Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cells ; 13(1)2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38201263

RESUMO

The mechanisms of immune tolerance of a mother against an antigenically foreign fetus without a concomitant loss of defense capabilities against pathogens are the factors underlying the success of a pregnancy. A significant role in human defense is played by killer immunoglobulin-like receptor (KIR) receptors, which regulate the function of the natural killer (NK) cells capable of destroying antigenically foreign cells, virus-infected cells, or tumor-lesioned cells. A special subpopulation of NK cells called uterine NK cells (uNK) is found in the uterus. Disruption of the tolerance process or overactivity of immune-competent cells can lead to immune infertility, a situation in which a woman's immune system attacks her own reproductive cells, making it impossible to conceive or maintain a pregnancy. Since the prominent role of the inflammatory response in infertility, including KIR receptors and NK cells, has been postulated, the process of antigen presentation involving major histocompatibility complex (MHC) molecules (HLA) appears to be crucial for a successful pregnancy. Proper interactions between KIR receptors on female uNK cells and HLA class I molecules, with a predominant role for HLA-C, found on the surface of germ cells, are strategically important during embryo implantation. In addition, maintaining a functional balance between activating and inhibitory KIR receptors is essential for proper placenta formation and embryo implantation in the uterus. A disruption of this balance can lead to complications during pregnancy. The discovery of links between KIR and HLA-C has provided valuable information about the complexity of maternal-fetal immune interactions that determine the success of a pregnancy. The great diversity of maternal KIR and fetal HLA-C ligands is associated with the occurrence of KIR/HLA-C combinations that are more or less favorable for reproductive success.


Assuntos
Antígenos HLA-C , Tolerância Imunológica , Infertilidade , Feminino , Humanos , Gravidez , Apresentação de Antígeno , Células Germinativas/imunologia , Infertilidade/imunologia
2.
Front Immunol ; 13: 847092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967379

RESUMO

Certain CD8 T cell responses are particularly effective at controlling infection, as exemplified by elite control of HIV in individuals harboring HLA-B57. To understand the structural features that contribute to CD8 T cell elite control, we focused on a strongly protective CD8 T cell response directed against a parasite-derived peptide (HF10) presented by an atypical MHC-I molecule, H-2Ld. This response exhibits a focused TCR repertoire dominated by Vß2, and a representative TCR (TG6) in complex with Ld-HF10 reveals an unusual structure in which both MHC and TCR contribute extensively to peptide specificity, along with a parallel footprint of TCR on its pMHC ligand. The parallel footprint is a common feature of Vß2-containing TCRs and correlates with an unusual Vα-Vß interface, CDR loop conformations, and Vß2-specific germline contacts with peptides. Vß2 and Ld may represent "specialist" components for antigen recognition that allows for particularly strong and focused T cell responses.


Assuntos
Linfócitos T CD8-Positivos , Peptídeos , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos/imunologia , Células Germinativas/imunologia , Antígeno de Histocompatibilidade H-2D/imunologia , Conformação Molecular , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Transglutaminases/imunologia
3.
Immunity ; 54(4): 781-796.e4, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33675683

RESUMO

Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.


Assuntos
Anticorpos Neutralizantes/imunologia , Células Germinativas/imunologia , Glicoproteínas/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Macaca mulatta/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos B/imunologia , Células CHO , Linhagem Celular , Cricetulus , Epitopos/imunologia , Células HEK293 , Hepatite C/virologia , Humanos , Estudos Longitudinais , Macaca mulatta/virologia , Receptores de Antígenos de Linfócitos B/imunologia , Vacinação/métodos
4.
Nat Commun ; 12(1): 1750, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741942

RESUMO

Malaria elimination requires tools that interrupt parasite transmission. Here, we characterize B cell receptor responses among Malian adults vaccinated against the first domain of the cysteine-rich 230 kDa gamete surface protein Pfs230, a key protein in sexual stage development of P. falciparum parasites. Among nine Pfs230 human monoclonal antibodies (mAbs) that we generated, one potently blocks transmission to mosquitoes in a complement-dependent manner and reacts to the gamete surface; the other eight show only low or no blocking activity. The structure of the transmission-blocking mAb in complex with vaccine antigen reveals a large discontinuous conformational epitope, specific to domain 1 of Pfs230 and comprising six structural elements in the protein. The epitope is conserved, suggesting the transmission-blocking mAb is broadly functional. This study provides a rational basis to improve malaria vaccines and develop therapeutic antibodies for malaria elimination.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antiprotozoários/farmacologia , Epitopos/imunologia , Células Germinativas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Adulto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Sítios de Ligação , Células Cultivadas , Epitopos/química , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia
5.
Cells Tissues Organs ; 209(2-3): 83-100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33113534

RESUMO

Hypoglycemia is a neglected metabolic disorder. Thus, we evaluated the protective effect of hypoxia-preconditioned human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) on hypoglycemic testicular injury. We examined 56 testes from 28 animals: 7 rats with insulin-induced hypoglycemia (HG group), 7 hypoglycemic rats which received an intratesticular injection of hUCB-MSCs (HG-MSC group), and 14 untreated control rats. Testosterone level, testicular catalase (CAT) activity, and malondialdehyde (MDA) level were analyzed. Immunostaining for specific testicular germ and somatic cell markers was performed. Proliferating and apoptotic cells were detected by anti-PCNA and anti-caspase-3, respectively. Morphometrical data were statistically analyzed. The hypoglycemic rats showed a significant decrease in testosterone level and CAT activity and a significant increase in MDA production. Examination of histological structure and protein expression of diverse germ cell markers revealed collapsed tubules that were lined by degenerated germ cells, decreased lactate dehydrogenase type C immune expression, as well as decreased proliferating and increased apoptotic cells number in hypoglycemic testes. Injection of MSCs improved testicular biochemical parameters, preserved germ cells and somatic cells, and decreased apoptosis. In conclusion, hypoxia-preconditioned hUCB-MSCs attenuate rat testicular injury caused by insulin-induced hypoglycemia. Avoidance and rapid management of hypoglycemia are necessary to avoid significant testicular injury.


Assuntos
Sangue Fetal/citologia , Hipoglicemia/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Testículo/lesões , Animais , Catalase/metabolismo , Hipóxia Celular , Regulação da Expressão Gênica , Células Germinativas/imunologia , Humanos , Hidroxiesteroide Desidrogenases/metabolismo , Imunofenotipagem , Masculino , Malondialdeído/metabolismo , Ratos Wistar , Testículo/patologia , Testosterona/metabolismo
6.
Cell Host Microbe ; 28(1): 79-88.e4, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32416060

RESUMO

Trypanosomiasis is a devastating neglected tropical disease affecting livestock and humans. Humans are susceptible to two Trypanosoma brucei subspecies but protected from other trypanosomes by circulating high-density lipoprotein (HDL) complexes called trypanosome lytic factors (TLFs) 1 and 2. TLFs contain apolipoprotein L-1 contributing to lysis and haptoglobin-related protein (HPR), which can function as a ligand for a parasite receptor. TLF2 also uniquely contains non-covalently associated immunoglobin M (IgM) antibodies, the role and origin of which remain unclear. Here, we show that these TLF2-associated IgMs interact with both HPR and alternate trypanosome surface proteins, including variant surface glycoprotein, likely facilitating complex biogenesis and TLF uptake into parasites. TLF2-IgMs are germline antibodies that, while present at basal concentrations in healthy individuals, are elicited by trypanosome infection in both murine models and human sleeping sickness patients. These data suggest that poly- and self-reactive germline antibodies such as TLF2-associated IgMs play a role in antimicrobial immunity.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Neoplasias/imunologia , Apolipoproteína L1/imunologia , Haptoglobinas/imunologia , Imunoglobulina M/imunologia , Lipoproteínas HDL/imunologia , Tripanossomíase Africana/imunologia , Adolescente , Adulto , Idoso , Animais , Linhagem Celular , Criança , Feminino , Células Germinativas/imunologia , Interações Hospedeiro-Parasita , Humanos , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Animais , Parasitos , Trypanosoma brucei brucei , Adulto Jovem
7.
Cell Mol Immunol ; 17(7): 684-692, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451453

RESUMO

In this review, we will highlight the importance of cancer germline antigen-specific cytotoxic CD8+ T lymphocytes (CTL) and the factors affecting antitumor CTL responses. In light of cancer immunotherapy, we will emphasis the need to further understand the features, characteristics, and actions of modulatory receptors of human cancer germline-specific CTLs, in order to determine the optimal conditions for antitumor CTL responses.


Assuntos
Antígenos de Neoplasias/imunologia , Citotoxicidade Imunológica , Epitopos/imunologia , Células Germinativas/imunologia , Neoplasias/imunologia , Humanos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(18): 9865-9875, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321830

RESUMO

Recent epidemics demonstrate the global threat of Zika virus (ZIKV), a flavivirus transmitted by mosquitoes. Although infection is usually asymptomatic or mild, newborns of infected mothers can display severe symptoms, including neurodevelopmental abnormalities and microcephaly. Given the large-scale spread, symptom severity, and lack of treatment or prophylaxis, a safe and effective ZIKV vaccine is urgently needed. However, vaccine design is complicated by concern that elicited antibodies (Abs) may cross-react with other flaviviruses that share a similar envelope protein, such as dengue virus, West Nile virus, and yellow fever virus. This cross-reactivity may worsen symptoms of a subsequent infection through Ab-dependent enhancement. To better understand the neutralizing Ab response and risk of Ab-dependent enhancement, further information on germline Ab binding to ZIKV and the maturation process that gives rise to potently neutralizing Abs is needed. Here we use binding and structural studies to compare mature and inferred-germline Ab binding to envelope protein domain III of ZIKV and other flaviviruses. We show that affinity maturation of the light-chain variable domain is important for strong binding of the recurrent VH3-23/VK1-5 neutralizing Abs to ZIKV envelope protein domain III, and identify interacting residues that contribute to weak, cross-reactive binding to West Nile virus. These findings provide insight into the affinity maturation process and potential cross-reactivity of VH3-23/VK1-5 neutralizing Abs, informing precautions for protein-based vaccines designed to elicit germline versions of neutralizing Abs.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Vírus da Dengue/imunologia , Vírus da Dengue/patogenicidade , Epitopos/imunologia , Células Germinativas/imunologia , Humanos , Recém-Nascido , Domínios Proteicos/imunologia , Vacinas Virais/imunologia , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/patogenicidade , Zika virus/isolamento & purificação , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia
9.
Asian J Androl ; 22(5): 472-480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31696835

RESUMO

Epididymitis can be caused by infectious and noninfectious etiological factors. While microbial infections are responsible for infectious epididymitis, the etiological factors contributing to noninfectious epididymitis remain to be defined. The present study demonstrated that damaged male germ cells (DMGCs) induce epididymitis in mice. Intraperitoneal injection of the alkylating agent busulfan damaged murine male germ cells. Epididymitis was observed in mice 4 weeks after the injection of busulfan and was characterized by massive macrophage infiltration. Epididymitis was coincident with an accumulation of DMGCs in the epididymis. In contrast, busulfan injection into mice lacking male germ cells did not induce epididymitis. DMGCs induced innate immune responses in epididymal epithelial cells (EECs), thereby upregulating the pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß), as well as the chemokines such as monocyte chemotactic protein-1 (MCP-1), monocyte chemotactic protein-5 (MCP-5), and chemokine ligand-10 (CXCL10). These results suggest that male germ cell damage may induce noninfectious epididymitis through the induction of innate immune responses in EECs. These findings provide novel insights into the mechanisms underlying noninfectious epididymitis, which might aid in the diagnosis and treatment of the disease.


Assuntos
Citocinas/metabolismo , Epididimite/imunologia , Epididimite/patologia , Células Germinativas/imunologia , Células Germinativas/metabolismo , Animais , Bussulfano , Movimento Celular , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/metabolismo , Células Germinativas/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quimioatraentes de Monócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Hum Antibodies ; 28(1): 57-64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31356200

RESUMO

BACKGROUND: Cancer-germline genes are a class of genes that are normally expressed in testis, trophoblast and few somatic tissues but abnormally expressed in tumor tissues. Their expression signature indicates that they can induce cellular immune responses, thus being applied as targets in cancer immunotherapy. OBJECTIVES: To obtain the data of cellular immune responses against cancer-germline genes in cancer. METHODS: We searched PubMed/Medline with the key words cancer-germline antigen, cancer-testis antigen, CD4+ T cell, CD8+ T cell and cancer. RESULTS: About 40 cancer-germline genes have been shown to induce T cell specific responses in cancer patients. Melanoma, lung and breast cancer are among the mostly assessed cancer types. Several epitopes have been identified which can be used in immunotherapy of cancer. CONCLUSION: Cellular immune responses against cancer-germline genes are indicative of appropriateness of these genes as therapeutic targets.


Assuntos
Células Germinativas/imunologia , Imunidade Celular/genética , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos/genética , Humanos , Imunoterapia/métodos , Neoplasias/terapia
11.
Front Immunol ; 10: 2064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543879

RESUMO

T cells recognize antigens as peptides bound to major histocompatibility complex (MHC) proteins through T cell receptors (TCRs) on their surface. To recognize a wide range of pathogens, each individual possesses a substantial number of TCRs with an extremely high degree of variability. It remains controversial whether germline-encoded TCR repertoire is shaped by MHC polymorphism and, if so, what is the preference between MHC genetic variants and TCR V gene compatibility. To investigate the "net" genetic association between MHC variations and TRBV genes, we applied quantitative trait locus (QTL) mapping to test the associations between MHC polymorphism and TCR ß chain V (TRBV) genes usage using umbilical cord blood (UCB) samples of 201 Chinese newborns. We found TRBV gene and MHC loci that are predisposed to interact with one another differ from previous conclusions. The majority of MHC amino acid residues associated with the TRBV gene usage show spatial proximities in known structures of TCR-pMHC complexes. These results show for the first time that MHC variants bias TRBV gene usage in UCB of Chinese ancestry and indicate that germline-encoded contacts influence TCR-MHC interactions in intact T cell repertoires.


Assuntos
Sangue Fetal/imunologia , Células Germinativas/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Povo Asiático , Antígenos de Histocompatibilidade/imunologia , Humanos , Recém-Nascido , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
12.
Cell ; 178(4): 1004-1015.e14, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398326

RESUMO

Lassa virus (LASV) causes hemorrhagic fever and is endemic in West Africa. Protective antibody responses primarily target the LASV surface glycoprotein (GPC), and GPC-B competition group antibodies often show potent neutralizing activity in humans. However, which features confer potent and broadly neutralizing antibody responses is unclear. Here, we compared three crystal structures of LASV GPC complexed with GPC-B antibodies of varying neutralization potency. Each GPC-B antibody recognized an overlapping epitope involved in binding of two adjacent GPC monomers and preserved the prefusion trimeric conformation. Differences among GPC-antibody interactions highlighted specific residues that enhance neutralization. Using structure-guided amino acid substitutions, we increased the neutralization potency and breadth of these antibodies to include all major LASV lineages. The ability to define antibody residues that allow potent and broad neutralizing activity, together with findings from analyses of inferred germline precursors, is critical to develop potent therapeutics and for vaccine design and assessment.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células Germinativas/imunologia , Febre Lassa/imunologia , Vírus Lassa/imunologia , Glicoproteínas de Membrana/química , Proteínas do Envelope Viral/química , Animais , Antígenos Virais/imunologia , Chlorocebus aethiops , Drosophila/citologia , Epitopos/química , Epitopos/imunologia , Células HEK293 , Humanos , Febre Lassa/virologia , Glicoproteínas de Membrana/imunologia , Estrutura Secundária de Proteína , Células Vero , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia
13.
Int Immunopharmacol ; 74: 105719, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31272065

RESUMO

Recently cancer/testis antigens (CTA) have gained lots of attention as targets of immune therapy. However, the therapeutic efficacy of the CTAs single-antigen vaccines is not satisfying due to tumor heterogenicity. Therefore, many studies have focused on the enhancement of their efficacy by utilizing rich sources of tumor-associated antigens for anti-cancer vaccination. In the present study, the testicular germ cells and sperm cells as well-known sources of cancer/testis antigens were investigated for anti-4T1 breast cancer vaccination in BALB/c mice. The testicular germ cells (TGCs) and sperm cells were isolated from male BALB/c mice. The definite number of cells were homogenized and mixed with Bacillus Calmette-Guerin (BCG) for vaccination of female BALB/c mice. The treatment groups underwent 3 times of immunizations with one-week intervals and one week after the last injection, all groups were injected with 4T1 cancer cells. The TGCs + BCG (259.7 ±â€¯39 mm3) and Sperm + BCG (426 ±â€¯52 mm3) groups exhibited a significant decrease in the tumors' volume in comparison with BCG (641.3 ±â€¯102 mm3) and no-treatment (788.1 ±â€¯117 mm3) groups. Therefore, the TGCs + BCG immunized mice had the smallest tumors in comparison with all groups (P < 0.05). Also, the vital organs of TGCs + BCG (lungs: 6.8 ±â€¯2, liver: 10.1 ±â€¯2) immunized mice exhibited lowest metastatic burden in comparison with the Sperm + BCG (lungs: 13.5 ±â€¯3, liver: 21.1 ±â€¯4), BCG (lungs: 24.3 ±â€¯4, liver: 33 ±â€¯4), and no-treatment (lungs: 26.5 ±â€¯6, liver: 37.3 ±â€¯3) groups. These observations were inconsistent with the tumor-bearing mice survival evaluations as the TGCs + BCG group had longer mean survival time (79.6 ±â€¯12 days) in comparison with other groups (no-treatment: 49.8 ±â€¯8, BCG: 50.5 ±â€¯10, BCG + Sperm: 64.6 ±â€¯7 days). Therefore, TGCs can be a potential source of antigens for the anti-breast cancer immunization and more investigations are necessary.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Genitália Masculina/patologia , Células Germinativas/imunologia , Inibidores do Crescimento/imunologia , Neoplasias Testiculares/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Neoplasias da Mama/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Neoplasias Testiculares/imunologia , Carga Tumoral , Vacinação
14.
Front Immunol ; 10: 1015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156619

RESUMO

Personalized cancer vaccines hold promises for future cancer therapy. Targeting neoantigens is perceived as more beneficial compared to germline, non-mutated antigens. However, it is a practical challenge to identify and vaccinate patients with neoantigens. Here we asked whether two neoantigens are sufficient, and whether the addition of germline antigens would enhance the therapeutic efficacy. We developed and used a personalized cancer nano-vaccine platform based on virus-like particles loaded with toll-like receptor ligands. We generated three sets of multi-target vaccines (MTV) to immunize against the aggressive B16F10 murine melanoma: one set based on germline epitopes (GL-MTV) identified by immunopeptidomics, another set based on mutated epitopes (Mutated-MTV) predicted by whole exome sequencing and a last set combines both germline and mutated epitopes (Mix-MTV). Our results demonstrate that both germline and mutated epitopes induced protection but the best therapeutic effect was achieved with the combination of both. Our platform is based on Cu-free click chemistry used for peptide-VLP coupling, thus enabling bedside production of a personalized cancer vaccine, ready for clinical translation.


Assuntos
Vacinas Anticâncer/imunologia , Epitopos/genética , Células Germinativas/imunologia , Melanoma/imunologia , Mutação , Neoplasias Cutâneas/imunologia , Vacinação , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Melanoma/patologia , Melanoma/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Medicina de Precisão/métodos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/prevenção & controle , Resultado do Tratamento , Sequenciamento do Exoma
15.
Cancer Immunol Immunother ; 68(6): 897-905, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30863922

RESUMO

Immune-checkpoint inhibition (ICI) treatments improve outcomes for metastatic melanoma; however, > 60% of treated patients do not respond to ICI. Current biomarkers do not reliably explain ICI resistance. Given the link between ICI and autoimmunity, we investigated if genetic susceptibility to autoimmunity modulates ICI efficacy. In 436 patients with metastatic melanoma receiving single line ICI or combination treatment, we tested 25 SNPs, associated with > 2 autoimmune diseases in recent genome-wide association studies, for modulation of ICI efficacy. We found that rs17388568-a risk variant for allergy, colitis and type 1 diabetes-was associated with increased anti-PD-1 response, with significance surpassing multiple testing adjustments (OR 0.26; 95% CI 0.12-0.53; p = 0.0002). This variant maps to a locus of established immune-related genes: IL2 and IL21. Our study provides first evidence that autoimmune genetic susceptibility may modulate ICI efficacy, suggesting that systematic testing of autoimmune risk loci could reveal personalized biomarkers of ICI response.


Assuntos
Doenças Autoimunes/terapia , Biomarcadores Tumorais/genética , Predisposição Genética para Doença/genética , Imunoterapia/métodos , Melanoma/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Biomarcadores Tumorais/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Feminino , Células Germinativas/imunologia , Células Germinativas/metabolismo , Humanos , Interleucina-2/genética , Interleucinas/genética , Masculino , Melanoma/genética , Melanoma/imunologia , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Polimorfismo de Nucleotídeo Único/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Fatores de Risco
16.
Semin Cell Dev Biol ; 89: 24-33, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29522806

RESUMO

Over the last decade, invasive fungal infections have emerged as a growing threat to human health worldwide and novel treatment strategies are urgently needed. In this context, investigations into host-pathogen interactions represent an important and promising field of research. Antigen presenting cells such as macrophages and dendritic cells are strategically located at the frontline of defence against potential invaders. Importantly, these cells express germline encoded pattern recognition receptors (PRRs), which sense conserved entities from pathogens and orchestrate innate immune responses. Herein, we review the latest findings regarding the biology and functions of the different classes of PRRs involved in pathogenic fungal recognition. We also discuss recent literature on PRR collaboration/crosstalk and the mechanisms involved in inhibiting/regulating PRR signalling. Finally, we discuss how the accumulated knowledge on PRR biology, especially Dectin-1, has been used for the design of new immunotherapies against fungal infections.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Infecções Fúngicas Invasivas/genética , Receptores de Reconhecimento de Padrão/genética , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Fungos/imunologia , Fungos/patogenicidade , Células Germinativas/imunologia , Células Germinativas/microbiologia , Humanos , Infecções Fúngicas Invasivas/imunologia , Infecções Fúngicas Invasivas/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Receptores de Reconhecimento de Padrão/imunologia
17.
Andrologia ; 50(11): e13120, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30569647

RESUMO

Antigen presenting cells (APCs) are a critical mediator between innate and adaptive immune response. APCs have diverse functions in physiological and pathological conditions, such as maintenance of tissue homoeostasis, prevention of autoimmunity and defence against pathogenic microorganisms and cancer cells. Dendritic cells (DCs) and macrophages (Mϕs) are "professional" APCs that internalise and process allo- and autoantigens; then, resulting peptides are exhibited together with major histocompatibility complex (MHC) molecules expressed at the cell surface. MHC-antigen complexes are presented to "naïve" T cells, thereby stimulating proliferation and differentiation of effector and regulatory T cells. The aim of this review was to summarise current understanding of DCs and Mϕs in testis and epididymis. Male reproductive tract environment is characterised by contradictory needs for tolerance against autoantigenic germ cells that appear after the establishment of central tolerance, and the capacity to mount pro-inflammatory innate immune responses against a wide array of sexually transmitted pathogens. Therefore, exploration of the role of APCs in male reproductive organs is helpful to understand mechanisms of male infertility associated with disruption of the delicate equilibrium between immune privilege and inflammation.


Assuntos
Células Dendríticas/imunologia , Epididimo/imunologia , Infertilidade Masculina/imunologia , Macrófagos/imunologia , Testículo/imunologia , Autoantígenos/imunologia , Epididimo/citologia , Células Germinativas/imunologia , Humanos , Tolerância Imunológica , Imunidade Inata , Complexo Principal de Histocompatibilidade/imunologia , Masculino , Testículo/citologia
18.
Tumour Biol ; 39(7): 1010428317701309, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28677424

RESUMO

The cancer germline antigens MAGE-A1, MAGE-A3, and NY-ESO-1 can be used to target relapsed or therapy-resistant malignant solid tumors, and previous studies have demonstrated that these antigens can be epigenetically upregulated on the surface of tumor cells following exposure to low-dose demethylating chemotherapy agents, such as decitabine. The extent to which cancer germline antigen cytotoxic T lymphocytes can be reliably expanded from healthy donors has not been well characterized, specifically in terms of whether these T cells consistently kill antigen-bearing targets or simply produce interferon-γ in the presence of the antigen. Cancer germline antigen cytotoxic T lymphocytes were generated using conventional method and high-density lymphocyte culture method. We demonstrate that there is no difference in the extent of antigen-specific killing with or without CD25 depletion when interleukin-21 is added to the cultures. Cancer germline antigen-specific killer cells could be expanded from 8/12 healthy donors using overlapping peptide mixes derived from MAGE-A1, MAGE-A3, and NY-ESO-1 and from 7/9 healthy donors using HLA-restricted epitopes. Furthermore, cytotoxic T lymphocyte derived from 4/5 patients displayed specific cytotoxicity of target cells expressing respective cancer germline antigen and HLA partially matched tumor lines. High-density lymphocyte culture prior to stimulation with cancer germline antigen peptides resulted in antigen-specific cytotoxic T lymphocyte from healthy donors and patients from whom cancer germline antigen cytotoxic T lymphocyte culture with conventional methods was not feasible. These data demonstrate that MAGE-A1-, MAGE-A3-, and NY-ESO-1-specific T cells with antigen-specific cytotoxicity can be cultured from healthy donors and patient-derived cells making adoptive immunotherapy with these cytotoxic T lymphocyte feasible.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva , Antígenos Específicos de Melanoma/imunologia , Proteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/terapia , Antígenos de Neoplasias/genética , Azacitidina/análogos & derivados , Azacitidina/imunologia , Azacitidina/uso terapêutico , Decitabina , Células Dendríticas/imunologia , Epitopos/imunologia , Células Germinativas/imunologia , Humanos , Interferon gama/imunologia , Interleucinas/imunologia , Antígenos Específicos de Melanoma/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
19.
Leukemia ; 29(4): 776-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25486871

RESUMO

This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation.


Assuntos
Células da Medula Óssea/citologia , Células Germinativas/citologia , Células-Tronco Hematopoéticas/citologia , Adulto , Medula Óssea/imunologia , Medula Óssea/metabolismo , Células da Medula Óssea/classificação , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Movimento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Proteínas do Sistema Complemento/genética , Expressão Gênica , Células Germinativas/imunologia , Células Germinativas/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos
20.
Biol Reprod ; 90(2): 38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24403550

RESUMO

Toxoplasma gondii and uropathogenic Escherichia coli (UPEC) may infect the testis and impair testicular function. Mechanisms underlying testicular innate immune response to these two pathogens remain to be clarified. The present study examined the function of TLR11, which can be recognized by T. gondii-derived profilin and UPEC, in initiating innate immune response in male mouse germ cells. TLR11 is predominantly expressed in spermatids. Profilin and UPEC induced the expressions of different inflammatory cytokine profiles in the germ cells. In particular, profilin induced the expressions of macrophage chemotactic protein 1 (MCP1), interleukin 12 (IL12), and interferon gamma (IFNG) through nuclear factor KB (NFKB) activation. UPEC induced the expressions of MCP1, IL12, and IFNG, as well as tumor necrosis factor alpha (TNFA), IL6, and IFNB, through the activation of NFKB, IFN regulatory factor 3, and mitogen-activated protein kinases. Evidence showed that profilin induced the innate response in male germ cells through TLR11 signaling, and UPEC triggered the response through TLR11 and other TLR-signaling pathways. We also provided evidence that local injection of profilin or UPEC induces the innate immune response in the germ cells. Data describe TLR11-mediated innate immune function of male germ cells in response to T. gondii profilin and UPEC stimulations. This system may play a role in testicular defense against T. gondii and UPEC infections in mice.


Assuntos
Imunidade Inata/genética , Espermatozoides/imunologia , Receptores Toll-Like/fisiologia , Animais , Células Cultivadas , Infecções por Escherichia coli/imunologia , Células Germinativas/imunologia , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatozoides/metabolismo , Toxoplasma/imunologia , Toxoplasmose/imunologia , Escherichia coli Uropatogênica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA