Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Cell Death Dis ; 15(7): 517, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030166

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a highly malignant disease, and death rates have remained at approximately 50% for decades. New tumor-targeting strategies are desperately needed, and a previous report indicated the triggered differentiation of HPV-negative HNSCC cells to confer therapeutic benefits. Using patient-derived tumor cells, we created a similar HNSCC differentiation model of HPV+ tumor cells from two patients. We observed a loss of malignant characteristics in differentiating cell culture conditions, including irregularly enlarged cell morphology, cell cycle arrest with downregulation of Ki67, and reduced cell viability. RNA-Seq showed myocyte-like differentiation with upregulation of markers of myofibril assembly. Immunofluorescence staining of differentiated and undifferentiated primary HPV+ HNSCC cells confirmed an upregulation of these markers and the formation of parallel actin fibers reminiscent of myoblast-lineage cells. Moreover, immunofluorescence of HPV+ tumor tissue revealed areas of cells co-expressing the identified markers of myofibril assembly, HPV surrogate marker p16, and stress-associated basal keratinocyte marker KRT17, indicating that the observed myocyte-like in vitro differentiation occurs in human tissue. We are the first to report that carcinoma cells can undergo a triggered myocyte-like differentiation, and our study suggests that the targeted differentiation of HPV+ HNSCCs might be therapeutically valuable.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/virologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/metabolismo , Linhagem da Célula , Células Musculares/virologia , Células Musculares/metabolismo , Células Musculares/patologia , Papillomaviridae/fisiologia , Linhagem Celular Tumoral , Papillomavirus Humano
2.
Int J Exp Pathol ; 104(1): 4-12, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565155

RESUMO

There is strong cross-talk between abnormal intracellular calcium concentration, high levels of reactive oxygen species (ROS) and an exacerbated inflammatory process in the dystrophic muscles of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). In this study, we investigated effects of Idebenone, a potent anti-oxidant, on oxidative stress markers, the anti-oxidant defence system, intracellular calcium concentrations and the inflammatory process in primary dystrophic muscle cells from mdx mice. Dystrophic muscle cells were treated with Idebenone (0.05 µM) for 24 h. The untreated mdx muscle cells were used as controls. The MTT assay showed that Idebenone did not have a cytotoxic effect on the dystrophic muscle cells. The Idebenone treatment was able to reduce the levels of oxidative stress markers, such as H2 O2 and 4-HNE, as well as decreasing intracellular calcium influx in the dystrophic muscle cells. Regarding Idebenone effects on the anti-oxidant defence system, an up-regulation of catalase levels, glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity was observed in the dystrophic muscle cells. In addition, the Idebenone treatment was also associated with reduction in inflammatory molecules, such as nuclear factor kappa-B (NF-κB) and tumour necrosis factor (TNF) in mdx muscle cells. These outcomes supported the use of Idebenone as a protective agent against oxidative stress and related signalling mechanisms involved in dystrophinopathies, such as DMD.


Assuntos
Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Cálcio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Estresse Oxidativo , Inflamação/metabolismo , Células Musculares/metabolismo , Células Musculares/patologia
3.
PLoS One ; 17(2): e0263262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176052

RESUMO

Genome-wide screens that have viability as a readout have been instrumental to identify essential genes. The development of gene knockout screens with the use of CRISPR-Cas has provided a more sensitive method to identify these genes. Here, we performed an exhaustive genome-wide CRISPR/Cas9 phenotypic rescue screen to identify modulators of cytotoxicity induced by the pioneer transcription factor, DUX4. Misexpression of DUX4 due to a failure in epigenetic repressive mechanisms underlies facioscapulohumeral muscular dystrophy (FHSD), a complex muscle disorder that thus far remains untreatable. As the name implies, FSHD generally starts in the muscles of the face and shoulder girdle. Our CRISPR/Cas9 screen revealed no key effectors other than DUX4 itself that could modulate DUX4 cytotoxicity, suggesting that treatment efforts in FSHD should be directed towards direct modulation of DUX4 itself. Our screen did however reveal some rare and unexpected genomic events, that had an important impact on the interpretation of our data. Our findings may provide important considerations for planning future CRISPR/Cas9 phenotypic survival screens.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Proteínas de Homeodomínio/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células Musculares/patologia , Distrofia Muscular Facioescapuloumeral/patologia , Mioblastos/patologia , Sobrevivência Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células Musculares/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Mioblastos/metabolismo
4.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011728

RESUMO

Elevated blood free fatty acids (FFAs), as seen in obesity, impair insulin action leading to insulin resistance and Type 2 diabetes mellitus. Several serine/threonine kinases including JNK, mTOR, and p70 S6K cause serine phosphorylation of the insulin receptor substrate (IRS) and have been implicated in insulin resistance. Activation of AMP-activated protein kinase (AMPK) increases glucose uptake, and in recent years, AMPK has been viewed as an important target to counteract insulin resistance. We reported previously that carnosic acid (CA) found in rosemary extract (RE) and RE increased glucose uptake and activated AMPK in muscle cells. In the present study, we examined the effects of CA on palmitate-induced insulin-resistant L6 myotubes and 3T3L1 adipocytes. Exposure of cells to palmitate reduced the insulin-stimulated glucose uptake, GLUT4 transporter levels on the plasma membrane, and Akt activation. Importantly, CA attenuated the deleterious effect of palmitate and restored the insulin-stimulated glucose uptake, the activation of Akt, and GLUT4 levels. Additionally, CA markedly attenuated the palmitate-induced phosphorylation/activation of JNK, mTOR, and p70S6K and activated AMPK. Our data indicate that CA has the potential to counteract the palmitate-induced muscle and fat cell insulin resistance.


Assuntos
Abietanos/farmacologia , Adipócitos/patologia , Ácidos Graxos não Esterificados/toxicidade , Resistência à Insulina , Células Musculares/patologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Linhagem Celular , Glucose/metabolismo , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Modelos Biológicos , Células Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/toxicidade , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
FASEB J ; 35(11): e21955, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34613626

RESUMO

Kabuki syndrome (KS) is a rare genetic disorder caused primarily by mutations in the histone modifier genes KMT2D and KDM6A. The genes have broad temporal and spatial expression in many organs, resulting in complex phenotypes observed in KS patients. Hypotonia is one of the clinical presentations associated with KS, yet detailed examination of skeletal muscle samples from KS patients has not been reported. We studied the consequences of loss of KMT2D function in both mouse and human muscles. In mice, heterozygous loss of Kmt2d resulted in reduced neuromuscular junction (NMJ) perimeter, decreased muscle cell differentiation in vitro and impaired myofiber regeneration in vivo. Muscle samples from KS patients of different ages showed presence of increased fibrotic tissue interspersed between myofiber fascicles, which was not seen in mouse muscles. Importantly, when Kmt2d-deficient muscle stem cells were transplanted in vivo in a physiologic non-Kabuki environment, their differentiation potential is restored to levels undistinguishable from control cells. Thus, the epigenetic changes due to loss of function of KMT2D appear reversible through a change in milieu, opening a potential therapeutic avenue.


Assuntos
Anormalidades Múltiplas/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Face/anormalidades , Doenças Hematológicas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/genética , Doenças Vestibulares/metabolismo , Anormalidades Múltiplas/genética , Adolescente , Animais , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Doenças Hematológicas/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Lactente , Masculino , Camundongos , Camundongos Transgênicos , Células Musculares/patologia , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Doenças Vestibulares/genética
6.
Am J Physiol Cell Physiol ; 321(3): C559-C568, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34319830

RESUMO

In organisms from flies to mammals, the initial formation of a functional tendon is completely dependent on chemical signals from muscles (myokines). However, how myokines affect the maturation, maintenance, and regeneration of tendons as a function of age is completely unstudied. Here we discuss the role of four myokines-fibroblast growth factors (FGF), myostatin, the secreted protein acidic and rich in cysteine (SPARC) miR-29-in tendon development and hypothesize a role for these factors in the progressive changes in tendon structure and function as a result of muscle wasting (disuse, aging, and disease). Because of the close relationship between mechanical loading and muscle and tendon regulation, disentangling muscle-tendon cross talk from simple mechanical loading is experimentally quite difficult. Therefore, we propose an experimental framework that hopefully will be useful in demonstrating muscle-tendon cross talk in vivo. Though understudied, the promise of a better understanding of muscle-tendon cross talk is the development of new interventions that will improve tendon development, regeneration, and function throughout the lifespan.


Assuntos
Envelhecimento/genética , Exossomos/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Tendões/metabolismo , Envelhecimento/metabolismo , Animais , Fenômenos Biomecânicos , Exossomos/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Musculares/metabolismo , Células Musculares/patologia , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Miostatina/genética , Miostatina/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Transdução de Sinais , Tendões/patologia
7.
Cell Death Dis ; 12(8): 729, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294700

RESUMO

Bone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Linhagem da Célula , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Receptor TIE-2/metabolismo , Animais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Valva Aórtica/fisiopatologia , Transplante de Medula Óssea , Proteína Morfogenética Óssea 2/sangue , Calcinose/diagnóstico por imagem , Calcinose/patologia , Calcinose/fisiopatologia , Condrogênese , Células Endoteliais/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Estimativa de Kaplan-Meier , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Musculares/patologia , Ossificação Heterotópica/sangue , Ossificação Heterotópica/diagnóstico por imagem , Osteogênese , Tomografia Computadorizada por Raios X
8.
Med Mol Morphol ; 54(3): 289-295, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34057638

RESUMO

Restrictive cardiomyopathy (RCM) is a rare primary myocardial disease, and its pathological features are yet to be determined. Restrictive cardiomyopathy with MHY7 mutation was diagnosed in a 65-year-old Japanese woman. Electron microscopy of a myocardial biopsy revealed electron-dense materials resulting from focal myocyte degeneration and necrosis as well as tubular structures and pseudo-inclusion bodies in some nuclei. These features may be associated with the pathogenesis of RCM.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Restritiva/patologia , Células Musculares/patologia , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/genética , Idoso , Biópsia , Cardiomiopatia Restritiva/genética , Cardiomiopatia Restritiva/metabolismo , Feminino , Humanos , Células Musculares/ultraestrutura , Linhagem
9.
Cells ; 11(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011690

RESUMO

Prophylactic administration of the broad-spectrum chemokine inhibitor (BSCI) FX125L has been shown to suppress uterine contraction, prevent preterm birth (PTB) induced by Group B Streptococcus in nonhuman primates, and inhibit uterine cytokine/chemokine expression in a murine model of bacterial endotoxin (LPS)-induced PTB. This study aimed to determine the mechanism(s) of BSCI action on human myometrial smooth muscle cells. We hypothesized that BSCI prevents infection-induced contraction of uterine myocytes by inhibiting the secretion of pro-inflammatory cytokines, the expression of contraction-associated proteins and disruption of myocyte interaction with tissue macrophages. Myometrial biopsies and peripheral blood were collected from women at term (not in labour) undergoing an elective caesarean section. Myocytes were isolated and treated with LPS with/out BSCI; conditioned media was collected; cytokine secretion was analyzed by ELISA; and protein expression was detected by immunoblotting and immunocytochemistry. Functional gap junction formation was assessed by parachute assay. Collagen lattices were used to examine myocyte contraction with/out blood-derived macrophages and BSCI. We found that BSCI inhibited (1) LPS-induced activation of transcription factor NF-kB; (2) secretion of chemokines (MCP-1/CCL2 and IL-8/CXCL8); (3) Connexin43-mediated intercellular connectivity, thereby preventing myocyte-macrophage crosstalk; and (4) myocyte contraction. BSCI represents novel therapeutics for prevention of inflammation-induced PTB in women.


Assuntos
Quimiocinas/antagonistas & inibidores , Inflamação/patologia , Macrófagos/patologia , Células Musculares/patologia , Miométrio/patologia , Contração Uterina/fisiologia , Comunicação Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Colágeno/metabolismo , Feminino , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Humanos , Inflamação/fisiopatologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Modelos Biológicos , Células Musculares/efeitos dos fármacos , Miométrio/fisiopatologia , NF-kappa B/metabolismo , Gravidez
10.
Eur Heart J ; 41(39): 3827-3835, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32968776

RESUMO

AIMS: Coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been associated with cardiovascular features of myocardial involvement including elevated serum troponin levels and acute heart failure with reduced ejection fraction. The cardiac pathological changes in these patients with COVID-19 have yet to be well described. METHODS AND RESULTS: In an international multicentre study, cardiac tissue from the autopsies of 21 consecutive COVID-19 patients was assessed by cardiovascular pathologists. The presence of myocarditis, as defined by the presence of multiple foci of inflammation with associated myocyte injury, was determined, and the inflammatory cell composition analysed by immunohistochemistry. Other forms of acute myocyte injury and inflammation were also described, as well as coronary artery, endocardium, and pericardium involvement. Lymphocytic myocarditis was present in 3 (14%) of the cases. In two of these cases, the T lymphocytes were CD4 predominant and in one case the T lymphocytes were CD8 predominant. Increased interstitial macrophage infiltration was present in 18 (86%) of the cases. A mild pericarditis was present in four cases. Acute myocyte injury in the right ventricle, most probably due to strain/overload, was present in four cases. There was a non-significant trend toward higher serum troponin levels in the patients with myocarditis compared with those without myocarditis. Disrupted coronary artery plaques, coronary artery aneurysms, and large pulmonary emboli were not identified. CONCLUSIONS: In SARS-CoV-2 there are increased interstitial macrophages in a majority of the cases and multifocal lymphocytic myocarditis in a small fraction of the cases. Other forms of myocardial injury are also present in these patients. The macrophage infiltration may reflect underlying diseases rather than COVID-19.


Assuntos
COVID-19/patologia , Cardiomiopatias/patologia , Vasos Coronários/patologia , Endocárdio/patologia , Humanos , Macrófagos/patologia , Células Musculares/patologia , Miocardite/patologia , Miocárdio/patologia , Pericárdio/patologia
11.
Sci Rep ; 10(1): 13765, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792672

RESUMO

Tooth loss or incorrect positioning causes occlusal disharmony. Furthermore, tooth loss and atrial fibrillation (AF) are both risk factors for ischemic stroke and coronary heart disease. Therefore, we hypothesized that occlusal disharmony-induced stress increases susceptibility to AF, and we designed the present study to test this idea in mice. Bite-opening (BO) was done by cementing a suitable appliance onto the mandibular incisor to cause occlusal disharmony by increasing the vertical height of occlusion by 0.7 mm for a period of 2 weeks. AF susceptibility, evaluated in terms of the duration of AF induced by transesophageal burst pacing, was significantly increased concomitantly with atrial remodeling, including fibrosis, myocyte apoptosis and oxidative DNA damage, in BO mice. The BO-induced atrial remodeling was associated with increased calmodulin kinase II-mediated ryanodine receptor 2 phosphorylation on serine 2814, as well as inhibition of Akt phosphorylation. However, co-treatment with propranolol, a non-selective ß-blocker, ameliorated these changes in BO mice. These data suggest that improvement of occlusal disharmony by means of orthodontic treatment might be helpful in the treatment or prevention of AF.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/prevenção & controle , Remodelamento Atrial/fisiologia , Má Oclusão/patologia , Má Oclusão/terapia , Ortodontia/métodos , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Apoptose/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Doença das Coronárias/etiologia , Doença das Coronárias/patologia , Suscetibilidade a Doenças , Fibrose/patologia , AVC Isquêmico/etiologia , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/patologia , Estresse Oxidativo/genética , Fosforilação , Propranolol/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
12.
Am J Pathol ; 190(10): 2067-2079, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679229

RESUMO

The purpose of this study was to determine the pathogenic changes that occur in myoepithelial cells (MECs) from lacrimal glands of a mouse model of Sjögren syndrome. MECs were cultured from lacrimal glands of C57BL/6J [wild type (WT)] and thrombospondin 1 null (TSP1-/-, alias Thbs1-/-) mice and from mice expressing α-smooth muscle actin-green fluorescent protein that labels MECs. MECs were stimulated with cholinergic and α1-adrenergic agonists, vasoactive intestinal peptide (VIP), and the purinergic agonists ATP and UTP. Then intracellular [Ca2+] was measured using fura-2, and contraction was observed using live cell imaging. Expression of purinergic receptors was determined by Western blot analysis, and mRNA expression was analyzed by microarray. The increase in intracellular [Ca2+]I with VIP and UTP was significantly smaller in MECs from TSP1-/- compared with WT mice. Cholinergic agonists, ATP, and UTP stimulated contraction in MECs, although contraction of MECs from TSP1-/- mice was reduced compared with WT mice. The amount of purinergic receptors P2Y1, P2Y11, and P2Y13 was significantly decreased in MECs from TSP1-/- compared with WT mice, whereas several extracellular matrix and inflammation genes were up-regulated in MECs from TSP1-/- mice. We conclude that lacrimal gland MEC function is altered by inflammation because the functions regulated by cholinergic agonists, VIP, and purinergic receptors are decreased in TSP1-/- compared with WT mice.


Assuntos
Síndromes do Olho Seco/patologia , Células Epiteliais/metabolismo , Inflamação/metabolismo , Células Musculares/patologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Células Epiteliais/patologia , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Músculo Liso/metabolismo
13.
Molecules ; 25(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580297

RESUMO

Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven colorectal cancer (CRC) is notorious to target with drugs and has shown ineffective treatment response. The seeds of Pharbitis nil, also known as morning glory, have been used as traditional medicine in East Asia. We focused on whether Pharbitis nil seeds have a suppressive effect on mutated KRAS-driven CRC as well as reserving muscle cell functions during CRC progression. Seeds of Pharbitis nil (Pharbitis semen) were separated by chromatography and the active compound of Pharbitis semen (PN) was purified by HPLC. The compound PN efficiently suppressed the proliferation of mutated KRAS-driven CRC cells and their clonogenic potentials in a concentration-dependent manner. It also induced apoptosis of SW480 human colon cancer cells and cell cycle arrest at the G2/M phase. The CRC related pathways, including RAS/ERK and AKT/mTOR, were assessed and PN reduced the phosphorylation of AKT and mTOR. Furthermore, PN preserved muscle cell proliferation and myotube formation in cancer conditioned media. In summary, PN significantly suppressed mutated KRAS-driven cell growth and reserved muscle cell function. Based on the current study, PN could be considered as a promising starting point for the development of a nature-derived drug against KRAS-mutated CRC progression.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Ipomoea nil/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Células Musculares/efeitos dos fármacos , Células Musculares/patologia , Mutação/efeitos dos fármacos , Sementes/química
14.
Diabetes Metab J ; 44(2): 234-244, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347025

RESUMO

As a member of the class IIa histone deacetylases (HDACs), HDAC9 catalyzes the deacetylation of histones and transcription factors, commonly leading to the suppression of gene transcription. The activity of HDAC9 is regulated transcriptionally and post-translationally. HDAC9 is known to play an essential role in regulating myocyte and adipocyte differentiation and cardiac muscle development. Also, recent studies have suggested that HDAC9 is involved in the pathogenesis of chronic diseases, including cardiovascular diseases, osteoporosis, autoimmune disease, cancer, obesity, insulin resistance, and liver fibrosis. HDAC9 modulates the expression of genes related to the pathogenesis of chronic diseases by altering chromatin structure in their promotor region or reducing the transcriptional activity of their respective transcription factors. This review summarizes the current knowledge of the regulation of HDAC9 expression and activity. Also, the roles of HDAC9 in the pathogenesis of chronic diseases are discussed, along with potential underlying mechanisms.


Assuntos
Diabetes Mellitus/metabolismo , Histona Desacetilases/genética , Histonas/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/fisiopatologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Diferenciação Celular , Doença Crônica , Diabetes Mellitus/fisiopatologia , Feminino , Humanos , Resistência à Insulina/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Camundongos , Células Musculares/metabolismo , Células Musculares/patologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética
15.
Hum Mol Genet ; 29(14): 2285-2299, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32242220

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disorder linked to ectopic expression of DUX4. However, DUX4 is notoriously difficult to detect in FSHD muscle cells, while DUX4 target gene expression is an inconsistent biomarker for FSHD skeletal muscle biopsies, displaying efficacy only on pathologically inflamed samples. Immune gene misregulation occurs in FSHD muscle, with DUX4 target genes enriched for those associated with inflammatory processes. However, there lacks an assessment of the FSHD immune cell transcriptome, and its contribution to gene expression in FSHD muscle biopsies. Here, we show that EBV-immortalized FSHD lymphoblastoid cell lines express DUX4 and both early and late DUX4 target genes. Moreover, a biomarker of 237 up-regulated genes derived from FSHD lymphoblastoid cell lines is elevated in FSHD muscle biopsies compared to controls. The FSHD Lymphoblast score is unaltered between FSHD myoblasts/myotubes and their controls however, implying a non-myogenic cell source in muscle biopsies. Indeed, the FSHD Lymphoblast score correlates with the early stages of muscle inflammation identified by histological analysis on muscle biopsies, while our two late DUX4 target gene expression biomarkers associate with macroscopic inflammation detectable via MRI. Thus, FSHD lymphoblastoid cell lines express DUX4 and early and late DUX4 target genes, therefore, muscle-infiltrated immune cells may contribute the molecular landscape of FSHD muscle biopsies.


Assuntos
Proteínas de Homeodomínio/genética , Inflamação/genética , Distrofia Muscular Facioescapuloumeral/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Biópsia , Linhagem Celular , Feminino , Regulação da Expressão Gênica/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Células Musculares/metabolismo , Células Musculares/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia
16.
Am J Surg Pathol ; 44(6): 799-804, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31985499

RESUMO

Myogenic differentiation (MD) has been claimed to be a poor prognostic factor in dedifferentiated liposarcoma (DDLPS). To validate this, the prognostic significance of MD in a uniformly treated cohort of DDLPS was assessed. A cohort of patients that have been uniformly treated at one institution for DDLPS of the retroperitoneum and pelvis were stained with smooth muscle actin (SMA) and desmin and semiquantitatively scored for staining focality and strength. Clinical and survival data was collected, and the prognostic significance of MD was evaluated. A total of 50 patients with uniformly treated DDLPS were evaluated. SMA (P=0.052) and a combined score of MD (SMA+desmin) showed a statistically significant decrease in 5-year disease-free survival (P=0.002) in univariate analysis and in multivariate testing combined MD trended toward significance (P=0.052). Combined MD was associated with a decreased OS in multivariate analysis (P=0.004). In a uniformly treated cohort of DDLPS stained for myogenic markers, a combined myogenic score was associated with poor overall survival in multivariate analysis. However, the difference in groups was slight and the clinical application is limited.


Assuntos
Lipossarcoma/patologia , Actinas/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Diferenciação Celular , Desmina/análise , Intervalo Livre de Doença , Feminino , Humanos , Lipossarcoma/mortalidade , Masculino , Pessoa de Meia-Idade , Células Musculares/patologia , Prognóstico
17.
Bull Exp Biol Med ; 167(5): 650-652, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31691878

RESUMO

We studied the sensitivity of domestic proprietary human and animal cell lines from the collection of M. P. Chumakov Federal Scientific Center for Research and Development of Immuneand-Biological Products to infection with different enterovirus 71 strains. A cell system based on domestic proprietary permanent cell line 4647 was for the first time used for reproduction of four enterovirus 71 strains (BrCr, 42266, 42934, and 43374). It was shown that strain 4647 is the optimal cell substrate for enterovirus 71 reproduction. The titers of enterovirus 71 for all four strains considerably (by 2 lgTCID50/ml and more) increased during sequential passages in permanent cell line 4647. The prospects of using permanent cell line 4647 for creation of diagnostic and preventive preparations against 71 was demonstrated.


Assuntos
Enterovirus Humano A/fisiologia , Células Epiteliais/virologia , Células Musculares/virologia , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/patologia , Humanos , Células Musculares/patologia , Carga Viral
18.
Molecules ; 24(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671915

RESUMO

Enhanced oxidative stress has been associated with muscle mitochondrial changes and metabolic disorders. Thus, it might be a good strategy to decrease oxidative stress and improve mitochondrial changes in skeletal muscle. In the present study, we investigate the role of the most biologically active metabolite of vitamin D, 1,25-dihyroxyvitamin D (1,25(OH)2D) in oxidative stress and mitochondrial changes in tertiary butyl-hydrogen (tBHP)-treated C2C12 muscle cells. Differentiated C2C12 muscle cells were pretreated with tBHP, followed by 1,25(OH)2D for additional 24 h. An exogenous inducer of oxidative stress, tBHP significantly increased oxidative stress, lipid peroxidation, intracellular damage, and cell death which were reversed by 1,25(OH)2D in C2C12 myotubes. 1.25(OH)2D improves tBHP-induced mitochondrial morphological changes such as swelling, irregular cristae, and smaller size and number, as observed by transmission electron microscope. In addition, 1,25(OH)2D treatment increases mtDNA contents as well as gene expression involved in mitochondrial biogenesis such as PGC1α, NRF1, and Tfam. Significant increments in mRNA levels related to antioxidant enzymes such as Nrf2, HMOX1, and TXNRD1, myogenic differentiation markers including myoglobin, muscle creatine kinase (MCK), and MHCІ and ІІ, and vitamin D metabolism such as CYP24, CYP27, and vitamin D receptor (VDR) were found in 1,25(OH)2D-treated myotubes. Moreover, upon t-BHP-induced oxidative stress, significant incremental changes in nicotinamide adenine dinucleotide (NAD) levels, activities of AMP-activated protein kinase (AMPK)/sirtulin 1 (SIRT1), and SIRT1 expression were noted in 1,25(OH)2D-treated C2C12 muscle cells. Taken together, these results suggest the observed potent inhibitory effect of 1,25(OH)2D on muscle oxidative stress and mitochondrial dynamics might be at least involved in the activation of AMPK and SIRT1 activation in muscle cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Musculares/patologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Vitamina D/análogos & derivados , terc-Butil Hidroperóxido/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Células Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Vitamina D/farmacologia
19.
Arthritis Res Ther ; 21(1): 182, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370858

RESUMO

BACKGROUND: Patients with rheumatoid arthritis (RA) experience extra-articular manifestations including osteoporosis and muscle wasting, which closely associate with severity of disease. Whilst therapeutic glucocorticoids (GCs) reduce inflammation in RA, their actions on muscle and bone metabolism in the context of chronic inflammation remain unclear. We utilised the TNF-tg model of chronic polyarthritis to ascertain the impact of therapeutic GCs on bone and muscle homeostasis in the context of systemic inflammation. METHODS: TNF-tg and wild-type (WT) animals received either vehicle or the GC corticosterone (100 µg/ml) in drinking water at onset of arthritis. Arthritis severity and clinical parameters were measured, serum collected for ELISA and muscle and bone biopsies collected for µCT, histology and mRNA analysis. In vivo findings were examined in primary cultures of osteoblasts, osteoclasts and myotubes. RESULTS: TNF-tg mice receiving GCs showed protection from inflammatory bone loss, characterised by a reduction in serum markers of bone resorption, osteoclast numbers and osteoclast activity. In contrast, muscle wasting was markedly increased in WT and TNF-tg animals receiving GCs, independently of inflammation. This was characterised by a reduction in muscle weight and fibre size, and an induction in anti-anabolic and catabolic signalling. CONCLUSIONS: This study demonstrates that when given in early onset chronic polyarthritis, oral GCs partially protect against inflammatory bone loss, but induce marked muscle wasting. These results suggest that in patients with inflammatory arthritis receiving GCs, the development of interventions to manage deleterious side effects in muscle should be prioritised.


Assuntos
Artrite/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Corticosterona/uso terapêutico , Células Musculares/patologia , Atrofia Muscular/prevenção & controle , Osteoblastos/patologia , Osteoclastos/patologia , Animais , Artrite/diagnóstico , Artrite/metabolismo , Biópsia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Glucocorticoides/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo
20.
Pharmacol Rep ; 71(4): 682-687, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201967

RESUMO

BACKGROUND: Myocardial injury (MI) is an important heart condition and a major cause of morbidity and mortality worldwide. The current study was designed to investigate the cardioprotective effects of cerebrolysin (CLY) on the lesion severity and inflammatory factors in male rats using isoproterenol (ISO)-induced MI model. METHODS: MI in rats was induced by injecting ISO (100 mg/kg) subcutaneously (sc) on the first 2 days. Then, CLY (5 ml/kg) was injected intraperitoneally (ip) post-treatment for 7 days. On the 3rd day, creatine phosphokinase (CK-MB) and cardiac troponin I (cTnI) levels in serum and, on the 10th day, the TNF-α and IL6 levels in serum and heart tissue were measured by enzyme-linked immunosorbent assay (ELISA). Finally, the heart of each rat was dissected out and stained for histopathological examination. RESULTS: On the 3rd day, the serum CK-MB and cTnI levels in the ISO and CLY + ISO groups were significantly increased compared with that in the control and CLY + Sal groups. One week after the induction of MI, ISO administration showed a significant increase in the serum level of TNF-α in the ISO group compared with that in the control and CLY + Sal groups. Also, our findings showed only a moderate reduction in inflammatory cell infiltration and extent of edema following CLY treatment in the CLY + ISO group. Also, CLY induced vascular proliferation in the heart tissue. CONCLUSIONS: We conclude that the severity of pathological changes induced by ISO in MI (e.g. inflammation and edema) can be limited by CLY treatment.


Assuntos
Aminoácidos/farmacologia , Cardiotônicos/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Animais , Biomarcadores/sangue , Sobrevivência Celular/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Interleucina-6/metabolismo , Isoproterenol , Masculino , Células Musculares/efeitos dos fármacos , Células Musculares/patologia , Infarto do Miocárdio/sangue , Infarto do Miocárdio/imunologia , Miocárdio/metabolismo , Ratos Wistar , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA