Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.152
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 15: 1380065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726005

RESUMO

Introduction: Solid cancers Myeloid cells are prevalent in solid cancers, but they frequently exhibit an anti-inflammatory pro-tumor phenotype that contribute to the immunosuppressive tumor microenvironment (TME), which hinders the effectiveness of cancer immunotherapies. Myeloid cells' natural ability of tumor trafficking makes engineered myeloid cell therapy an intriguing approach to tackle the challenges posed by solid cancers, including tumor infiltration, tumor cell heterogenicity and the immunosuppressive TME. One such engineering approach is to target the checkpoint molecule PD-L1, which is often upregulated by solid cancers to evade immune responses. Method: Here we devised an adoptive cell therapy strategy based on myeloid cells expressing a Chimeric Antigen Receptor (CAR)-like immune receptor (CARIR). The extracellular domain of CARIR is derived from the natural inhibitory receptor PD-1, while the intracellular domain(s) are derived from CD40 and/or CD3ζ. To assess the efficacy of CARIR-engineered myeloid cells, we conducted proof-of-principle experiments using co-culture and flow cytometry-based phagocytosis assays in vitro. Additionally, we employed a fully immune-competent syngeneic tumor mouse model to evaluate the strategy's effectiveness in vivo. Result: Co-culturing CARIR-expressing human monocytic THP-1 cells with PD-L1 expressing target cells lead to upregulation of the costimulatory molecule CD86 along with expression of proinflammatory cytokines TNF-1α and IL-1ß. Moreover, CARIR expression significantly enhanced phagocytosis of multiple PD-L1 expressing cancer cell lines in vitro. Similar outcomes were observed with CARIR-expressing human primary macrophages. In experiments conducted in syngeneic BALB/c mice bearing 4T1 mammary tumors, infusing murine myeloid cells that express a murine version of CARIR significantly slowed tumor growth and prolonged survival. Conclusion: Taken together, these results demonstrate that adoptive transfer of PD-1 CARIR-engineered myeloid cells represents a promising strategy for treating PD-L1 positive solid cancers.


Assuntos
Antígeno B7-H1 , Imunoterapia Adotiva , Células Mieloides , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Camundongos , Humanos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Feminino , Neoplasias/imunologia , Neoplasias/terapia
2.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703051

RESUMO

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Assuntos
Linfócitos do Interstício Tumoral , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Supressoras Mieloides/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia , Tolerância Imunológica , Animais , Macrófagos Associados a Tumor/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Mieloides/imunologia
3.
Front Immunol ; 15: 1360412, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745652

RESUMO

A robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by Mycobacterium tuberculosis (Mtb). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during Mtb infection, a key immune checkpoint for myeloid cells. Expression of CD200R was consistently downregulated on CD14+ monocytes in the blood of subjects with active TB compared to healthy controls, suggesting potential modulation of this important anti-inflammatory pathway. In homogenized TB-diseased lung tissue, CD200R expression was highly variable on monocytes and CD11b+HLA-DR+ macrophages but tended to be lowest in the most diseased lung tissue sections. This observation was confirmed by fluorescent microscopy, which showed the expression of CD200R on CD68+ macrophages surrounding TB lung granuloma and found expression levels tended to be lower in macrophages closest to the granuloma core and inversely correlated with lesion size. Antibody blockade of CD200R in a biomimetic 3D granuloma-like tissue culture system led to significantly increased Mtb growth. In addition, Mtb infection in this system reduced gene expression of CD200R. These findings indicate that regulation of myeloid cells via CD200R is likely to play an important part in the immune response to TB and may represent a potential target for novel therapeutic intervention.


Assuntos
Mycobacterium tuberculosis , Células Mieloides , Tuberculose Pulmonar , Humanos , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Receptores de Orexina/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Adulto , Feminino , Masculino , Antígenos CD/metabolismo , Antígenos CD/genética , Pessoa de Meia-Idade , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Pulmão/metabolismo , Biomimética , Monócitos/imunologia , Monócitos/metabolismo
4.
J Immunol ; 212(11): 1766-1781, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683120

RESUMO

Better understanding of the host responses to Mycobacterium tuberculosis infections is required to prevent tuberculosis and develop new therapeutic interventions. The host transcription factor BHLHE40 is essential for controlling M. tuberculosis infection, in part by repressing Il10 expression, where excess IL-10 contributes to the early susceptibility of Bhlhe40-/- mice to M. tuberculosis infection. Deletion of Bhlhe40 in lung macrophages and dendritic cells is sufficient to increase the susceptibility of mice to M. tuberculosis infection, but how BHLHE40 impacts macrophage and dendritic cell responses to M. tuberculosis is unknown. In this study, we report that BHLHE40 is required in myeloid cells exposed to GM-CSF, an abundant cytokine in the lung, to promote the expression of genes associated with a proinflammatory state and better control of M. tuberculosis infection. Loss of Bhlhe40 expression in murine bone marrow-derived myeloid cells cultured in the presence of GM-CSF results in lower levels of proinflammatory associated signaling molecules IL-1ß, IL-6, IL-12, TNF-α, inducible NO synthase, IL-2, KC, and RANTES, as well as higher levels of the anti-inflammatory-associated molecules MCP-1 and IL-10 following exposure to heat-killed M. tuberculosis. Deletion of Il10 in Bhlhe40-/- myeloid cells restored some, but not all, proinflammatory signals, demonstrating that BHLHE40 promotes proinflammatory responses via both IL-10-dependent and -independent mechanisms. In addition, we show that macrophages and neutrophils within the lungs of M. tuberculosis-infected Bhlhe40-/- mice exhibit defects in inducible NO synthase production compared with infected wild-type mice, supporting that BHLHE40 promotes proinflammatory responses in innate immune cells, which may contribute to the essential role for BHLHE40 during M. tuberculosis infection in vivo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Interleucina-10 , Camundongos Knockout , Células Mieloides , Animais , Camundongos , Interleucina-10/imunologia , Interleucina-10/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Células Mieloides/imunologia , Mycobacterium tuberculosis/imunologia , Macrófagos/imunologia , Proteínas de Homeodomínio/genética , Camundongos Endogâmicos C57BL , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células Dendríticas/imunologia , Pulmão/imunologia , Tuberculose/imunologia , Polaridade Celular , Células Cultivadas
5.
Aging (Albany NY) ; 16(9): 7704-7732, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38683136

RESUMO

BACKGROUND: Liver metastasis (LM) stands as a primary cause of mortality in metastatic colorectal cancer (mCRC), posing a significant impediment to long-term survival benefits from targeted therapy and immunotherapy. However, there is currently a lack of comprehensive investigation into how senescent and exhausted immune cells contribute to LM. METHODS: We gathered single-cell sequencing data from primary colorectal cancer (pCRC) and their corresponding matched LM tissues from 16 mCRC patients. In this study, we identified senescent and exhausted immune cells, performed enrichment analysis, cell communication, cell trajectory, and cell-based in vitro experiments to validate the results of single-cell multi-omics. This process allowed us to construct a regulatory network explaining the occurrence of LM. Finally, we utilized weighted gene co-expression network analysis (WGCNA) and 12 machine learning algorithms to create prognostic risk model. RESULTS: We identified senescent-like myeloid cells (SMCs) and exhausted T cells (TEXs) as the primary senescent and exhausted immune cells. Our findings indicate that SMCs and TEXs can potentially activate transcription factors downstream via ANGPTL4-SDC1/SDC4, this activation plays a role in regulating the epithelial-mesenchymal transition (EMT) program and facilitates the development of LM, the results of cell-based in vitro experiments have provided confirmation of this conclusion. We also developed and validated a prognostic risk model composed of 12 machine learning algorithms. CONCLUSION: This study elucidates the potential molecular mechanisms underlying the occurrence of LM from various angles through single-cell multi-omics analysis in CRC. It also constructs a network illustrating the role of senescent or exhausted immune cells in regulating EMT.


Assuntos
Senescência Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Análise de Célula Única , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Masculino , Feminino , Prognóstico , Regulação Neoplásica da Expressão Gênica , Linfócitos T/imunologia
6.
Front Immunol ; 15: 1365127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665915

RESUMO

Conventionally, immunity in humans has been classified as innate and adaptive, with the concept that only the latter type has an immunological memory/recall response against specific antigens or pathogens. Recently, a new concept of trained immunity (a.k.a. innate memory response) has emerged. According to this concept, innate immune cells can exhibit enhanced responsiveness to subsequent challenges, after initial stimulation with antigen/pathogen. Thus, trained immunity enables the innate immune cells to respond robustly and non-specifically through exposure or re-exposure to antigens/infections or vaccines, providing enhanced resistance to unrelated pathogens or reduced infection severity. For example, individuals vaccinated with BCG to protect against tuberculosis were also protected from malaria and SARS-CoV-2 infections. Epigenetic modifications such as histone acetylation and metabolic reprogramming (e.g. shift towards glycolysis) and their inter-linked regulations are the key factors underpinning the immune activation of trained cells. The integrated metabolic and epigenetic rewiring generates sufficient metabolic intermediates, which is crucial to meet the energy demand required to produce proinflammatory and antimicrobial responses by the trained cells. These factors also determine the efficacy and durability of trained immunity. Importantly, the signaling pathways and regulatory molecules of trained immunity can be harnessed as potential targets for developing novel intervention strategies, such as better vaccines and immunotherapies against infectious (e.g., sepsis) and non-infectious (e.g., cancer) diseases. However, aberrant inflammation caused by inappropriate onset of trained immunity can lead to severe autoimmune pathological consequences, (e.g., systemic sclerosis and granulomatosis). In this review, we provide an overview of conventional innate and adaptive immunity and summarize various mechanistic factors associated with the onset and regulation of trained immunity, focusing on immunologic, metabolic, and epigenetic changes in myeloid cells. This review underscores the transformative potential of trained immunity in immunology, paving the way for developing novel therapeutic strategies for various infectious and non-infectious diseases that leverage innate immune memory.


Assuntos
Epigênese Genética , Imunidade Inata , Memória Imunológica , Células Mieloides , Animais , Humanos , Células Mieloides/imunologia , Imunidade Treinada
7.
Front Immunol ; 15: 1373745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680500

RESUMO

Background: Protective immunity against intestinal helminths requires induction of robust type-2 immunity orchestrated by various cellular and soluble effectors which promote goblet cell hyperplasia, mucus production, epithelial proliferation, and smooth muscle contractions to expel worms and re-establish immune homeostasis. Conversely, defects in type-2 immunity result in ineffective helminth clearance, persistent infection, and inflammation. Macrophages are highly plastic cells that acquire an alternatively activated state during helminth infection, but they were previously shown to be dispensable for resistance to Trichuris muris infection. Methods: We use the in vivo mouse model A20myel-KO, characterized by the deletion of the potent anti-inflammatory factor A20 (TNFAIP3) specifically in the myeloid cells, the excessive type-1 cytokine production, and the development of spontaneous arthritis. We infect A20myel-KO mice with the gastrointestinal helminth Trichuris muris and we analyzed the innate and adaptive responses. We performed RNA sequencing on sorted myeloid cells to investigate the role of A20 on macrophage polarization and type-2 immunity. Moreover, we assess in A20myel-KO mice the pharmacological inhibition of type-1 cytokine pathways on helminth clearance and the infection with Salmonella typhimurium. Results: We show that proper macrophage polarization is essential for helminth clearance, and we identify A20 as an essential myeloid factor for the induction of type-2 immune responses against Trichuris muris. A20myel-KO mice are characterized by persistent Trichuris muris infection and intestinal inflammation. Myeloid A20 deficiency induces strong classical macrophage polarization which impedes anti-helminth type-2 immune activation; however, it promotes detrimental Th1/Th17 responses. Antibody-mediated neutralization of the type-1 cytokines IFN-γ, IL-18, and IL-12 prevents myeloid-orchestrated Th1 polarization and re-establishes type-2-mediated protective immunity against T. muris in A20myel-KO mice. In contrast, the strong Th1-biased immunity in A20myel-KO mice offers protection against Salmonella typhimurium infection. Conclusions: We hereby identify A20 as a critical myeloid factor for correct macrophage polarization and appropriate adaptive mucosal immunity in response to helminth and enteric bacterial infection.


Assuntos
Ativação de Macrófagos , Macrófagos , Camundongos Knockout , Tricuríase , Trichuris , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Camundongos , Macrófagos/imunologia , Trichuris/imunologia , Tricuríase/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Ativação de Macrófagos/imunologia , Células Mieloides/imunologia , Resistência à Doença/imunologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Citocinas/imunologia , Imunidade Inata , Modelos Animais de Doenças , Células Th2/imunologia
8.
J Immunol ; 212(11): 1843-1854, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568091

RESUMO

Intraepithelial lymphocytes (IELs) are T cells important for the maintenance of barrier integrity in the intestine. Colon IELs are significantly reduced in both MyD88-deficient mice and those lacking an intact microbiota, suggesting that MyD88-mediated detection of bacterial products is important for the recruitment and/or retention of these cells. Here, using conditionally deficient MyD88 mice, we show that myeloid cells are the key mediators of TCRαß+ IEL recruitment to the colon. Upon exposure to luminal bacteria, myeloid cells produce sphingosine-1-phosphate (S1P) in a MyD88-dependent fashion. TCRαß+ IEL recruitment may be blocked using the S1P receptor antagonist FTY720, confirming the importance of S1P in the recruitment of TCRαß+ IELs to the colon epithelium. Finally, using the TNFΔARE/+ model of Crohn's-like bowel inflammation, we show that disruption of colon IEL recruitment through myeloid-specific MyD88 deficiency results in reduced pathology. Our results illustrate one mechanism for recruitment of a subset of IELs to the colon.


Assuntos
Colo , Mucosa Intestinal , Linfócitos Intraepiteliais , Lisofosfolipídeos , Camundongos Knockout , Células Mieloides , Fator 88 de Diferenciação Mieloide , Receptores de Antígenos de Linfócitos T alfa-beta , Esfingosina , Animais , Lisofosfolipídeos/metabolismo , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Colo/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Camundongos Endogâmicos C57BL , Cloridrato de Fingolimode/farmacologia , Doença de Crohn/imunologia
9.
Nature ; 628(8006): 162-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538791

RESUMO

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Assuntos
Imunidade Adaptativa , Envelhecimento , Linhagem da Célula , Células-Tronco Hematopoéticas , Linfócitos , Células Mieloides , Rejuvenescimento , Animais , Feminino , Masculino , Camundongos , Imunidade Adaptativa/imunologia , Envelhecimento/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Inflamação/imunologia , Inflamação/patologia , Linfócitos/citologia , Linfócitos/imunologia , Linfopoese , Células Mieloides/citologia , Células Mieloides/imunologia , Mielopoese , Fenótipo , Linfócitos T/citologia , Linfócitos T/imunologia , Vírus/imunologia
10.
J Autoimmun ; 145: 103197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447248

RESUMO

BACKGROUND AND OBJECTIVE: Understanding the regulation of efferocytosis by myeloid phagocytes is important in identifying novel targets in systemic lupus erythematosus (SLE). Cadherin-11 (CDH11), a cell adhesion molecule, is implicated in inflammatory arthritis and fibrosis and recently been shown to regulate macrophage phagocytosis. The extent and mechanism of this regulation is unknown. Our objective was to examine the extent to which CDH11 regulates myeloid phagocytes and contributes to autoimmunity and tissue inflammation. METHODS: We analyzed efferocytosis in macrophages and dendritic cells (DCs) from WT and Cdh11-/- mice and investigated the mechanisms in vitro. We investigated the role of CDH11 in disease development in vivo using the pristane induced lupus model. To translate the clinical relevance of CDH11 in human disease, we measured serum CDH11 levels in two independent pediatric SLE (pSLE) cohorts and healthy controls. RESULTS: Using bone marrow derived macrophages (BMDMs) and DCs (BMDCs), we found impaired efferocytosis in phagocytes from Cdh11-/- mice, mediated by downregulated efferocytosis receptor expression and RhoGTPase activation. Specifically, loss of CDH11 downregulated Mertk expression and Rac1 activation in BMDMs, and integrin αVß3 expression and Cdc42 activation in BMDCs, highlighting distinct pathways. In vivo, Cdh11-/- mice displayed defective efferocytosis and increased accumulation of apoptotic debris in pristane-induced lupus. Further, Cdh11-/- mice had enhanced systemic inflammation and autoimmune inflammation with increased anti-dsDNA autoantibodies, splenomegaly, type I interferons, and inflammatory cytokines. Paradoxically, at the tissue level, Cdh11-/- mice were protected against glomerulonephritis, indicating a dual role in murine lupus. Finally, SLE patients had increased serum CDH11 compared to controls. CONCLUSION: This study highlights a novel role of CDH11 in regulating myeloid cells and efferocytosis and its potential as a contributor to development in autoimmunity murine lupus. Despite the increase in autoimmunity, Cdh11-/- mice developed decreased tissue inflammation and damage.


Assuntos
Caderinas , Células Dendríticas , Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico , Macrófagos , Camundongos Knockout , Fagocitose , Animais , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/genética , Camundongos , Caderinas/metabolismo , Caderinas/genética , Fagocitose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Inflamação/imunologia , Autoimunidade , Feminino , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Criança , Terpenos
11.
Nature ; 627(8004): 646-655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418879

RESUMO

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone1. However, there remains little consensus on the mechanism(s) of response with this combination2. Here we find that a high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients treated with atezolizumab plus tiragolumab but not with atezolizumab alone. Serum sample analysis revealed that macrophage activation is associated with a clinical benefit in patients who received the combination treatment. In mouse tumour models, tiragolumab surrogate antibodies inflamed tumour-associated macrophages, monocytes and dendritic cells through Fcγ receptors (FcγR), in turn driving anti-tumour CD8+ T cells from an exhausted effector-like state to a more memory-like state. These results reveal a mechanism of action through which TIGIT checkpoint inhibitors can remodel immunosuppressive tumour microenvironments, and suggest that FcγR engagement is an important consideration in anti-TIGIT antibody development.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Antígeno B7-H1 , Células Mieloides , Neoplasias , Receptores Imunológicos , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Quimioterapia Combinada , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ativação de Macrófagos , Células Mieloides/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptores de IgG/imunologia , Receptores Imunológicos/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia
12.
Cancer Immunol Res ; 12(5): 592-613, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393969

RESUMO

Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.


Assuntos
Antígenos CD , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Glicoproteínas de Membrana , Células Mieloides , Receptores Imunológicos , Microambiente Tumoral , Receptores Imunológicos/metabolismo , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo
13.
Nature ; 623(7985): 139-148, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748514

RESUMO

Post-acute infection syndromes may develop after acute viral disease1. Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4. However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers.


Assuntos
Anticorpos Antivirais , Herpesvirus Humano 4 , Hidrocortisona , Linfócitos , Células Mieloides , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Biomarcadores/sangue , Estudos Transversais , Herpesvirus Humano 4/imunologia , Hidrocortisona/sangue , Imunofenotipagem , Linfócitos/imunologia , Aprendizado de Máquina , Células Mieloides/imunologia , Síndrome de COVID-19 Pós-Aguda/diagnóstico , Síndrome de COVID-19 Pós-Aguda/imunologia , Síndrome de COVID-19 Pós-Aguda/fisiopatologia , Síndrome de COVID-19 Pós-Aguda/virologia , SARS-CoV-2/imunologia
14.
Nature ; 618(7967): 1033-1040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316667

RESUMO

Most clinically applied cancer immunotherapies rely on the ability of CD8+ cytolytic T cells to directly recognize and kill tumour cells1-3. These strategies are limited by the emergence of major histocompatibility complex (MHC)-deficient tumour cells and the formation of an immunosuppressive tumour microenvironment4-6. The ability of CD4+ effector cells to contribute to antitumour immunity independently of CD8+ T cells is increasingly recognized, but strategies to unleash their full potential remain to be identified7-10. Here, we describe a mechanism whereby a small number of CD4+ T cells is sufficient to eradicate MHC-deficient tumours that escape direct CD8+ T cell targeting. The CD4+ effector T cells preferentially cluster at tumour invasive margins where they interact with MHC-II+CD11c+ antigen-presenting cells. We show that T helper type 1 cell-directed CD4+ T cells and innate immune stimulation reprogramme the tumour-associated myeloid cell network towards interferon-activated antigen-presenting and iNOS-expressing tumouricidal effector phenotypes. Together, CD4+ T cells and tumouricidal myeloid cells orchestrate the induction of remote inflammatory cell death that indirectly eradicates interferon-unresponsive and MHC-deficient tumours. These results warrant the clinical exploitation of this ability of CD4+ T cells and innate immune stimulators in a strategy to complement the direct cytolytic activity of CD8+ T cells and natural killer cells and advance cancer immunotherapies.


Assuntos
Linfócitos T CD4-Positivos , Morte Celular , Imunoterapia , Inflamação , Neoplasias , Microambiente Tumoral , Humanos , Células Apresentadoras de Antígenos/imunologia , Antígeno CD11c/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Morte Celular/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata , Inflamação/imunologia , Interferons/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Células Th1/citologia , Células Th1/imunologia
15.
Oncoimmunology ; 12(1): 2201147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089449

RESUMO

The clinical successes of immune checkpoint blockade (ICB) in advanced cancer patients have recently spurred the clinical implementation of ICB in the neoadjuvant and perioperative setting. However, how neoadjuvant ICB therapy affects the systemic immune landscape and metastatic spread remains to be established. Tumors promote both local and systemic expansion of regulatory T cells (Tregs), which are key orchestrators of tumor-induced immunosuppression, contributing to immune evasion, tumor progression and metastasis. Tregs express inhibitory immune checkpoint molecules and thus may be unintended targets for ICB therapy counteracting its efficacy. Using ICB-refractory models of spontaneous primary and metastatic breast cancer that recapitulate the poor ICB response of breast cancer patients, we observed that combined anti-PD-1 and anti-CTLA-4 therapy inadvertently promotes proliferation and activation of Tregs in the tumor, tumor-draining lymph node and circulation. Also in breast cancer patients, Treg levels were elevated upon ICB. Depletion of Tregs during neoadjuvant ICB in tumor-bearing mice not only reshaped the intratumoral immune landscape into a state favorable for ICB response but also induced profound and persistent alterations in systemic immunity, characterized by elevated CD8+ T cells and NK cells and durable T cell activation that was maintained after treatment cessation. While depletion of Tregs in combination with neoadjuvant ICB did not inhibit primary tumor growth, it prolonged metastasis-related survival driven predominantly by CD8+ T cells. This study demonstrates that neoadjuvant ICB therapy of breast cancer can be empowered by simultaneous targeting of Tregs, extending metastasis-related survival, independent of a primary tumor response.


Assuntos
Neoplasias da Mama , Ativação Linfocitária , Linfócitos T Reguladores , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Linfócitos T Reguladores/imunologia , Terapia Neoadjuvante , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Metástase Neoplásica , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia
17.
Nature ; 614(7947): 334-342, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697826

RESUMO

The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability.


Assuntos
Linfócitos T CD8-Positivos , Tolerância Imunológica , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Fígado , Células Mieloides , Humanos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Interleucina-2/biossíntese , Interleucina-2/imunologia , Quimiotaxia de Leucócito , Bactérias/imunologia , Intestinos/imunologia , Intestinos/microbiologia
18.
FEBS J ; 290(6): 1549-1562, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36181338

RESUMO

Sepsis often causes cell death via pyroptosis and hence results in septic cardiomyopathy. Triggering receptors expressed in myeloid cells-1 (TREM-1) may initiate cellular cascade pathways and, in turn, induce cell death and vital organ dysfunction in sepsis, but the evidence is limited. We set to investigate the role of TREM-1 on nucleotide-binding oligomerization domain-like receptors with pyrin domain-3 (NLRP3) inflammasome activation and cardiomyocyte pyroptosis in sepsis models using cardiac cell line (HL-1) and mice. In this study, TREM-1 was found to be significantly increased in HL-1 cells challenged with lipopolysaccharide (LPS). Pyroptosis was also significantly increased in the HL-1 cells challenged with lipopolysaccharide and an NLRP3 inflammasome activator, nigericin. The close interaction between TREM-1 and structural maintenance of chromosome 4 (SMC4) was also identified. Furthermore, inhibition of TREM-1 or SMC4 prevented the upregulation of NLRP3 and decreased Gasdermin-D, IL-1ß and caspase-1 cleavage. In mice subjected to caecal ligation and puncture, the TREM-1 inhibitor LR12 decreased the expression of NLRP3 and attenuated cardiomyocyte pyroptosis, leading to improved cardiac function and prolonged survival of septic mice. Our work demonstrates that, under septic conditions, TREM-1 plays a critical role in cardiomyocyte pyroptosis. Targeting TREM-1 and its associated molecules may therefore lead to novel therapeutic treatments for septic cardiomyopathy.


Assuntos
Inflamassomos , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Sepse , Receptor Gatilho 1 Expresso em Células Mieloides , Animais , Humanos , Camundongos , Adenosina Trifosfatases/imunologia , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/imunologia , Caspase 1/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Cromossomos Humanos Par 4/imunologia , Inflamassomos/agonistas , Inflamassomos/genética , Inflamassomos/imunologia , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Células Mieloides/imunologia , Miócitos Cardíacos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Piroptose/genética , Piroptose/imunologia , Sepse/complicações , Sepse/genética , Sepse/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia
19.
Benef Microbes ; 14(4): 401-419, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661366

RESUMO

The intestinal microbiota contributes to gut immune homeostasis, where short-chain fatty acids (SCFAs) function as the major mediators. We aimed to elucidate the immunomodulatory effects of acetate, propionate, and butyrate. With that in mind, we sought to characterise the expression of SCFA receptors and transporters as well as SCFAs' impact on the activation of different immune cells. Whereas all three SCFAs decreased tumour necrosis factor (TNF)-α production in activated T cells, only butyrate and propionate inhibited interferon (IFN)-γ, interleukin (IL)-17, IL-13, and IL-10 production. Butyrate and propionate inhibited the expression of the chemokine receptors CCR9 and CCR10 in activated T- and B-cells, respectively. Similarly, butyrate and propionate were effective inhibitors of IL-1ß, IL-6, TNF-α, and IL-10 production in myeloid cells upon lipopolysaccharide and R848 stimulation. Acetate was less efficient at inhibiting cytokine production except for IFN-α. Moreover, SCFAs inhibited the production of IL-6 and TNF-α in monocytes, myeloid dendritic cells (mDC), and plasmacytoid dendritic cells (pDC), whereas acetate effects were relatively more prominent in pDCs. In monocytes and mDCs, acetate was a less efficient inhibitor, but it was equally effective in inhibiting pDCs activation. We also studied the ability of SCFAs to induce trained immunity or tolerance. Butyrate and propionate - but not acetate - prevented Toll-like receptor-mediated activation in SCFA-trained cells, as demonstrated by a reduced production of IL-6 and TNF-α. Our findings indicate that butyrate and propionate are equally efficient in inhibiting the adaptive and innate immune response and did not induce trained immunity. The findings may be explained by differential SCFA receptor and transporter expression profiles of the immune cells.


Assuntos
Citocinas , Ácidos Graxos Voláteis , Tolerância Imunológica , Imunidade Inata , Linfócitos T , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Humanos , Imunidade Inata/efeitos dos fármacos , Citocinas/metabolismo , Citocinas/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Tolerância Imunológica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Butiratos/farmacologia , Células Mieloides/imunologia , Células Mieloides/efeitos dos fármacos , Propionatos/farmacologia , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Monócitos/imunologia , Monócitos/efeitos dos fármacos
20.
Nature ; 611(7937): 810-817, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36385528

RESUMO

The tumour-associated microbiota is an intrinsic component of the tumour microenvironment across human cancer types1,2. Intratumoral host-microbiota studies have so far largely relied on bulk tissue analysis1-3, which obscures the spatial distribution and localized effect of the microbiota within tumours. Here, by applying in situ spatial-profiling technologies4 and single-cell RNA sequencing5 to oral squamous cell carcinoma and colorectal cancer, we reveal spatial, cellular and molecular host-microbe interactions. We adapted 10x Visium spatial transcriptomics to determine the identity and in situ location of intratumoral microbial communities within patient tissues. Using GeoMx digital spatial profiling6, we show that bacterial communities populate microniches that are less vascularized, highly immuno­suppressive and associated with malignant cells with lower levels of Ki-67 as compared to bacteria-negative tumour regions. We developed a single-cell RNA-sequencing method that we name INVADEseq (invasion-adhesion-directed expression sequencing) and, by applying this to patient tumours, identify cell-associated bacteria and the host cells with which they interact, as well as uncovering alterations in transcriptional pathways that are involved in inflammation, metastasis, cell dormancy and DNA repair. Through functional studies, we show that cancer cells that are infected with bacteria invade their surrounding environment as single cells and recruit myeloid cells to bacterial regions. Collectively, our data reveal that the distribution of the microbiota within a tumour is not random; instead, it is highly organized in microniches with immune and epithelial cell functions that promote cancer progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Colorretais , Interações entre Hospedeiro e Microrganismos , Microbiota , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Microbiota/genética , Microbiota/imunologia , Microbiota/fisiologia , Neoplasias Bucais/genética , Neoplasias Bucais/imunologia , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Células Mieloides/imunologia , Microambiente Tumoral , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Análise de Sequência de RNA , Perfilação da Expressão Gênica , Antígeno Ki-67/metabolismo , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA