Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39133185

RESUMO

Retinal regeneration has been mostly studied after widespread tissue injury, but it is not well understood how the retina regenerates at the cellular level following loss of specific cell types. In a new study, Jeff Mumm and colleagues selectively ablate retinal ganglion cells in zebrafish and find that the retina elicits different genetic responses in a context-dependent manner to replace lost cells. To find out more about the story behind the paper, we caught up with first author Kevin Emmerich and corresponding author Jeff Mumm, Associate Professor in Ophthalmology at Johns Hopkins University.


Assuntos
Peixe-Zebra , Animais , Humanos , História do Século XXI , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/metabolismo , Retina , História do Século XX , Regeneração/fisiologia , Oftalmologia/história
2.
Int Ophthalmol ; 44(1): 121, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427085

RESUMO

PURPOSE: To assess the relationship between structural and functional tests in mild and moderate idiopathic intracranial hypertension (IIH). METHODS: Patients with mild and moderate IIH and a control group were enrolled. Best-corrected visual acuity (BCVA), macular ganglion cell layer (MGCL) thickness, peripapillary retinal nerve fiber layer (pp RNFL) thickness, perimetric mean deviation (MD), and photopic negative responses (PhNR) of the electroretinogram were recorded. The associations between structural (pp RNFL and MGCL thickness) and functional (PhNR amplitude, MD and BCVA) parameters were assessed. RESULTS: 154 eyes from 78 subjects (74 eyes from IIH patients and 80 eyes from healthy subjects) were included in this comparative observational study. The MGCL thickness, VA, pp RNFL, and PhNR base-to-trough (BT) amplitude were significantly worse in moderate IIH. The BCVA and MD were associated with MGCL thickness only in moderate IIH. The relationship between MD and MGCL thickness started when MD fell below -5.7 dB. CONCLUSIONS: The association between functional and structural parameters varies between mild and moderate IIH. The MD and MGCL thickness outperformed in assessing disease severity in mild and moderate IIH, respectively. The association between MD and MGCL thickness could be considered in IIH severity categorization.


Assuntos
Pseudotumor Cerebral , Humanos , Eletrorretinografia , Pseudotumor Cerebral/diagnóstico , Retina , Células Ganglionares da Retina/fisiologia , Tomografia de Coerência Óptica , Campos Visuais
3.
Klin Monbl Augenheilkd ; 241(2): 162-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412980

RESUMO

Aging is a major risk factor for retinal neurodegenerative diseases. Aged mammalian retinal ganglion cells (RGCs) lack the ability to regenerate axons after injury. Rodent models suggest that older age increases the vulnerability of RGCs to injury and impairs RGC function as well as their functional recovery. Molecular changes - including decreased circulating levels of brain-derived neurotrophic factor (BDNF) - might contribute to impaired RGC dendritic extension during aging. Moreover, age-related mitochondrial dysfunction plays a major role in aging processes, as it leads to reduced adenosine triphosphate and increased generation of reactive oxygen species. Autophagy activity is necessary for the maintenance of cellular homeostasis and decreases with aging in the central nervous system. During aging, vascular insufficiency may lead to impaired oxygen and nutrient supply to RGCs. Microglial cells undergo morphological changes and functional impairment with aging, which might compromise retinal homeostasis and promote an inflammatory environment. Addressing these age-related changes by means of a low-energy diet, exercise, and neurotrophic factors might prevent age-related functional impairment of RGCs. This review focuses on the current understanding of aging RGCs and key players modulating those underlying mechanisms.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Retina/fisiologia , Axônios/fisiologia , Mamíferos
4.
Proc Natl Acad Sci U S A ; 121(6): e2305947121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289952

RESUMO

Optic neuropathies, characterized by injury of retinal ganglion cell (RGC) axons of the optic nerve, cause incurable blindness worldwide. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) represent a promising "cell-free" therapy for regenerative medicine; however, the therapeutic effect on neural restoration fluctuates, and the underlying mechanism is poorly understood. Here, we illustrated that intraocular administration of MSC-sEVs promoted both RGC survival and axon regeneration in an optic nerve crush mouse model. Mechanistically, MSC-sEVs primarily targeted retinal mural cells to release high levels of colony-stimulating factor 3 (G-CSF) that recruited a neural restorative population of Ly6Clow monocytes/monocyte-derived macrophages (Mo/MΦ). Intravitreal administration of G-CSF, a clinically proven agent for treating neutropenia, or donor Ly6Clow Mo/MΦ markedly improved neurological outcomes in vivo. Together, our data define a unique mechanism of MSC-sEV-induced G-CSF-to-Ly6Clow Mo/MΦ signaling in repairing optic nerve injury and highlight local delivery of MSC-sEVs, G-CSF, and Ly6Clow Mo/MΦ as therapeutic paradigms for the treatment of optic neuropathies.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismos do Nervo Óptico , Camundongos , Animais , Axônios/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/terapia , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo
5.
PLoS Biol ; 21(12): e3002412, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048352

RESUMO

Visual system function depends upon the elaboration of precise connections between retinal ganglion cell (RGC) axons and their central targets in the brain. Though some progress has been made in defining the molecules that regulate RGC connectivity required for the assembly and function of image-forming circuitry, surprisingly little is known about factors required for intrinsically photosensitive RGCs (ipRGCs) to target a principal component of the non-image-forming circuitry: the suprachiasmatic nucleus (SCN). Furthermore, the molecules required for forming circuits critical for circadian behaviors within the SCN are not known. We observe here that the adhesion molecule teneurin-3 (Tenm3) is highly expressed in vasoactive intestinal peptide (VIP) neurons located in the core region of the SCN. Since Tenm3 is required for other aspects of mammalian visual system development, we investigate roles for Tenm3 in regulating ipRGC-SCN connectivity and function. Our results show that Tenm3 negatively regulates association between VIP and arginine vasopressin (AVP) neurons within the SCN and is essential for M1 ipRGC axon innervation to the SCN. Specifically, in Tenm3-/- mice, we find a reduction in ventro-medial innervation to the SCN. Despite this reduction, Tenm3-/- mice have higher sensitivity to light and faster re-entrainment to phase advances, probably due to the increased association between VIP and AVP neurons. These data show that Tenm3 plays key roles in elaborating non-image-forming visual system circuitry and that it influences murine responses to phase-advancing light stimuli.


Assuntos
Axônios , Células Ganglionares da Retina , Animais , Camundongos , Axônios/metabolismo , Ritmo Circadiano/fisiologia , Mamíferos/metabolismo , Células Ganglionares da Retina/fisiologia , Núcleo Supraquiasmático/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
6.
Commun Biol ; 6(1): 120, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717618

RESUMO

While embryonic mammalian central nervous system (CNS) axons readily grow and differentiate, only a minority of fully differentiated mature CNS neurons are able to regenerate injured axons, leading to stunted functional recovery after injury and disease. To delineate DNA methylation changes specifically associated with axon regeneration, we used a Fluorescent-Activated Cell Sorting (FACS)-based methodology in a rat optic nerve transection model to segregate the injured retinal ganglion cells (RGCs) into regenerating and non-regenerating cell populations. Whole-genome DNA methylation profiling of these purified neurons revealed genes and pathways linked to mammalian RGC regeneration. Moreover, whole-methylome sequencing of purified uninjured adult and embryonic RGCs identified embryonic molecular profiles reactivated after injury in mature neurons, and others that correlate specifically with embryonic or adult axon growth, but not both. The results highlight the contribution to both embryonic growth and adult axon regeneration of subunits encoding the Na+/K+-ATPase. In turn, both biochemical and genetic inhibition of the Na+/K+-ATPase pump significantly reduced RGC axon regeneration. These data provide critical molecular insights into mammalian CNS axon regeneration, pinpoint the Na+/K+-ATPase as a key regulator of regeneration of injured mature CNS axons, and suggest that successful regeneration requires, in part, reactivation of embryonic signals.


Assuntos
Axônios , Metilação de DNA , Animais , Ratos , Adenosina Trifosfatases/metabolismo , Axônios/metabolismo , Regeneração Nervosa/genética , Células Ganglionares da Retina/fisiologia
7.
Br J Ophthalmol ; 107(9): 1295-1302, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35396212

RESUMO

BACKGROUND/AIMS: To evaluate the electroretinographic (ERG) changes in the early postoperative period following glaucoma filtration surgery, and its relationship with choroidal detachment (CD). METHODS: This retrospective observational single-centre study included 57 consecutive patients with primary open-angle glaucoma who underwent unilateral glaucoma filtration surgery. The patients were divided into two groups according to the presence or absence of CD. ERG components, including the photopic negative response (PhNR), a-wave and b-wave were compared before and after surgery using skin electrodes. RESULTS: There were 46 patients in the non-CD group and 11 in the CD group. ERG was recorded within 5.1 (2.1 to 8.1) (mean (95% CI)) days after surgery. In the non-CD group, the PhNR amplitude, PhNR/b-wave amplitude ratio and PhNR implicit time improved significantly after surgery (p=0.008, 0.002 and 0.039, respectively). In the CD group, the amplitude of the PhNR, a-wave and b-wave were significantly deteriorated after surgery (p=0.002, 0.001 and 0.001, respectively). Postoperative intraocular pressure (IOP) (p=0.031) and postoperative CD (p<0.001) were significantly associated with change in the PhNR amplitude in the univariate models. In the multivariate analysis, severe CD (stage 3) cases tended to be deteriorated more. CONCLUSION: Even in the early postoperative period within several days, the PhNR amplitude increased with IOP lowering following filtration surgery in the absence of CD. The presence of CD may arrest the improvement of the retinal ganglion cell function. The present results enhance understanding the structural and functional recovery after glaucoma surgery and the role of postoperative CD.


Assuntos
Cirurgia Filtrante , Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Glaucoma de Ângulo Aberto/cirurgia , Estudos Retrospectivos , Células Ganglionares da Retina/fisiologia , Eletrorretinografia/métodos , Estimulação Luminosa
8.
Proc Natl Acad Sci U S A ; 120(1): e2216599120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584299

RESUMO

Nonimage-forming vision in mammals is mediated primarily by melanopsin (OPN4)-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, melanopsin predominantly activates, via Gαq,11,14, phospholipase C-ß4 to open transient receptor 6 (TRPC6) and TRPC7 channels. In M2- and M4-ipRGCs, however, a prominent phototransduction mechanism involves the opening of hyperpolarization- and cyclic nucleotide-gated channels via cyclic nucleotide, although the upstream steps remain uncertain. We report here experiments, primarily on M4-ipRGCs, with photo-uncaging of cyclic nucleotides and virally expressed CNGA2 channels to conclude that the second messenger is cyclic adenosine monophosphate (cAMP) - very surprising considering that cyclic guanosine monophosphate (cGMP) is used in almost all cyclic nucleotide-mediated phototransduction mechanisms across the animal kingdom. We further found that the upstream G protein is likewise Gq, which via its Gßγ subunits directly activates adenylyl cyclase (AC). Our findings are a demonstration in a native cell of a cross-motif GPCR signaling pathway from Gq directly to AC with a specific function.


Assuntos
Adenilil Ciclases , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Transdução de Sinal Luminoso , Células Ganglionares da Retina , Animais , Camundongos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Transdução de Sinal Luminoso/fisiologia , Mamíferos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/metabolismo , Transdução de Sinais/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
9.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231022

RESUMO

Deficiency of estradiol during the menopausal period is an important risk factor for neurodegenerative diseases, including various optic neuropathies. The aim of this study was to evaluate the impact of surgical menopause on the function and survival ratio of RGCs in the rat model of ONC (optic nerve crush). We used eight-week-old female Long Evans rats, divided into two main groups depending on the time between ovariectomy procedure (OVA) and euthanasia (two weeks vs. seven weeks), and subgroups-OVA, OVA + ONC, or ONC. Retinal function was assessed with electroretinography (ERG). RGC loss ratio was evaluated using immunolabelling and counting of RGCs. Seven weeks after OVA, the menopause morphologically affected interneurons but not RGC; however, when the ONC procedure was applied, RGCs appeared to be more susceptible to damage in case of deprivation of estrogens. In our analysis, PhNR (photopic negative responses) were severely diminished in the OVA + ONC group. A deprivation of estrogens in menopause results in accelerated retinal neurodegeneration that firstly involves retinal interneurons. The lack of estrogens increases the susceptibility of RGCs to insults.


Assuntos
Doenças do Nervo Óptico , Traumatismos do Nervo Óptico , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Estradiol , Estrogênios , Feminino , Menopausa , Nervo Óptico , Ratos , Ratos Long-Evans , Células Ganglionares da Retina/fisiologia
10.
Eur J Endocrinol ; 187(6): 809-821, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201161

RESUMO

Objective: Pituitary tumours that compress the optic chiasm are associated with long-term alterations in sleep-wake rhythm. This may result from damage to intrinsically photosensitive retinal ganglion cells (ipRGCs) projecting from the retina to the hypothalamic suprachiasmatic nucleus via the optic chiasm to ensure photoentrainment (i.e. synchronisation to the 24-h solar cycle through light). To test this hypothesis, we compared the post-illumination pupil response (PIPR), a direct indicator of ipRGC function, between hypopituitarism patients with and without a history of optic chiasm compression. Design: Observational study, comparing two predefined groups. Methods: We studied 49 patients with adequately substituted hypopituitarism: 25 patients with previous optic chiasm compression causing visual disturbances (CC+ group) and 24 patients without (CC- group). The PIPR was assessed by chromatic pupillometry and expressed as the relative change between baseline and post-blue-light stimulus pupil diameter. Objective and subjective sleep parameters were obtained using polysomnography, actigraphy, and questionnaires. Results: Post-blue-light stimulus pupillary constriction was less sustained in CC+ patients compared with CC- patients, resulting in a significantly smaller extended PIPR (mean difference: 8.1%, 95% CI: 2.2-13.9%, P = 0.008, Cohen's d = 0.78). Sleep-wake timing was consistently later in CC+ patients, without differences in sleep duration, efficiency, or other rest-activity rhythm features. Subjective sleep did not differ between groups. Conclusion: Previous optic chiasm compression due to a pituitary tumour in patients with hypopituitarism is associated with an attenuated PIPR and delayed sleep timing. Together, these data suggest that ipRGC function and consequently photoentrainment of the central biological clock is impaired in patients with a history of optic chiasm compression.


Assuntos
Hipopituitarismo , Quiasma Óptico , Humanos , Quiasma Óptico/patologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Sono/fisiologia , Relógios Biológicos
11.
Transl Psychiatry ; 12(1): 402, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151078

RESUMO

Ophthalmological methods have increasingly raised the interest of neuropsychiatric specialists. While the integrity of the retinal cell functions can be evaluated with the electroretinogram (ERG), optical coherence tomography (OCT) allows a structural investigation of retinal layer thicknesses. Previous studies indicate possible functional and structural retinal alterations in patients with schizophrenia. Twenty-five patients with paranoid schizophrenia and 25 healthy controls (HC) matched for age, sex, and smoking status participated in this study. Both, ERG and OCT were applied to obtain further insights into functional and structural retinal alterations. A significantly reduced a-wave amplitude and thickness of the corresponding para- and perifoveal outer nuclear layer (ONL) was detected in patients with paranoid schizophrenia with a positive correlation between both measurement parameters. Amplitude and peak time of the photopic negative response (PhNR) and thickness of the parafoveal ganglion cell layer (GCL) were decreased in patients with schizophrenia compared to HC. Our results show both structural and functional retinal differences between patients with paranoid schizophrenia and HC. We therefore recommend the comprehensive assessment of the visual system of patients with schizophrenia, especially to further investigate the effect of antipsychotic medication, the duration of illness, or other factors such as inflammatory or neurodegenerative processes. Moreover, longitudinal studies are required to investigate whether the functional alterations precede the structural changes.


Assuntos
Antipsicóticos , Células Ganglionares da Retina , Eletrorretinografia/métodos , Humanos , Retina/diagnóstico por imagem , Células Ganglionares da Retina/fisiologia , Esquizofrenia Paranoide/diagnóstico por imagem
12.
J Vis Exp ; (184)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35815984

RESUMO

Computational modeling has become an increasingly important method in neural engineering due to its capacity to predict behaviors of in vivo and in vitro systems. This has the key advantage of minimizing the number of animals required in a given study by providing an often very precise prediction of physiological outcomes. In the field of visual prosthesis, computational modeling has an array of practical applications, including informing the design of an implantable electrode array and prediction of visual percepts that may be elicited through the delivery of electrical impulses from the said array. Some models described in the literature combine a three-dimensional (3D) morphology to compute the electric field and a cable model of the neuron or neural network of interest. To increase the accessibility of this two-step method to researchers who may have limited prior experience in computational modeling, we provide a video of the fundamental approaches to be taken in order to construct a computational model and utilize it in predicting the physiological and psychophysical outcomes of stimulation protocols deployed via a visual prosthesis. The guide comprises the steps to build a 3D model in a finite element modeling (FEM) software, the construction of a retinal ganglion cell model in a multi-compartmental neuron computational software, followed by the amalgamation of the two. A finite element modeling software to numerically solve physical equations would be used to solve electric field distribution in the electrical stimulations of tissue. Then, specialized software to simulate the electrical activities of a neural cell or network was used. To follow this tutorial, familiarity with the working principle of a neuroprosthesis, as well as neurophysiological concepts (e.g., action potential mechanism and an understanding of the Hodgkin-Huxley model), would be required.


Assuntos
Próteses Visuais , Animais , Simulação por Computador , Estimulação Elétrica , Modelos Neurológicos , Células Ganglionares da Retina/fisiologia
13.
Proc Natl Acad Sci U S A ; 119(15): e2113751119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394873

RESUMO

Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell­derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Axônios/metabolismo , Quimiocina CXCL12/genética , Monócitos/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , PTEN Fosfo-Hidrolase/genética , Células Ganglionares da Retina/fisiologia
14.
Invest Ophthalmol Vis Sci ; 63(3): 24, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35333289

RESUMO

Purpose: This study determines whether the functional and structural severity of glaucoma is associated with intrinsically photosensitive retinal ganglion cell (ipRGC) function. Methods: This cross-sectional study assessed 148 eyes from 148 patients with glaucoma (mean age 70.5 years). The ipRGC function was assessed by postillumination pupil response (PIPR) using the pupil diameter after exposure to blue and red light. Main outcome measures were as follows: six-second PIPR amplitude, net PIPR, and net PIPR change. Functional and structural glaucoma severities were evaluated using visual field mean deviation (MD) and the circumpapillary retinal nerve fiber layer (RNFL) thickness, respectively. Results: Multivariable analysis adjusting for age, sex, body mass index, hypertension, diabetes, oral medication use, cataract surgery, axial length, and topical alpha2-adrenergic receptor agonist use showed that worsening in visual field MD was significantly associated with higher blue six-second PIPR amplitude (regression coefficient per -1 dB worsening, 0.25; 95% confidence intervals [CI], 0.14, 0.37; P < 0.001). The thinner RNFL thickness was significantly associated with higher blue six-second PIPR amplitude, lower Net PIPR change, and lower net PIPR (blue six-second PIPR amplitude: regression coefficient per 10-µm thinning, 1.29; 95% CI, 0.72, 1.87; P < 0.001; net PIPR change: regression coefficient, -0.70; 95% CI, -1.26, -0.14; P = 0.015; net PIPR: regression coefficient, -0.03; 95% CI, -0.05, -0.001; P = 0.044). No significant association was found between glaucoma severity and red six-second PIPR amplitude. Conclusions: Our findings revealed a significant association between functional and structural glaucoma severity and impaired ipRGC function independent of potential confounders.


Assuntos
Glaucoma , Pupila , Idoso , Estudos Transversais , Glaucoma/diagnóstico , Humanos , Estimulação Luminosa , Pupila/fisiologia , Células Ganglionares da Retina/fisiologia
15.
Biosensors (Basel) ; 13(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36671879

RESUMO

Electroretinography (ERG) is a non-invasive electrophysiological recording technique that detects the electrical signaling of neuronal cells in the visual system. In conventional ERG recordings, the signals are considered a collective electrical response from various neuronal cell populations, including rods, cones, bipolar cells, and retinal ganglion cells (RGCs). However, due to the limited ability to control electrophysiological responses from different types of cells, the detailed information underlying ERG signals has not been analyzed and interpreted. Linking the features of ERG signals to the specific neuronal response will advance the understanding of neuronal electrophysiological dynamics and provide more evidence to elucidate pathological mechanisms, such as RGC loss during the progression of glaucoma. Herein, we developed an advanced ERG recording system integrated with a programmable, non-invasive optogenetic stimulation method in mice. In this system, we applied an automatic and unbiased ERG data analysis approach to differentiate a, b wave, negative response, and oscillatory potentials. To differentiate the electrophysiological response of RGCs in ERG recordings, we sensitized mouse RGCs with red-light opsin, ChRmine, through adeno-associated virus (AAV) intravitreal injection. Features of RGC dynamics under red-light stimulation were identified in the ERG readout. This non-invasive ERG recording system, associated with the programmable optogenetics stimulation method, provides a new methodology to dissect neural dynamics under variable physiological and pathological conditions in vivo. With the merits of non-invasiveness, improved sensitivity, and specificity, we envision this system can be further applied for early-stage detection of RGC degeneration and functional progression in neural degenerative diseases, such as glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Eletrorretinografia/métodos , Optogenética , Glaucoma/patologia , Luz
16.
Rev. bras. oftalmol ; 81: e0026, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1376786

RESUMO

ABSTRACT Purpose: To describe an innovative animal model of eye transplantation used in rabbits. Methods: six Dutch-belted male rabbits were submitted to lateral orbitotomy in the right eye, wide retrobulbar anatomy exposure, dissection of the structures, identification and distal section of the optic nerve followed by anastomosis either by vicryl (group 1) or fibrin glue (group 2). Electroretinography recording was performed before the section of the optic nerve and every 30 seconds after, to monitor the function of retina. Left eye was used as control group. Results: After optic nerve resection and anastomosis, stable ERG amplitude of the right eye was lost after 302 seconds in group 1 and after 296 seconds on group 2. Left eye kept longer stable ERG amplitude curves. Conclusions: The animal model of whole eye transplantation was effective in describing a novel technique to be used in rabbits, with success of the anatomic procedure. Further studies will clarify the best anastomosis methods and maintenance of function of the receptor organ. Translational relevance: this animal model of whole eye transplantation provides a novel perspective for blind patients and the research models, since we describe a novel mammal animal model. This model can be used as basis of a human model of whole eye transplantation in future studies.


RESUMO Objetivo: Descrever uma técnica cirúrgica inovadora para transplante de olho em um modelo animal em coelhos. Métodos: Seis coelhos machos com Dutch Belted foram submetidos à orbitotomia lateral do olho direito, com ampla exposição da anatomia retrobulbar, dissecção do cone muscular, exposição e secção distal do nervo óptico seguida de anastomose por vicryl (Grupo 1) ou cola de fibrina (Grupo 2). O registro da eletrorretinografia foi realizado antes da secção do nervo óptico e a cada 30 segundos após, para monitorar a função da retina. O olho esquerdo foi usado como grupo controle. Resultados: Após a ressecção do nervo óptico, a estabilidade da amplitude da eletrorretinografia foi perdida no olho direito após 302 segundos no Grupo 1 e após 296 segundos no Grupo 2. O olho esquerdo manteve eletrorretinografia estável por períodos mais longos. Conclusão: O modelo animal de transplante total de olho foi eficaz em descrever uma nova técnica cirúrgica para ser utilizada em laboratório com coelhos, com sucesso do procedimento anatômico. Novos estudos esclarecerão os melhores métodos de anastomose e manutenção da função do órgão receptor.


Assuntos
Animais , Masculino , Nervo Óptico/cirurgia , Retina/fisiologia , Eletrorretinografia , Olho/transplante , Órbita/cirurgia , Coelhos , Células Ganglionares da Retina/fisiologia , Anastomose Cirúrgica , Enucleação Ocular , Modelos Animais , Microscopia com Lâmpada de Fenda
17.
Comput Math Methods Med ; 2021: 6084496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873416

RESUMO

With an increasing incidence in recent years, glaucoma (GL) has gradually become a global public health problem for humans of all ages. Nerve growth factor (NGF) eye drops, with well-documented stable effect in the treatment of GL, can be potentiated by the administration of NGF drugs via ultrasound contrast agent (UCA). This study analyzed the efficacy of NGF+UCA on GL mice and the influencing mechanism on retinal ganglion cells and further explored the pathological changes of GL mice under different UCA irradiation duration. In this study, we established GL mouse models and treated the mouse with NGF+UCA. The effect of NGF+UCA on intraocular pressure in mice was observed; the flash visual evoked potential of mice was compared; the changes of retinal structure, inflammation index, and oxidative stress index were observed, and autophagic protein levels were tested. Finally, the influence of UCA irradiation duration on GL symptoms was observed. The results showed that the intraocular pressure of mice decreased greatly, while their flash visual evoked potential and nervous layer of retina increased, and their ganglion cells showed stronger proliferation activity and weaker apoptosis and autophagy, indicating that UCA-mediated NGF can strongly improve the pathological condition of GL mice. In addition, PI3K/AKT pathway-associated proteins were inhibited in retina under the intervention of NGF+UCA, which further suggests that the influence of UCA-mediated NGF on GL is achieved by inhibiting autophagy of retinal ganglion cells and enhancing their apoptosis via the PI3K/AKT signaling pathway. Moreover, we found that in the treatment of GL, three weeks of UCA irradiation and six weeks caused no significant difference in the pathological manifestations and ganglion cells of mice, while after six weeks of irradiation, the level of NLRP3 in mice increased. In conclusion, UCA-mediated NGF can significantly improve the pathological condition of GL mice and improve the apoptosis of retinal ganglion cells by inhibiting autophagy, which is associated with the inhibition of the PI3K/AKT signal pathway. In terms of selection of UCA irradiation duration, three weeks of irradiation is enough to yield good clinical results.


Assuntos
Glaucoma/terapia , Fator de Crescimento Neural/administração & dosagem , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Glaucoma/patologia , Glaucoma/fisiopatologia , Mediadores da Inflamação/metabolismo , Pressão Intraocular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Soluções Oftálmicas , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Terapia por Ultrassom
18.
PLoS One ; 16(11): e0255196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34739478

RESUMO

Retinoic acid (RA) plays major roles during nervous system development, and during regeneration of the adult nervous system. We have previously shown that components of the RA signaling pathway are upregulated after optic nerve injury, and that exogenous application of all-trans retinoic acid (ATRA) greatly increases the survival of axotomized retinal ganglion cells (RGCs). The objective of the present study is to investigate the effects of ATRA application on the macrophages in the optic nerve after injury, and to determine whether this affects axonal regeneration. The optic nerve was crushed and treated with PBS, ATRA and/or clodronate-loaded liposomes. Nerves were examined at one and two weeks after axotomy with light microscopy, immunocytochemistry and electron microscopy. ATRA application to the optic nerve caused transient increases in the number of macrophages and microglia one week after injury. The macrophages are consistently labeled with M2-type markers, and have considerable phagocytic activity. ATRA increased ultrastructural features of ongoing phagocytic activity in macrophages at one and two weeks. ATRA treatment also significantly increased the numbers of regenerating GAP-43-labeled axons. Clodronate liposome treatment depleted macrophage numbers by 80%, completely eliminated the ATRA-mediated increase in axonal regeneration, and clodronate treatment alone decreased axonal numbers by 30%. These results suggest that the success of axon regeneration is partially dependent on the presence of debris-phagocytosing macrophages, and that the increases in regeneration caused by ATRA are in part due to their increased numbers. Further studies will examine whether macrophage depletion affects RGC survival.


Assuntos
Macrófagos/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Traumatismos do Nervo Óptico/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Lipossomos , Traumatismos do Nervo Óptico/fisiopatologia , Rana pipiens , Células Ganglionares da Retina/fisiologia , Tretinoína/uso terapêutico
19.
Int Immunopharmacol ; 101(Pt B): 108238, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688152

RESUMO

Senescence marker protein 30 (SMP30) is an aging-related protein that participates in the regulation of tissue damage under various pathological conditions. However, the role of SMP30 in mediating high glucose (HG)-induced injury of retinal ganglion cells (RGCs) has not been fully determined. We found that SMP30 expression declined during HG stimulation in RGCs. Cellular functional studies showed that the up-regulation of SMP30 dramatically prohibited HG-evoked apoptosis, oxidative stress and inflammatory response in RGCs. Mechanism research reported that SMP30 overexpression led to the enhancement of nuclear factor erythroid 2-related factor (Nrf2) activation in HG-stimulated RGCs. Moreover, SMP30 overexpression enhanced the phosphorylation of Akt and glucogen synthase kinase-3ß (GSK-3ß), and the suppression of Akt markedly abolished SMP30-mediated Nrf2 activation in HG-stimulated RGCs. Additionally, the suppression of Nrf2 substantially reversed SMP30-overexpression-induced anti-HG injury effects in RGCs. Overall, these findings suggest that SMP30 protects against HG injury of RGCs by potentiating Nrf2 through regulation of the Akt/GSK-3ß pathway. Our work underscores that SMP30/Akt/GSK-3ß/Nrf2 may exert a vital role in mediating the injury of RGCs during diabetic retinopathy.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retinopatia Diabética/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células Ganglionares da Retina/fisiologia , Animais , Apoptose , Células Cultivadas , Senescência Celular , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Inflamação , Camundongos , Proteína Oncogênica v-akt/metabolismo , Estresse Oxidativo , Transdução de Sinais
20.
Exp Eye Res ; 213: 108806, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715090

RESUMO

Glaucoma is the second leading cause of blindness worldwide. This multifactorial, neurodegenerative group of diseases is characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, leading to irreversible visual impairment and blindness. There is a huge unmet and urging need for the development of new and translatable strategies and treatment options to prevent this progressive loss of RGC. Accumulating evidence points towards a critical role of neuroinflammation, in particular microglial cells, in the pathogenesis of glaucoma. Leukotrienes are mediators of neuroinflammation and are involved in many neurodegenerative diseases. Therefore, we tested the leukotriene receptors CysLT1R/GPR17-selective antagonist Montelukast (MTK) for its efficacy to modulate the reactive state of microglia in order to ameliorate RGCs loss in experimental glaucoma. Ocular hypertension (OHT) was induced unilaterally by injection of 8 µm magnetic microbead (MB) into the anterior chamber of female Brown Norway rats. The contralateral, untreated eye served as control. Successful induction of OHT was verified by daily IOP measurement using a TonoLab rebound tonometer. Simultaneously to OHT induction, one group received daily MTK treatment and the control group vehicle solution by oral gavage. Animals were sacrificed 13-15 days after MB injection. Retina and optic nerves (ON) of OHT and contralateral eyes were analyzed by immunofluorescence with specific markers for RGCs (Brn3a), microglial cells/macrophages (Iba1 and CD68), and cysteinyl leukotriene pathway receptors (CysLT1R and GPR17). Protein labeling was documented by confocal microscopy and analyzed with ImageJ plugins. Further, mRNA expression of genes of the inflammatory and leukotriene pathway was analyzed in retinal tissue. MTK treatment resulted in a short-term IOP reduction at day 2, which dissipated by day 5 of OHT induction in MTK treated animals. Furthermore, MTK treatment resulted in a decreased activation of Iba1+ microglial cells in the retina and ON, and in a significantly increased RGC survival in OHT eyes. Within the retina, GPR17 and CysLT1R expression was demonstrated in single RCGs and in microglial cells respectively. Further, increased mRNA expression of pro-inflammatory genes was detected in OHT induced retinas. In the ON, OHT induction increased the number of GPR17+ cells, showing a trend of reduction following MTK treatment. This study shows for the first time a significantly increased RGC survival in an acute OHT model following treatment with the leukotriene receptor antagonist MTK. These results strongly suggest a neuroprotective effect of MTK and a potential new therapeutic strategy for glaucoma treatment.


Assuntos
Antagonistas de Leucotrienos/uso terapêutico , Microglia/metabolismo , Hipertensão Ocular/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Leucotrienos/metabolismo , Células Ganglionares da Retina/fisiologia , Acetatos/uso terapêutico , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Sobrevivência Celular/fisiologia , Ciclopropanos/uso terapêutico , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Regulação da Expressão Gênica/fisiologia , Pressão Intraocular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Hipertensão Ocular/fisiopatologia , Quinolinas/uso terapêutico , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos BN , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Retina/fisiopatologia , Sulfetos/uso terapêutico , Tonometria Ocular , Fator de Transcrição Brn-3B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA