells ; 35(4): 932-939, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27977075

RESUMO

The utilization of fluorescent reporter transgenes to discriminate donor versus host cells has been a mainstay of photoreceptor transplantation research, the assumption being that the presence of reporter+ cells in outer nuclear layer (ONL) of transplant recipients represents the integration of donor photoreceptors. We previously reported that GFP+ cells in the ONL of cone-GFP transplanted retinas exhibited rod-like characteristics, raising the possibility that GFP signal in recipient tissue may not be a consequence of donor cell integration. To investigate the basis for this mismatch, we performed a series of transplantations using multiple transgenic donor and recipient models, and assessed cell identity using nuclear architecture, immunocytochemistry, and DNA prelabeling. Our results indicate that GFP+ cells in the ONL fail to exhibit hallmark elements of donor cells, including nuclear hetero/euchromatin architecture. Furthermore, GFP signal does not appear to be a consequence of classic donor/host cell fusion or transfating post-transplant, but is most likely due to material exchange between donor and host photoreceptors. This transfer can be mediated by rods and cones, is bidirectional between donor and host cells, requires viable photoreceptors, occurs preferentially at sites of outer limiting membrane disruption and can be detected in second-order retinal neurons and Müller glia. Collectively, these data warrant re-evaluation of the use of lineage tracing fluorescent reporters in transplantation studies involving the retina and other CNS tissues. Furthermore, the reinterpretation of previous functional rescue data, based on material exchange, rather than cell integration, may offer a novel approach to vision rescue. Stem Cells 2017;35:932-939.


Assuntos
Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/transplante , Animais , Membrana Celular/metabolismo , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Coloração e Rotulagem
12.
Nat Commun ; 7: 13029, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27701378

RESUMO

Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor-host nuclear or cell-cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders.


Assuntos
Células Fotorreceptoras de Vertebrados/transplante , Retina/transplante , Doenças Retinianas/terapia , Animais , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Células NIH 3T3 , RNA/metabolismo , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transplante de Células-Tronco , Doadores de Tecidos
13.
Sci Rep ; 6: 29784, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27405580

RESUMO

Photoreceptor degeneration due to retinitis pigmentosa (RP) is a primary cause of inherited retinal blindness. Photoreceptor cell-replacement may hold the potential for repair in a completely degenerate retina by reinstating light sensitive cells to form connections that relay information to downstream retinal layers. This study assessed the therapeutic potential of photoreceptor progenitors derived from human embryonic and induced pluripotent stem cells (ESCs and iPSCs) using a protocol that is suitable for future clinical trials. ESCs and iPSCs were cultured in four specific stages under defined conditions, resulting in generation of a near-homogeneous population of photoreceptor-like progenitors. Following transplantation into mice with end-stage retinal degeneration, these cells differentiated into photoreceptors and formed a cell layer connected with host retinal neurons. Visual function was partially restored in treated animals, as evidenced by two visual behavioral tests. Furthermore, the magnitude of functional improvement was positively correlated with the number of engrafted cells. Similar efficacy was observed using either ESCs or iPSCs as source material. These data validate the potential of human pluripotent stem cells for photoreceptor replacement therapies aimed at photoreceptor regeneration in retinal disease.


Assuntos
Cegueira , Diferenciação Celular , Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes Induzidas , Células Fotorreceptoras de Vertebrados , Retinose Pigmentar , Animais , Cegueira/metabolismo , Cegueira/patologia , Cegueira/terapia , Xenoenxertos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/transplante , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Retinose Pigmentar/terapia
14.
Trends Mol Med ; 22(2): 115-134, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26791247

RESUMO

Stem cell-derived retinal pigment epithelium (RPE) and photoreceptors (PRs) have restored vision in preclinical models of human retinal degenerative disease. This review discusses characteristics of stem cell therapy in the eye and the challenges to clinical implementation that are being confronted today. Based on encouraging results from Phase I/II trials, the first Phase II clinical trials of stem cell-derived RPE transplantation are underway. PR transplant experiments have demonstrated restoration of visual function in preclinical models of retinitis pigmentosa and macular degeneration, but also indicate that no single approach is likely to succeed in overcoming PR loss in all cases. A greater understanding of the mechanisms controlling synapse formation as well as the immunoreactivity of transplanted retinal cells is urgently needed.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Macular/terapia , Células Fotorreceptoras de Vertebrados/transplante , Epitélio Pigmentado da Retina/transplante , Retinose Pigmentar/terapia , Animais , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Células-Tronco Embrionárias/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Degeneração Macular/patologia , Camundongos , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/fisiologia , Ratos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/fisiologia , Retinose Pigmentar/patologia , Engenharia Tecidual/métodos
15.
Adv Exp Med Biol ; 854: 579-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427462

RESUMO

Retinal degenerations leading to the loss of photoreceptor (PR) cells are a major cause of vision impairment and untreatable blindness. There are few clinical treatments and none can reverse the loss of vision. With the rapid advances in stem cell biology and techniques in cell transplantation, PR replacement by transplantation represents a broad treatment strategy applicable to many types of degeneration. The number of donor cells that integrate into the recipient retina determines transplantation success, yet the degenerating retinae presents a number of barriers that can impede effective integration. Here, we briefly review recent advances in the field of PR transplantation. We then describe how different aspects of gliosis may impact on cell integration efficiency.


Assuntos
Gliose/fisiopatologia , Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/terapia , Animais , Transplante de Células/métodos , Transplante de Células/tendências , Humanos , Células Fotorreceptoras de Vertebrados/citologia
16.
Eye (Lond) ; 29(5): 681-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25771816

RESUMO

PURPOSE: Subretinal transplantation of stem-cell-derived photoreceptor precursor cells (PPCs) is a promising and innovative approach to treating a range of blinding diseases. However, common barriers to efficient preclinical transplantation comes in the form of suboptimal graft architecture, limited graft survival, and immune-rejection, each of which cannot be assessed using conventional in vivo imaging (i.e., rodent ophthalmoscopy). With the majority of PPCs reported to die within the first few weeks after transplantation, understanding the mechanisms of graft failure, and ultimately devising preventative methods, currently relies on lengthy end point histology. To address these limitations, we hypothesized that combining two imaging modalities, optical coherence tomography (OCT) and fluorescence confocal scanning laser ophthalmoscopy (fcSLO), could provide a more rapid and comprehensive view of PPC engraftment. METHODS: Human ESC-derived PPCs were transplanted into 15 retinal dystrophic rats that underwent bimodal imaging at 0, 8, and 15 days posttransplant. RESULTS: Bimodal imaging provided serial detection of graft: placement, architecture, and survival; each undetectable under ophthalmoscopy. Bimodal imaging determined graft placement to be either: subretinal (n=7), choroidal (n=4), or vitreal (n=4) indicating neural retinal perforation. Graft architecture was highly variable at the time of transplantation, with notable redistribution over time, while complete, or near complete, graft loss was observed in the majority of recipients after day 8. Of particular importance was detection of vitreal aggregates overlying the graft-possibly an indicator of host-site inflammation and rejection. CONCLUSION: Early real-time feedback of engraftment has the potential to greatly increase efficiency of preclinical trials in cell-based retinal therapeutics.


Assuntos
Sobrevivência de Enxerto/fisiologia , Células-Tronco Embrionárias Humanas/transplante , Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/cirurgia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imuno-Histoquímica , Microscopia Confocal , Oftalmoscopia/métodos , Células Fotorreceptoras de Vertebrados/citologia , Pontos Quânticos , Ratos , Tomografia de Coerência Óptica/métodos , Transplante Heterólogo
17.
Prog Retin Eye Res ; 46: 31-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25660226

RESUMO

Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.


Assuntos
Cegueira/terapia , Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/terapia , Transplante de Células-Tronco/métodos , Cegueira/etiologia , Células-Tronco Embrionárias/transplante , Humanos , Células-Tronco Pluripotentes/transplante , Degeneração Retiniana/complicações
18.
Stem Cells Dev ; 23(9): 941-54, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24328605

RESUMO

Retinal degeneration leading to loss of photoreceptors is a major cause of untreatable blindness. Recent research has yielded definitive evidence for restoration of vision following the transplantation of rod photoreceptors in murine models of blindness, while advances in stem cell biology have enabled the generation of transplantable photoreceptors from embryonic stem cells. Importantly, the amount of visual function restored is dependent upon the number of photoreceptors that migrate correctly into the recipient retina. The developmental stage of the donor cells is important for their ability to migrate; they must be immature photoreceptor precursors. Little is known about how and when donor cell migration, integration, and maturation occurs. Here, we have performed a comprehensive histological analysis of the 6-week period following rod transplantation in mice. Donor cells migrate predominately as single entities during the first week undergoing a stereotyped sequence of morphological changes in their translocation from the site of transplantation, through the interphotoreceptor matrix and into the recipient retina. This includes initial polarization toward the outer nuclear layer (ONL), followed by formation of an apical attachment and rudimentary segment during migration into the ONL. Strikingly, acquisition of a nuclear architecture typical of mature rods was accelerated compared with normal development and a feature of migrating cells. Once within the ONL, precursors formed synaptic-like structures and outer segments in accordance with normal maturation. The restoration of visual function mediated by transplanted photoreceptors correlated with the later expression of rod α-transducin, achieving maximal function by 5 weeks.


Assuntos
Diferenciação Celular , Movimento Celular , Células Fotorreceptoras de Vertebrados , Transplante de Células-Tronco , Células-Tronco/metabolismo , Aloenxertos , Animais , Camundongos , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/transplante
19.
Br Med Bull ; 102: 133-46, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22577179

RESUMO

INTRODUCTION OR BACKGROUND: Many diseases of the retina result in irreversible visual loss. Stem cell (SC) therapy is a rapidly developing field and represents a novel approach to replace non-functioning neuro-retinal cells. SOURCES OF DATA: A systematic computerized literature search was conducted on PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). AREAS OF AGREEMENT: The use of stem cells (SCs) in animal models of retinal diseases has resulted in improvement in visual function and performance. SC therapy represents an exciting prospect in restoring vision. Areas of controversy The use of human embryonic SCs raises ethical concerns. GROWING POINTS: Human trials using SCs in retinal diseases have recently been approved. AREAS TIMELY FOR DEVELOPING RESEARCH: The success of SCs in retinal therapy depends not only on implanted cell survival, but also on how well SCs migrate, integrate and form synapses. Further research will be needed to overcome these hurdles.


Assuntos
Doenças Retinianas/terapia , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Humanos , Células Fotorreceptoras de Vertebrados/transplante , Células Ganglionares da Retina/transplante , Epitélio Pigmentado da Retina/transplante
20.
Cell Transplant ; 21(5): 871-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22325046

RESUMO

Degeneration of the neural retina is the leading cause of untreatable blindness in the developed world. Stem cell replacement therapy offers a novel strategy for retinal repair. Postmitotic photoreceptor precursors derived from the early postnatal (P) retina are able to migrate and integrate into the adult mouse retina following transplantation into the subretinal space, but it is likely that a large number of these cells would be required to restore vision. The adult recipient retina presents a very different environment to that from which photoreceptor precursor donor cells isolated from the developing postnatal retina are derived. Here we considered the possibility that modulation of the recipient environment by ectopic expression of developmentally regulated growth factors, normally present during photoreceptor development, might enhance the migration and integration of transplanted cells into the adult neural retina. Adeno-associated viral (AAV) vectors were used to introduce three growth factors previously reported to play a role in photoreceptor development, IGF1, FGF2, and CNTF, into the adult retina, prior to transplantation of P4 cells derived from the Nrl.GFP(+ve) neural retina. At 3 weeks posttransplantation the number of integrated, differentiated photoreceptor cells present in AAV-mediated neurotrophic factor-treated eyes was assessed and compared to control treated contralateral eyes. We show, firstly, that it is possible to manipulate the recipient retinal microenvironment via rAAV-mediated gene transfer with respect to these developmentally relevant growth factors. Moreover, when combined with cell transplantation, AAV-mediated expression of IGF1 led to significantly increased levels of cell integration, while overexpression of FGF2 had no significant effect on integrated cell number. Conversely, expression of CNTF led to a significant decrease in cell integration and an exacerbated glial response that led to glial scarring. Together, these findings demonstrate the importance of the extrinsic environment of the recipient retina for photoreceptor cell transplantation and show for the first time that it is possible to manipulate this environment using viral vectors to influence photoreceptor transplantation efficiency.


Assuntos
Células Fotorreceptoras de Vertebrados/citologia , Retina/citologia , Animais , Diferenciação Celular , Sobrevivência Celular , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Dependovirus/genética , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados/transplante , Retina/patologia , Retina/ultraestrutura , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA