Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 636
Filtrar
1.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716725

RESUMO

IgA nephropathy (IgAN) represents the main cause of renal failure, while the precise pathogenetic mechanisms have not been fully determined. Herein, we conducted a cross-species single-cell survey on human IgAN and mouse and rat IgAN models to explore the pathogenic programs. Cross-species single-cell RNA sequencing (scRNA-Seq) revealed that the IgAN mesangial cells (MCs) expressed high levels of inflammatory signatures CXCL12, CCL2, CSF1, and IL-34 and specifically interacted with IgAN macrophages via the CXCL12/CXCR4, CSF1/IL-34/CSF1 receptor, and integrin subunit alpha X/integrin subunit alpha M/complement C3 (C3) axes. IgAN macrophages expressed high levels of CXCR4, PDGFB, triggering receptor expressed on myeloid cells 2, TNF, and C3, and the trajectory analysis suggested that these cells derived from the differentiation of infiltrating blood monocytes. Additionally, protein profiling of 21 progression and 28 nonprogression IgAN samples revealed that proteins CXCL12, C3, mannose receptor C-type 1, and CD163 were negatively correlated with estimated glomerular filtration rate (eGFR) value and poor prognosis (30% eGFR as composite end point). Last, a functional experiment revealed that specific blockade of the Cxcl12/Cxcr4 pathway substantially attenuated the glomerulus and tubule inflammatory injury, fibrosis, and renal function decline in the mouse IgAN model. This study provides insights into IgAN progression and may aid in the refinement of IgAN diagnosis and the optimization of treatment strategies.


Assuntos
Progressão da Doença , Glomerulonefrite por IGA , Macrófagos , Análise de Célula Única , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/patologia , Interleucinas , Macrófagos/imunologia , Macrófagos/metabolismo , Células Mesangiais/patologia , Células Mesangiais/metabolismo , Células Mesangiais/imunologia , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Ratos Wistar
2.
Cell Death Dis ; 15(5): 344, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762508

RESUMO

Lupus nephritis (LN) occurs in 50% of cases of systemic lupus erythematosus (SLE) and is one of the most serious complications that can occur during lupus progression. Mesangial cells (MCs) are intrinsic cells in the kidney that can regulate capillary blood flow, phagocytose apoptotic cells, and secrete vasoactive substances and growth factors. Previous studies have shown that various types of inflammatory cells can activate MCs for hyperproliferation, leading to disruption of the filtration barrier and impairment of renal function in LN. Here, we characterized the heterogeneity of kidney cells of LN mice by single-nucleus RNA sequencing (snRNA-seq) and revealed the interaction between macrophages and MCs through the CXC motif chemokine ligand 12 (CXCL12)/dipeptidyl peptidase 4 (DPP4) axis. In culture, macrophages modulated the proliferation and migration of MCs through this ligand-receptor interaction. In LN mice, treatment with linagliptin, a DPP4 inhibitor, effectively inhibited MC proliferation and reduced urinary protein levels. Together, our findings indicated that targeting the CXCL12/DPP4 axis with linagliptin treatment may serve as a novel strategy for the treatment of LN via the CXCL12/DPP4 axis.


Assuntos
Proliferação de Células , Quimiocina CXCL12 , Dipeptidil Peptidase 4 , Nefrite Lúpica , Macrófagos , Células Mesangiais , Nefrite Lúpica/patologia , Nefrite Lúpica/metabolismo , Animais , Dipeptidil Peptidase 4/metabolismo , Quimiocina CXCL12/metabolismo , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Células Mesangiais/efeitos dos fármacos , Camundongos , Macrófagos/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Feminino , Movimento Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linagliptina/farmacologia , Transdução de Sinais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Camundongos Endogâmicos C57BL
3.
J Diabetes ; 16(6): e13565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751373

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a diabetic complication. LncRNAs are reported to participate in the pathophysiology of DN. Here, the function and mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) in DN were explored. METHODS: Streptozotocin (STZ)-induced DN mouse models and high glucose (HG)-treated human mesangial cells (MCs) were used to detect SNHG14 expression. SNHG14 silencing plasmids were applied to examine the function of SNHG14 on proliferation and fibrosis in HG-treated MCs. Potential targets of SNHG14 were predicted using bioinformatics tools and verified by luciferase reporter, RNA pulldown, and northern blotting assays. The functional role of SNHG14 in DN in vivo was detected by injection with adenoviral vector carrying sh-SNHG14 into DN mice. Serum creatinine, blood urea nitrogen, blood glucose, 24-h proteinuria, relative kidney weight, and renal pathological changes were examined in DN mice. RESULTS: SNHG14 expression was elevated in the kidneys of DN mice and HG-treated MCs. SNHG14 silencing inhibited proliferation and fibrosis of HG-stimulated MCs. SNHG14 bound to miR-30e-5p to upregulate SOX4 expression. In rescue assays, SOX4 elevation diminished the effects of SNHG14 silencing in HG-treated MCs, and SOX4 silencing reversed the effects of SNHG14 overexpression. In in vivo studies, SNHG14 downregulation significantly ameliorated renal injuries and renal interstitial fibrosis in DN mice. CONCLUSIONS: SNHG14 silencing attenuates kidney injury in DN mice and reduces proliferation and fibrotic phenotype of HG-stimulated MCs via the miR-30e-5p/SOX4 axis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Progressão da Doença , MicroRNAs , RNA Longo não Codificante , Fatores de Transcrição SOXC , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Camundongos , MicroRNAs/genética , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Masculino , Inativação Gênica , Fibrose , Proliferação de Células , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL
4.
Toxicol Lett ; 395: 1-10, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458339

RESUMO

The pathogenesis of glomerular diseases is strongly influenced by abnormal extracellular matrix (ECM) deposition in mesangial cells. Dipeptidyl peptidase IV (DPPIV) enzyme family contains DPP8 and DPP9, which are involved in multiple diseases. However, the pathogenic roles of DPP8 and DPP9 in mesangial cells ECM deposition remain unclear. In this study, we observed that DPP8 and DPP9 were significantly increased in glomerular mesangial cells and podocytes in CKD patients compared with healthy individuals, and DPP9 levels were higher in the urine of IgA nephropathy (IgAN) patients than in control urine. Therefore, we further explored the mechanism of DPP8 and DPP9 in mesangial cells and revealed a significant increase in the expression of DPP8 and DPP9 in human mesangial cells (HMCs) following TGF-ß1 stimulation. Silencing DPP8 and DPP9 by siRNAs alleviated the expression of ECM-related proteins including collagen Ⅲ, collagen Ⅳ, fibronectin, MMP2, in TGF-ß1-treated HMCs. Furthermore, DPP8 siRNA and DPP9 siRNA inhibited TGF-ß1-induced phosphorylation of Smad2 and Smad3, as well as the phosphorylation of Akt in HMCs. The findings suggested the inhibition of DPP8/9 may alleviate HMCs ECM deposition induced by TGF-ß1 via suppressing TGF-ß1/Smad and AKT signaling pathways.


Assuntos
Dipeptidases , Células Mesangiais , Humanos , Células Cultivadas , Colágeno/metabolismo , Dipeptidases/metabolismo , Matriz Extracelular/metabolismo , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
5.
Clin Immunol ; 257: 109840, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37939913

RESUMO

IgA nephropathy (IgAN) is an essential cause of kidney failure and end-stage kidney disease worldwide. Mesangial hypercellularity is an important characteristic of IgAN, but the underlying mechanism remains unclear. Endoplasmic reticulum (ER) stress is a series of stress responses to restore the function of endoplasmic reticulum. We aimed to explore how ER stress functioned in kidneys of IgAN. We first examined ER stress in IgAN kidneys in vivo and in vitro, by testing the levels of ER stress associated proteins (BIP, p-eIF2α and ATF4). Our results showed that ER stress was activated in IgAN patients, mice and cell model. ER stress activation was related to the distribution of IgA deposition and the degree of mesangial proliferation. To determine the role of ER stress in mesangial cell (MC) proliferation of IgAN, we then tested the levels of ER stress and MC proliferation (cyclin D1, cell viability and cell cycle) through inhibiting ER stress associated proteins. After inhibiting ER stress associated proteins, ER stress was inactivated and cell proliferation was inhibited in MCs. We also explored the correlation between ER stress in the glomerulus and the clinical outcomes of IgAN patients in a prospective study. Patients with lower expression of p-eIF2α or ATF4 had higher rates of hematuria remission, proteinuria remission and clinical remission. In summary, our work outlines that in IgAN, ER stress mediated by eIF2α/ATF4 pathway promotes MC proliferation via up-regulating the expression of cyclin D1. Furthermore, p-eIF2α and ATF4 in the glomerulus negatively correlate with the clinical remission of IgAN patients.


Assuntos
Glomerulonefrite por IGA , Células Mesangiais , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Estresse do Retículo Endoplasmático , Glomerulonefrite por IGA/metabolismo , Células Mesangiais/metabolismo , Estudos Prospectivos , Transdução de Sinais
6.
J Tradit Chin Med ; 43(6): 1072-1080, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37946469

RESUMO

OBJECTIVE: To explore whether fat mass and obesity associated proteins (FTO) is an important target of Qiteng Xiaozhuo granules (QTXZG,) medicated serum in regulating proliferation and apoptosis of glomerular mesangial cells. METHODS: Medicated serum was obtained from Sprague-Dawley (SD) rats administered intragastrically with QTXZG decoction. The optimal concentration and intervention time of medicated serum were selected with the cell counting kit 8 assay. Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine (EdU) and cell apoptosis was investigated using flow cytometry. The expression of FTO, Proliferating cell nuclear antigen, Cyclin D1, B-cell lymphoma 2 (Bcl2) and BCL2 assaciated X was detected by Western blot and Real-time quantitative polymerase chain reaction, respectively. Quantification of the m6A RNA methylation was utilized to determine the total level of m6A methylation modification. RESULTS: EdU and flow cytometry assays revealed that QTXZG medicated serum can remarkably inhibit proliferation and promote apoptosis of lipopolysaccharide (LPS)-induced human glomerular mesangial cells (HGMCs). The FTO overexpression plasmid could inhibit proliferation and promote apoptosis of LPS-induced HGMCs. The FTO inhibitor (FB23-2) can significantly attenuate the effect of QTZXG medicated serum on inhibiting excessive proliferation and promoting apoptosis. QTXZG medicated serum can significantly increase FTO expression and decrease the level of m6A methylation modification. CONCLUSIONS: FTO is a key target for QTXZG medicated serum in inhibiting excessive proliferation and promoting apoptosis of human glomerular mesangial cells.


Assuntos
Lipopolissacarídeos , Células Mesangiais , Ratos , Animais , Humanos , Células Mesangiais/metabolismo , Ratos Sprague-Dawley , Lipopolissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células , Apoptose , Obesidade/tratamento farmacológico , Obesidade/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
7.
Int Immunopharmacol ; 124(Pt B): 110970, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748221

RESUMO

Rat Thy-1 nephritis (Thy-1N) is an experimental model for studying human mesangioproliferative glomerulonephritis (MsPGN), and its pathological features are glomerular mesangial cell (GMC) proliferation and extracellular matrix (ECM) accumulation. Although we have confirmed that renal lesions of Thy-1N rats are sublytic C5b-9-dependent, and ECM accumulation is related to tissue inhibitor of matrix metalloproteinase (TIMP) inhibiting matrix metalloproteinase (MMP) activity, whether sublytic C5b-9 can induce TIMP production by GMC in Thy-1N rat and the underlying mechanism remains unclear. In the study, we proved that the expressions of TIMP3, krϋppel-like transcription factor 5 (KLF5) and tumor necrosis factor receptor-associated factor 6 (TRAF6) were simultaneously up-regulated both in the renal tissues of Thy-1N rats (in vivo) and in the GMC exposed to sublytic C5b-9 (in vitro). Further mechanism exploration discovered that KLF5 and TRAF6 as two upstream molecules could induce TIMP3 gene transcription through binding to the same region i.e., -1801nt to -1554nt (GGGGAGGGGC) and -228nt to -46nt (GCCCCGCCCC) of TIMP3 promoter. In the process, TRAF6 mediated KLF5 K63-linked ubiquitination at K99 and K100 enhancing KLF5 nuclear localization and binding to TIMP3 promoter, augmenting its gene activation. Furthermore, the experiments in vivo exhibited that silencing KLF5, TRAF6 or TIMP3 gene could markedly lessen renal KLF5 K63-linked ubiquitination or TIMP3 induction, ECM accumulation and other pathological changes of Thy-1N rats. Besides, the positive expressions of above-mentioned these proteins and ECM accumulation and their correlation in the renal tissues of MsPGN patients were also demonstrated. Overall, our findings implicate that KLF5 and TRAF6 play a promoting role in sublytic C5b-9-triggered TIMP3 gene transcription and expression, which might provide a novel mechanistic insight into rat Thy-1N and human MsPGN.


Assuntos
Células Mesangiais , Nefrite , Humanos , Ratos , Animais , Células Mesangiais/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Nefrite/metabolismo , Ubiquitinação , Metaloproteinases da Matriz/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
8.
Phytother Res ; 37(9): 4133-4148, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37189016

RESUMO

Inflammation is a key contributor to diabetic kidney disease pathogenesis, including reactive oxidation stress (ROS)-mediated nuclear factor-κB (NF-κB) signaling pathway. In this study, we examined the effect of Astragaloside IV (AS-IV) on anti-inflammatory and anti-oxidative properties under high glucose (HG) condition and the potential mechanism in glomerular mesangial cells (GMCs). We showed that AS-IV concentration-dependently reduced GMCs proliferation, restrained ROS release and hydrogen peroxide content, and suppressed pro-inflammatory cytokines as well as pro-fibrotic factors expression, which were associated with the inhibition of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling activation. Accordingly, both NF-κB overexpression by using RNA plasmid and Nrf2 gene silencing by using RNA interference weakened the ability of AS-IV to ameliorate HG-induced oxidative stress, inflammation, and cell proliferation. Furthermore, phosphatidylinositide 3-kinases (PI3K)/serine/threonine protein kinase (Akt) and extracellular regulated protein kinases (ERK) signaling pathway regulated the process of AS-IV-induced Nrf2 activation and antioxidant capacity, which evidenced by using PI3K inhibitor LY294002 or ERK inhibitor PD98059 that largely abolished the AS-IV efficacy. Taken together, these results indicated that AS-IV protected against HG-induced GMCs damage by inhibiting ROS/NF-kB-induced increases of inflammatory cytokines, fibrosis biomarkers, and cell proliferation via up-regulation of Nrf2-dependent antioxidant enzyme expression, which were mediated by PI3K/Akt and ERK signaling pathway activation.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Células Mesangiais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinase/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Glucose/metabolismo , Inflamação/metabolismo
9.
J Am Soc Nephrol ; 34(5): 809-828, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724799

RESUMO

SIGNIFICANCE STATEMENT: Mesangial cells (MCs) in the kidney are essential to maintaining glomerular integrity, and their impairment leads to major glomerular diseases including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying mechanism is poorly understood. We show that YAP/TAZ are increased in MCs of patients with DN and two animal models of DN. High glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse MCs recapitulates the hallmarks of DN. Activated YAP/TAZ bind and stabilize N-Myc, one of the Myc family. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and to MC impairments. Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis. BACKGROUND: Mesangial cells (MCs) in the kidney are central to maintaining glomerular integrity, and their impairment leads to major glomerular diseases, including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying molecular mechanism is poorly understood. METHODS: Immunolocalization of YAP/TAZ and pathological features of PDGFRß + MCs were analyzed in the glomeruli of patients with DN, in Zucker diabetic fatty rats, and in Lats1/2i ΔPß mice. RiboTag bulk-RNA sequencing and transcriptomic analysis of gene expression profiles of the isolated MCs from control and Lats1/2iΔPß mice were performed. Immunoprecipitation analysis and protein stability of N-Myc were performed by the standard protocols. RESULTS: YAP and TAZ, the final effectors of the Hippo pathway, are highly increased in MCs of patients with DN and in Zucker diabetic fatty rats. Moreover, high glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse model MCs recapitulates the hallmarks of DN, including excessive proliferation of MCs and extracellular matrix deposition, endothelial cell impairment, glomerular sclerosis, albuminuria, and reduced glomerular filtration rate. Mechanistically, activated YAP/TAZ bind and stabilize N-Myc protein, one of the Myc family of oncogenes. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and eventually to MC impairments and DN pathogenesis. CONCLUSIONS: Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Camundongos , Animais , Células Mesangiais/metabolismo , Nefropatias Diabéticas/metabolismo , Glicemia/metabolismo , Ratos Zucker , Proteínas Serina-Treonina Quinases/metabolismo
10.
Chem Biol Drug Des ; 101(4): 819-828, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36404132

RESUMO

As one of complications of diabetes mellitus, diabetic nephropathy is related to renal dysfunction. Membrane metalloendopeptidase (MME) is associated with the pathogenesis of diabetic nephropathy and exerts a protective function in high glucose (HG)-treated podocytes. Salviolone, one of important bioactive components from Salvia miltiorrhiza, possesses an anti-inflammatory activity. However, the roles of salviolone in renal mesangial cell dysfunction under HG condition remain unknown. The targets of salviolone in diabetic nephropathy were predicted by bioinformatics analysis. Relative mRNA level of MME was detected by qPCR in HG-treated human renal mesangial cells (HRMCs). Cell viability was analyzed using CCK-8 assay. Cell proliferation was investigated by EdU staining. Oxidative stress was evaluated by detection of ROS generation and levels of oxidative stress-related biomarkers. The inflammatory cytokines and fibrosis-related biomarkers were examined by ELISA. Our results showed that MME expression was decreased in diabetic nephropathy and HG-treated HRMCs. Salviolone increased MME level in HG-treated HRMCs. Salviolone mitigated HG-induced HRMC proliferation by increasing MME expression. Salviolone attenuated HG-induced ROS generation, MDA level increase, and SOD activity decrease through upregulating MME expression. Moreover, salviolone suppressed HG-induced increase of levels of TNF-α, IL-1ß, IL-6, fibronectin, and collagen IV through upregulating MME expression. In conclusion, salviolone attenuates proliferation, oxidative stress, inflammation, and fibrosis in HG-treated HRMCs through upregulating MME expression.


Assuntos
Nefropatias Diabéticas , Células Mesangiais , Humanos , Proliferação de Células , Fibrose , Glucose/metabolismo , Inflamação/metabolismo , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Neprilisina/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Braz J Med Biol Res ; 55: e12252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36383801

RESUMO

Nanosized copper particles (nano Cu) have been incorporated into products in multiple industries, although studies have demonstrated that these particles are nephrotoxic. We investigated the cytotoxicity of nanosized copper particles on rat mesangial cells and measured rates of apoptosis, the expression of caspase-3, and generation of reactive oxygen species. We also measured autophagy through the acridine orange (AO) staining and expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62 to screen the underlying mechanism of toxicity. Nanosized copper particles inhibited mesangial cell viability, up-regulated the activity of caspase-3, and increased the rates of apoptosis and the generation of reactive oxygen species in a concentration-dependent manner. Exposure to nano Cu increased the formation of acidic vesicular organelles and the expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62, and treatment with an autophagy inhibitor reduced nephrotoxicity. This indicated that the autophagy pathway is involved in the toxicity induced by nanosized copper particles to mesangial cells. This finding can contribute to the development of safety guidelines for the evaluation of nanomaterials in the future.


Assuntos
Cobre , Células Mesangiais , Ratos , Animais , Caspase 3 , Cobre/toxicidade , Cobre/metabolismo , Células Mesangiais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Beclina-1/metabolismo , Autofagia , Apoptose , Proteínas Associadas aos Microtúbulos/metabolismo , Linhagem Celular Tumoral
12.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232514

RESUMO

Hyperglycemia, oxidative stress, and inflammation play key roles in the onset and development of diabetic complications such as diabetic nephropathy (DN). Diphenyl diselenide (DPDS) is a stable and simple organic selenium compound with anti-hyperglycemic, anti-inflammatory, and anti-oxidative activities. Nevertheless, in vitro, the role and molecular mechanism of DPDS on DN remains unknown. Therefore, we investigated the effects of DPDS on tert-butyl hydrogen peroxide (t-BHP)-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammation in rat glomerular mesangial (HBZY-1) cells and explored the underlying mechanisms. DPDS attenuated t-BHP-induced cytotoxicity, concurrent with decreased intracellular ROS and MDA contents and increased SOD activity and GSH content. Moreover, DPDS augmented the protein and mRNA expression of Nrf2, HO-1, NQO1, and GCLC in t-BHP-stimulated HBZY-1 cells. In addition, DPDS suppressed LPS-induced elevations of intracellular content and mRNA expression of interleukin (IL)-6, IL-1ß and TNF-α. Furthermore, LPS-induced NFκB activation and high phosphorylation of JNK and ERK1/2 were markedly suppressed by DPDS in HBZY-1 cells. In summary, these data demonstrated that DPDS improves t-BHP-induced oxidative stress by activating the Nrf2/Keap1 pathway, and also improves LPS-induced inflammation via inhibition of the NFκB/MAPK pathways in HBZY-1 cells, suggesting that DPDS has the potential to be developed as a candidate for the prevention and treatment of DN.


Assuntos
Nefropatias Diabéticas , Selênio , Animais , Anti-Inflamatórios/farmacologia , Derivados de Benzeno , Nefropatias Diabéticas/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipoglicemiantes/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Células Mesangiais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Compostos Organosselênicos , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Selênio/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , terc-Butil Hidroperóxido/farmacologia
13.
Life Sci ; 311(Pt A): 121070, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36279969

RESUMO

Mesangial cells are modified smooth muscle cells with the ability to modulate glomerular filtration rate (GFR) - a marker of ischemic renal injury. We aimed to determine the role of intracellular O-GlcNAc levels and ER stress in mesangial cells subjected to ATP depletion. Immortalized mouse mesangial cells culture was incubated for 30, 45 and 60 min, or not (control group) with a buffer containing antimycin A and 2-deoxy-d-glucose, inhibitors of ATP synthesis. Mesangial cells subjected to ATPdepletion for 45 min followed by 24 h reperfusion (H45/R24 mesangial cells) promoted 30 % of cell death mainly by necrosis. ATP depletion was sustained throughout reperfusion until 24 h. Resistant H45/R24 mesangial cells presented: (i) low protein content of GFAT, OGT and OGA, however no modification of total O-GlcNAcylation and (ii) attenuation of protein synthesis related to a UPR response mediated by GRP78/PERK/p-eIF2α and a decrease in the protein content of ATF4. The lower activation of apoptosis was related to no alterations in the levels of CHOP and activated caspase 3. We also detected activation of intracellular mediators of necroptosis: IRE1, ATF6, GADD34, ERO1, Mdm2 and P53. The resistant H45/R24 mesangial cells can replenish the cell culture dish indicating that the UPR adaptative response permitted cell survival. Successive ATP depletion induced lower levels O-GlcNAcylation leading to a 30 % cell death in every H/R process. We concluded that lower levels of O-GlcNAcylation and the GRP78/PERK/p-eIF2α UPR response are the molecular mechanisms involved in H45/R24 mesangial cell survival.


Assuntos
Estresse do Retículo Endoplasmático , Células Mesangiais , Camundongos , Animais , Células Mesangiais/metabolismo , eIF-2 Quinase/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Apoptose , Trifosfato de Adenosina
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(9): 794-800, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36082709

RESUMO

Objective To explore the effect of Potentilla anserina polysaccharide on the injury of glomerular mesangial cells induced by high glucose and its possible mechanism. Methods High glucose was used to induce SV40 MES 13 mouse glomerular mesangial cells to establish a cell injury model, and 0.1, 0.3, 0.6 mg/mL Potentilla anserina polysaccharides were added to treat the cells. pcDNA and pcDNA-circ-AKT3 were respectively transfected into mesangial cells induced by high glucose. si-NC and si-circ-AKT3 were transfected into glomerular mesangial cells induced by high glucose and Potentilla anserina polysaccharide was added to the cells. The levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialedhyde (MDA) were tested according to the kit. The levels of IL-6, IL-18 and monocyte chemoattractant protein-1 (MCP-1) were detected by ELISA. Flow cytometry was used to detect the apoptosis rate. The real time quantitative PCR was used to detect the expression of circ-AKT3 mRNA. Results In glomerular mesangial cells induced by high glucose, the levels of SOD and GSH-Px were decreased, but the levels of MDA, IL-6, IL-18, and MCP-1 were increased, along with the increased rate of apoptosis, and decreased the expression level of circ-AKT3. After Potentilla anserina polysaccharide treatment of glomerular mesangial cells induced by high glucose, the levels of SOD and GSH-Px were increased whereas the levels of MDA, IL-6, IL-18, and MCP-1 were decreased, together with decreased apoptosis rate, and increased expression level of circ-AKT3. The difference was significant among different concentration groups. pcDNA-circ-AKT3 was transfected into glomerular mesangial cells induced by high glucose, followed by the increased levels of SOD and GSH-Px, with the decreased levels of MDA, IL-6, IL-18 and MCP-1. The apoptosis rate was also reported decreased. Interference of circ-AKT3 expression, on the other hand, can restore the protective effect of Potentilla anserina polysaccharide on high glucose induced glomerular mesangial cell injury. Conclusion Potentilla anserina polysaccharide can alleviate the damage of glomerular mesangial cells induced by high glucose by increasing the expression of circ-AKT3.


Assuntos
Células Mesangiais , Potentilla , Animais , Glucose/metabolismo , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Células Mesangiais/metabolismo , Camundongos , Polissacarídeos/farmacologia , Potentilla/metabolismo , Superóxido Dismutase/metabolismo
15.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077498

RESUMO

Connexin 43 (Cx43) is expressed in kidney tissue where it forms hemichannels and gap junction channels. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remains unknown. Here, analysis of ethidium uptake and thiobarbituric acid reactive species revealed that treatment with TNF-α plus IL-1ß increases Cx43 hemichannel activity and oxidative stress in MES-13 cells (a cell line derived from mesangial cells), and in primary mesangial cells. The latter was also accompanied by a reduction in gap junctional communication, whereas Western blotting assays showed a progressive increase in phosphorylated MYPT (a target of RhoA/ROCK) and Cx43 upon TNF-α/IL-1ß treatment. Additionally, inhibition of RhoA/ROCK strongly antagonized the TNF-α/IL-1ß-induced activation of Cx43 hemichannels and reduction in gap junctional coupling. We propose that activation of Cx43 hemichannels and inhibition of cell-cell coupling during pro-inflammatory conditions could contribute to oxidative stress and damage of mesangial cells via the RhoA/ROCK pathway.


Assuntos
Conexina 43 , Fator de Necrose Tumoral alfa , Conexina 43/genética , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Células Mesangiais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
16.
Int J Biol Sci ; 18(14): 5438-5458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147466

RESUMO

Immunoglobulin A nephropathy (IgAN) is the commonest primary glomerulonephritis, and a major cause of end-stage renal disease; however, its pathogenesis requires elucidation. Here, a hub gene, FABP1, and signaling pathway, PPARα, were selected as key in IgAN pathogenesis by combined weighted gene correlation network analysis of clinical traits and identification of differentially expressed genes from three datasets. FABP1 and PPARα levels were lower in IgAN than control kidney, and linearly positively correlated with one another, while FABP1 levels were negatively correlated with urinary albumin-to-creatinine ratio, and GPX4 levels were significantly decreased in IgAN. In human mesangial cells (HMCs), PPARα and FABP1 levels were significantly decreased after Gd-IgA1 stimulation and mitochondria appeared structurally damaged, while reactive oxygen species (ROS) and malondialdehyde (MDA) were significantly increased, and glutathione and GPX4 decreased, relative to controls. GPX4 levels were decreased, and those of ACSL4 increased on siPPARα and siFABP1 siRNA treatment. In PPARα lentivirus-transfected HMCs stimulated by Gd-IgA1, ROS, MDA, and ACSL4 were decreased; glutathione and GPX4, and immunofluorescence colocalization of PPARα and GPX4, increased; and damaged mitochondria reduced. Hence, PPARα pathway downregulation can reduce FABP1 expression, affecting GPX4 and ACSL4 levels, causing HMC ferroptosis, and contributing to IgAN pathogenesis.


Assuntos
Proteínas de Ligação a Ácido Graxo , Ferroptose , Glomerulonefrite por IGA , Albuminas/metabolismo , Creatinina , Regulação para Baixo/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/metabolismo , Glutationa/metabolismo , Humanos , Imunoglobulina A/genética , Imunoglobulina A/metabolismo , Malondialdeído , Células Mesangiais/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo
17.
Cells ; 11(12)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740998

RESUMO

Axl receptor tyrosine kinase expression in the kidney contributes to a variety of inflammatory renal disease by promoting glomerular proliferation. Axl expression in the kidney is negligible in healthy individuals but upregulated under inflammatory conditions. Little is known about Axl transcriptional regulation. We analyzed the 4.4 kb mouse Axl promoter region and found that many transcription factor (TF)-binding sites and regulatory elements are located within a 600 bp fragment proximal to the translation start site. Among four TFs (Sp1, Ap1, MZF1, and Ep300) identified, Sp1 was the most potent TF that promotes Axl expression. Luciferase assays confirmed the siRNA results and revealed additional mechanisms that regulate Axl expression, including sequences encoding a 5'-UTR mini-intron and potential G-quadruplex forming regions. Deletion of the Axl 5'-UTR mini-intron resulted in a 3.2-fold increases in luciferase activity over the full-length UTR (4.4 kb Axl construct). The addition of TMPyP4, a G-quadruplex stabilizer, resulted in a significantly decreased luciferase activity. Further analysis of the mouse Axl 3'-UTR revealed a miRNA-34a binding site, which inversely regulates Axl expression. The inhibitory role of miRNA-34a in Axl expression was demonstrated in mesangial cells using miRNA-34a mimicry and in primary kidney cells with IL-6 stimulated STAT3 activation. Taken together, Axl expression in mouse kidney is synergistically regulated by multiple factors, including TFs and secondary structures, such as mini-intron and G-quadruplex. A unique IL6/STAT3/miRNA-34a pathway was revealed to be critical in inflammatory renal Axl expression.


Assuntos
Células Mesangiais , MicroRNAs , Animais , Linhagem Celular Tumoral , Interleucina-6 , Células Mesangiais/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno
18.
BMC Nephrol ; 23(1): 211, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710406

RESUMO

BACKGROUND: T-type calcium channels (TTCC) are low voltage activated channels that are widely expressed in the heart, smooth muscle and neurons. They are known to impact on cell cycle progression in cancer and smooth muscle cells and more recently, have been implicated in rat and human mesangial cell proliferation. The aim of this study was to investigate the roles of the different isoforms of TTCC in mouse mesangial cells to establish which may be the best therapeutic target for treating mesangioproliferative kidney diseases.  METHODS: In this study, we generated single and double knockout (SKO and DKO) clones of the TTCC isoforms CaV3.1 and CaV3.2 in mouse mesangial cells using CRISPR-cas9 gene editing. The downstream signals linked to this channel activity were studied by ERK1/2 phosphorylation assays in serum, PDGF and TGF-ß1 stimulated cells. We also examined their proliferative responses in the presence of the TTCC inhibitors mibefradil and TH1177. RESULTS: We demonstrate a complete loss of ERK1/2 phosphorylation in response to multiple stimuli (serum, PDGF, TGF-ß1) in CaV3.1 SKO clone, whereas the CaV3.2 SKO clone retained these phospho-ERK1/2 responses. Stimulated cell proliferation was not profoundly impacted in either SKO clone and both clones remained sensitive to non-selective TTCC blockers, suggesting a role for more than one TTCC isoform in cell cycle progression. Deletion of both the isoforms resulted in cell death. CONCLUSION: This study confirms that TTCC are expressed in mouse mesangial cells and that they play a role in cell proliferation. Whereas the CaV3.1 isoform is required for stimulated phosphorylation of ERK1/2, the Ca V3.2 isoform is not. Our data also suggest that neither isoform is necessary for cell proliferation and that the anti-proliferative effects of mibefradil and TH1177 are not isoform-specific. These findings are consistent with data from in vivo rat mesangial proliferation Thy1 models and support the future use of genetic mouse models to test the therapeutic actions of TTCC inhibitors.


Assuntos
Canais de Cálcio Tipo T , Células Mesangiais , Animais , Humanos , Células Mesangiais/metabolismo , Mibefradil/metabolismo , Mibefradil/farmacologia , Camundongos , Fosforilação , Ratos , Fator de Crescimento Transformador beta1/metabolismo
19.
Am J Physiol Cell Physiol ; 323(1): C226-C235, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704698

RESUMO

Neogenin, a transmembrane receptor, was recently found in kidney cells and immune cells. However, the function of neogenin signaling in kidney is not clear. Mesangial cells (MCs) are a major source of extracellular matrix (ECM) proteins in glomerulus. In many kidney diseases, MCs are impaired and manifest myofibroblast phenotype. Overproduction of ECM by the injured MCs promotes renal injury and accelerates the progression of kidney diseases. The present study aimed to determine if neogenin receptor was expressed in MCs and if the receptor signaling regulated ECM protein production by MCs. We showed that neogenin was expressed in the glomerular MCs. Deletion of neogenin using CRISPR/Cas9 lentivirus system significantly reduced the abundance of fibronectin, an ECM protein. Netrin-1, a ligand for neogenin, also significantly decreased fibronectin production by MCs and decreased neogenin protein expression in MCs. Furthermore, treatment of human MCs with high glucose (HG, 25 mM) significantly increased the protein abundance of neogenin as early as 8 h. Consistently, neogenin expression in glomerulus significantly increased in the eNOS-/-db/db diabetic mice starting as early as the age of 8 wk and this increase sustained at least to the age of 24 wk. We further found that the HG-induced increase in neogenin abundance was blunted by antioxidant PEG-catalase and N-acetyl cysteine. Taken together, our results suggest a new mechanism of regulation of fibronectin production by MCs. This previously unrecognized neogenin-fibronectin pathway may contribute to glomerular injury responses during the course of diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Proteínas de Membrana , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Glucose/metabolismo , Proteínas de Membrana/genética , Células Mesangiais/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
20.
Clin Exp Nephrol ; 26(10): 943-954, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35678923

RESUMO

BACKGROUND: Circular RNA (circRNA) is widely shown to be associated with the development of diabetic nephropathy (DN). Our study aimed to further explore the role of circ_0000064 and provide a new mechanism for its action in DN. METHODS: Cell models of DN in vitro were constructed by treating human renal mesangial cells (HRMCs) with high glucose (HG). The expression of circ_0000064, microRNA-424-5p (miR-424-5p) and Wnt family member 2B (WNT2B) mRNA was detected by quantitative real-time PCR (qPCR). Cell proliferation was assessed by CCK-8 assay and EdU assay. Cell cycle was characterized by DNA content using flow cytometry. The releases of pro-inflammatory factors were checked using commercial ELISA kits. The expression of cell cycle- and fibrosis-associated proteins was detected by western blot. The interplays between miR-424-5p and circ_0000064 or WNT2B were verified by dual-luciferase reporter assay and RIP assay. RESULTS: Circ_0000064 and WNT2B were upregulated, while miR-424-5p was downregulated in HG-treated HRMCs. Circ_0000064 knockdown largely attenuated HG-induced proliferation, inflammatory responses and extracellular matrix (ECM) accumulation in HRMCs, and miR-424-5p deficiency reversed the role of circ_0000064 knockdown. MiR-424-5p was a target of circ_0000064, and miR-424-5p directly bound to WNT2B. MiR-424-5p restoration alleviated HG-induced proliferation, inflammatory responses and ECM accumulation in HRMCs, and WNT2B overexpression partially abolished the effects of miR-424-5p. CONCLUSION: Circ_0000064 knockdown ameliorated HG-induced HRMC dysfunctions through miR-424-5p enrichment-mediated WNT2B inhibition, hinting that circ_0000064 contributed to DN development.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , RNA Circular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , DNA , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Matriz Extracelular/metabolismo , Glucose/toxicidade , Glicoproteínas , Humanos , Inflamação/genética , Inflamação/prevenção & controle , Células Mesangiais/metabolismo , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro , Proteínas Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA