Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070942

RESUMO

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Assuntos
Arginina/farmacologia , Ácido Gástrico/metabolismo , Células Parietais Gástricas/efeitos dos fármacos , Prótons , Serotonina/biossíntese , Linhagem Celular Tumoral , Fenclonina/farmacologia , Expressão Gênica , Granisetron/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Células Parietais Gástricas/citologia , Células Parietais Gástricas/metabolismo , Inibidores de Proteases/farmacologia , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Estômago/citologia , Estômago/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Triptofano Hidroxilase/antagonistas & inibidores , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
2.
Gastroenterology ; 161(2): 623-636.e16, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33957136

RESUMO

BACKGROUND & AIMS: The homeostasis of the gastrointestinal epithelium relies on cell regeneration and differentiation into distinct lineages organized inside glands and crypts. Regeneration depends on Wnt/ß-catenin pathway activation, but to understand homeostasis and its dysregulation in disease, we need to identify the signaling microenvironment governing cell differentiation. By using gastric glands as a model, we have identified the signals inducing differentiation of surface mucus-, zymogen-, and gastric acid-producing cells. METHODS: We generated mucosoid cultures from the human stomach and exposed them to different growth factors to obtain cells with features of differentiated foveolar, chief, and parietal cells. We localized the source of the growth factors in the tissue of origin. RESULTS: We show that epidermal growth factor is the major fate determinant distinguishing the surface and inner part of human gastric glands. In combination with bone morphogenetic factor/Noggin signals, epidermal growth factor controls the differentiation of foveolar cells vs parietal or chief cells. We also show that epidermal growth factor is likely to underlie alteration of the gastric mucosa in the precancerous condition atrophic gastritis. CONCLUSIONS: Use of our recently established mucosoid cultures in combination with analysis of the tissue of origin provided a robust strategy to understand differentiation and patterning of human tissue and allowed us to draw a new, detailed map of the signaling microenvironment in the human gastric glands.


Assuntos
Padronização Corporal/efeitos dos fármacos , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Linhagem da Célula , Células Cultivadas , Microambiente Celular , Celulas Principais Gástricas/efeitos dos fármacos , Celulas Principais Gástricas/metabolismo , Celulas Principais Gástricas/ultraestrutura , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestrutura , Gastrite Atrófica/metabolismo , Gastrite Atrófica/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Organoides , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/ultraestrutura , Via de Sinalização Wnt
4.
Physiol Rev ; 100(2): 573-602, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670611

RESUMO

Parietal cells are responsible for gastric acid secretion, which aids in the digestion of food, absorption of minerals, and control of harmful bacteria. However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The H+-K+-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H+ for extracellular K+. The H+ secreted into the gastric lumen by the H+-K+-ATPase combines with luminal Cl- to form gastric acid, HCl. Inhibition of the H+-K+-ATPase is the most efficacious method of preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H+-K+-ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the overlying secretory canaliculus, a process that represents the most prominent example of apical membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an important role in gastric mucosal homeostasis through the secretion of multiple growth factor molecules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well as coordination of physiological repair.


Assuntos
Ácido Gástrico/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Células Parietais Gástricas/metabolismo , Animais , Forma Celular , Homeostase , Humanos , Células Parietais Gástricas/efeitos dos fármacos , Potássio/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Via Secretória , Transdução de Sinais
5.
Cell Mol Gastroenterol Hepatol ; 8(3): 379-405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071489

RESUMO

BACKGROUND & AIMS: Many differentiated epithelial cell types are able to reprogram in response to tissue damage. Although reprogramming represents an important physiological response to injury, the regulation of cellular plasticity is not well understood. Damage to the gastric epithelium initiates reprogramming of zymogenic chief cells into a metaplastic cell lineage known as spasmolytic polypeptide-expressing metaplasia (SPEM). The present study seeks to identify the role of xCT, a cystine/glutamate antiporter, in chief cell reprogramming after gastric injury. We hypothesize that xCT-dependent reactive oxygen species (ROS) detoxification is required for the reprogramming of chief cells into SPEM. METHODS: Sulfasalazine (an xCT inhibitor) and small interfering RNA knockdown were used to target xCT on metaplastic cells in vitro. Sulfasalazine-treated wild-type mice and xCT knockout mice were analyzed. L635 or DMP-777 treatment was used to chemically induce acute gastric damage. The anti-inflammatory metabolites of sulfasalazine (sulfapyridine and mesalazine) were used as controls. Normal gastric lineages, metaplastic markers, autophagy, proliferation, xCT activity, ROS, and apoptosis were assessed. RESULTS: xCT was up-regulated early as chief cells transitioned into SPEM. Inhibition of xCT or small interfering RNA knockdown blocked cystine uptake and decreased glutathione production by metaplastic cells and prevented ROS detoxification and proliferation. Moreover, xCT activity was required for chief cell reprogramming into SPEM after gastric injury in vivo. Chief cells from xCT-deficient mice showed decreased autophagy, mucus granule formation and proliferation, as well as increased levels of ROS and apoptosis compared with wild-type mice. On the other hand, the anti-inflammatory metabolites of sulfasalazine did not affect SPEM development. CONCLUSIONS: The results presented here suggest that maintaining redox balance is crucial for progression through the reprogramming process and that xCT-mediated cystine uptake is required for chief cell plasticity and ROS detoxification.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Azetidinas/efeitos adversos , Mucosa Gástrica/patologia , Piperazinas/efeitos adversos , Sulfassalazina/farmacologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular , Plasticidade Celular , Reprogramação Celular , Celulas Principais Gástricas/citologia , Celulas Principais Gástricas/efeitos dos fármacos , Celulas Principais Gástricas/metabolismo , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Técnicas de Inativação de Genes , Humanos , Camundongos , Células Parietais Gástricas/citologia , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
6.
J Agric Food Chem ; 66(27): 7044-7053, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29874909

RESUMO

The role of sweet taste in energy intake and satiety regulation is still controversial. Noncaloric artificial sweeteners (NCSs) are thought to help reduce energy intake, although little is known about their impact on the satiating neurotransmitter serotonin (5-HT). In the gastrointestinal (GI) tract, 5-HT regulates gastric acid secretion and gastric motility, both part of the complex network of mechanisms regulating food intake and satiety. This study demonstrated a stimulating impact compared to controls (100%) on 5-HT release in human gastric tumor cells (HGT-1) by the NCSs cyclamate (50 mM, 157% ± 6.3%), acesulfame potassium (Ace K, 50 mM, 197% ± 8.6%), saccharin (50 mM, 147% ± 6.7%), sucralose (50 mM, 194% ± 11%), and neohesperidin dihydrochalcone (NHDC, 1 mM, 201% ± 13%). Although these effects were not associated with the sweet taste intensity of the NCSs tested, involvement of the sweet receptor subunit T1R3 in the NCS-evoked response was demonstrated by mRNA expression of TAS1R3, co-incubation experiments using the T1R3 receptor antagonist lactisole, and a TAS1R3 siRNA knockdown approach. Analysis of the downstream signaling revealed activation of the cAMP/ERK/Ca2+ cascade. Co-treatment experiments with 10 mM glucose enhanced the 5-HT release induced by cyclamate, Ace K, saccharin, and sucralose, thereby supporting the enhancing effect of glucose on a NCS-mediated response. Overall, the results obtained identify NCSs as potent inducers of 5-HT release via T1R3 in human gastric parietal cells in culture and warrant in vivo studies to demonstrate their efficacy.


Assuntos
Células Parietais Gástricas/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Edulcorantes/farmacologia , Derivados de Benzeno/farmacologia , Linhagem Celular Tumoral , Chalconas/farmacologia , Ciclamatos/farmacologia , AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hesperidina/análogos & derivados , Hesperidina/farmacologia , Humanos , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/patologia , Receptores Acoplados a Proteínas G/genética , Sacarina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Tiazinas/farmacologia
7.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G36-G42, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29517927

RESUMO

The H+,K+-ATPase was identified as the primary proton secretory pathway in the gastric parietal cell and is the pharmacological target of agents suppressing acid secretion. Recently, we identified a second acid secretory protein expressed in the parietal cell, the vacuolar H+-ATPase (V-type ATPase). The aim of the present study was to further characterize H+-ATPase activation by modulations in extracellular calcium via the calcium sensing receptor (CaSR). Isolated gastric glands were loaded with the pH indicator dye BCECF-AM [2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester] to measure intracellular pH. Experiments were conducted in the absence of sodium and potassium to monitor H+-ATPase-specific transport activity. CaSR was activated with the calcimimetic R568 (400 nM) and/or by modulations in extracellular Ca2+. Elevation in calcium concentrations increased proton extrusion from the gastric parietal cell. Allosteric modification of the CaSR via R568 and calcium increased vacuolar H+-ATPase activity significantly (ΔpH/minlowCa2+(0.1mM) = 0.001 ± 0.001, ΔpH/minnormalCa2+(1.0mM) = 0.033 ± 0.004, ΔpH/minhighCa2+(5.0mM) = 0.051 ± 0.005). Carbachol significantly suppressed calcium-induced gastric acid secretion via the H+-ATPase under sodium- and potassium-free conditions. We conclude that the V-type H+-ATPase is tightly linked to CaSR activation. We observed that proton pump inhibitor (PPI) exposure does not modulate H+-ATPase activity. This elevated blood calcium activation of the H+-ATPase could provide an explanation for recurrent reflux symptoms while taking a PPI therapy. NEW & NOTEWORTHY This study emphasizes the role of the H+-ATPase in acid secretion. We further demonstrate the modification of this proton excretion pathway by extracellular calcium and the activation of the calcium sensing receptor CaSR. The novelty of this paper is based on the modulation of the H+-ATPase via both extracellular Ca (activation) and the classical secretagogues histamine and carbachol (inactivation). Both activation and inactivation of this proton pump are independent of PPI modulation.


Assuntos
Cálcio , Ativação Enzimática , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Células Parietais Gástricas , Inibidores da Bomba de Prótons/farmacologia , Bombas de Próton , Receptores de Detecção de Cálcio/metabolismo , Animais , Cálcio/sangue , Cálcio/metabolismo , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ácido Gástrico/metabolismo , Histamina/metabolismo , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/fisiologia , Bombas de Próton/efeitos dos fármacos , Bombas de Próton/metabolismo , Ratos , Ratos Sprague-Dawley , Via Secretória/efeitos dos fármacos , Via Secretória/fisiologia
9.
Cell Physiol Biochem ; 44(4): 1606-1615, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29212068

RESUMO

BACKGROUND/AIMS: L-arginine is an important mediator of cell division, wound healing, and immune function. It can be transformed by the nitric oxide synthase (NOS) to nitric oxide (NO), an important cell signaling molecule. Recent studies from our laboratory demonstrate specific effects of L-arginine (10mM) exposure on gastric acid secretion in rat parietal cells. METHODS: Studies were performed with isolated gastric glands and the pH sensitive dye BCECF-AM +/- L-arginine to examine its effects on acid secretion. The direct NO-donor diethylamine NONOate sodium salt hydrate, was also used while monitoring intracellular pH. The specific inhibitor of the intracellular NO signal cascade ODQ was also used. RESULTS: We found that gastric proton extrusion was activated with application of L-arginine (10mM), in a separate series when L-arginine (10mM) + L-NAME (30µM) were added there was no acid secretion. Addition of the NO-donor diethylamine NONOate sodium salt hydrate (10µM) also induced acid secretion. When the selective sGC-inhibitor ODQ was added with NONOate we did not observe acid secretion. CONCLUSION: We conclude that L-arginine is a novel secretagogue, which can mediate gastric acid secretion. Furthermore, the intake of L-arginine causes direct activation of the H+, K+ ATPase and increased proton extrusion from parietal cells resulting in the increased risk for acid-related diseases. The NO/sGC/cGMP pathway has never been described as a possible intracellular mechanism for H+, K+ ATPase activation before and presents a completely new scientific finding. Moreover, our studies demonstrate a novel role for L-NAME to effectively eliminate NOS induced acid secretion and thereby reducing the risk for L-arginine inducible ulcer disease.


Assuntos
Ácido Gástrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Arginina/farmacologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Concentração de Íons de Hidrogênio , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Oxidiazóis/farmacologia , Células Parietais Gástricas/citologia , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/metabolismo , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley
10.
Ann Clin Lab Sci ; 47(3): 354-356, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28667040

RESUMO

Iron pill gastritis has been shown to be associated with superficial gastric erosion and deposition of iron in lamina propria and gastric antral glands. However, iron absorption in gastric parietal and chief cells is rare. We present a case of a 62-year-old man with iron deficiency anemia. His past medical history is significant for Billroth II surgery. His medications include ferrous sulphate 325mg. Esophagogastroduodenoscopy showed diffuse circumferential abnormal mucosa at the gastro-jejunal anastomosis. The mucosa was erythematous and violaceous. Biopsy showed reactive gastropathy with iron deposits predominantly in macrophages, parietal cells, and chief cells. These findings were confirmed by iron stain and later by electron micrography of the gastric mucosa that showed iron deposits in mitochondria and cytoplasm of the parietal and chief cells.


Assuntos
Anemia Ferropriva/etiologia , Celulas Principais Gástricas/metabolismo , Gastrite/induzido quimicamente , Gastroenterostomia/efeitos adversos , Ferro/metabolismo , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/metabolismo , Anemia Ferropriva/patologia , Celulas Principais Gástricas/efeitos dos fármacos , Celulas Principais Gástricas/patologia , Mucosa Gástrica/patologia , Humanos , Ferro/administração & dosagem , Ferro/efeitos adversos , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/patologia
11.
Nat Cell Biol ; 19(7): 774-786, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28581476

RESUMO

The daily renewal of the corpus epithelium is fuelled by adult stem cells residing within tubular glands, but the identity of these stem cells remains controversial. Lgr5 marks homeostatic stem cells and 'reserve' stem cells in multiple tissues. Here, we report Lgr5 expression in a subpopulation of chief cells in mouse and human corpus glands. Using a non-variegated Lgr5-2A-CreERT2 mouse model, we show by lineage tracing that Lgr5-expressing chief cells do not behave as corpus stem cells during homeostasis, but are recruited to function as stem cells to effect epithelial renewal following injury by activating Wnt signalling. Ablation of Lgr5+ cells severely impairs epithelial homeostasis in the corpus, indicating an essential role for these Lgr5+ cells in maintaining the homeostatic stem cell pool. We additionally define Lgr5+ chief cells as a major cell-of-origin of gastric cancer. These findings reveal clinically relevant insights into homeostasis, repair and cancer in the corpus.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Celulas Principais Gástricas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células Parietais Gástricas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regeneração , Neoplasias Gástricas/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Celulas Principais Gástricas/efeitos dos fármacos , Celulas Principais Gástricas/patologia , Regulação da Expressão Gênica , Genótipo , Humanos , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia , Organoides , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/patologia , Fenótipo , Regeneração/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Tamoxifeno/toxicidade , Técnicas de Cultura de Tecidos , Via de Sinalização Wnt
12.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G649-G657, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408643

RESUMO

Parietal cells play a fundamental role in stomach maintenance, not only by creating a pathogen-free environment through the production of gastric acid, but also by secreting growth factors important for homeostasis of the gastric epithelium. The gastrointestinal hormone gastrin is known to be a central regulator of both parietal cell function and gastric epithelial cell proliferation and differentiation. Our previous gene expression profiling studies of mouse stomach identified parathyroid hormone-like hormone (PTHLH) as a potential gastrin-regulated gastric growth factor. Although PTHLH is commonly overexpressed in gastric tumors, its normal expression, function, and regulation in the stomach are poorly understood. In this study we used pharmacologic and genetic mouse models as well as human gastric cancer cell lines to determine the cellular localization and regulation of this growth factor by the hormone gastrin. Analysis of PthlhLacZ/+ knock-in reporter mice localized Pthlh expression to parietal cells in the gastric corpus. Regulation by gastrin was demonstrated by increased Pthlh mRNA abundance after acute gastrin treatment in wild-type mice and reduced expression in gastrin-deficient mice. PTHLH transcripts were also observed in normal human stomach as well as in human gastric cancer cell lines. Gastrin treatment of AGS-E gastric cancer cells induced a rapid and robust increase in numerous PTHLH mRNA isoforms. This induction was largely due to increased transcriptional initiation, although analysis of mRNA half-life showed that gastrin treatment also extended the half-life of PTHLH mRNA, suggesting that gastrin regulates expression by both transcriptional and posttranscriptional mechanisms.NEW & NOTEWORTHY We show that the growth factor parathyroid hormone-like hormone (PTHLH) is expressed in acid-secreting parietal cells of the mouse stomach. We define the specific PTHLH mRNA isoforms expressed in human stomach and in human gastric cancer cell lines and show that gastrin induces PTHLH expression via transcription activation and mRNA stabilization. Our findings suggest that PTHLH is a gastrin-regulated growth factor that might contribute to gastric epithelial cell homeostasis.


Assuntos
Gastrinas/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Células Parietais Gástricas/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Gastrinas/deficiência , Gastrinas/genética , Gastrinas/farmacologia , Regulação Neoplásica da Expressão Gênica , Genótipo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Células Parietais Gástricas/metabolismo , Fenótipo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/genética , Fatores de Tempo , Ativação Transcricional , Regulação para Cima
13.
Genes Dev ; 31(2): 154-171, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28174210

RESUMO

We hypothesized that basic helix-loop-helix (bHLH) MIST1 (BHLHA15) is a "scaling factor" that universally establishes secretory morphology in cells that perform regulated secretion. Here, we show that targeted deletion of MIST1 caused dismantling of the secretory apparatus of diverse exocrine cells. Parietal cells (PCs), whose function is to pump acid into the stomach, normally lack MIST1 and do not perform regulated secretion. Forced expression of MIST1 in PCs caused them to expand their apical cytoplasm, rearrange mitochondrial/lysosome trafficking, and generate large secretory granules. Mist1 induced a cohort of genes regulated by MIST1 in multiple organs but did not affect PC function. MIST1 bound CATATG/CAGCTG E boxes in the first intron of genes that regulate autophagosome/lysosomal degradation, mitochondrial trafficking, and amino acid metabolism. Similar alterations in cell architecture and gene expression were also caused by ectopically inducing MIST1 in vivo in hepatocytes. Thus, MIST1 is a scaling factor necessary and sufficient by itself to induce and maintain secretory cell architecture. Our results indicate that, whereas mature cell types in each organ may have unique developmental origins, cells performing similar physiological functions throughout the body share similar transcription factor-mediated architectural "blueprints."


Assuntos
Regulação da Expressão Gênica/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Células Parietais Gástricas/citologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Via Secretória/genética , Células Acinares/citologia , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Linhagem Celular , Expressão Ectópica do Gene/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/ultraestrutura , Tamoxifeno/farmacologia
14.
Dig Endosc ; 29(3): 307-313, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27859804

RESUMO

BACKGROUND AND AIM: Use of proton pump inhibitors (PPI) is histologically associated with oxyntic gland dilatations. Two interesting mucosal changes are often detected endoscopically in patients who use PPI: gastric cracked mucosa (GCM) and gastric cobblestone-like mucosa (GCSM). The aim of the present study was to clarify the relationship between PPI use and these mucosal changes. METHODS: This was a single-center observational study. All successive subjects who underwent a routine esophagogastroduodenoscopy (EGD) between August and November 2014 in Hokkaido University Hospital were enrolled. Endoscopists carried out the assessment blinded to the use of PPI and checked for GCSM and GCM using original diagnostic criteria for GCM and GCSM. Subjects were divided into two groups: those who used PPI (PPI group) and those who did not (control group). Endoscopic findings and backgrounds were compared between the two groups. RESULTS: A total of 538 patients were analyzed (control group: 374 patients, men/women: 204/170, median age: 65.2 years; PPI group: 164 patients, men/women: 89/75, median age: 67.1 years). GCM was detected in 54 (10.0%) subjects, and GCSM was detected in 18 (3.3%) subjects. There was a significant difference in the prevalence rate of GCM between the control group (14/374, 3.7%) and the PPI group (40/164, 24.4%) (P < 0.01). GCSM was significantly more prevalent in the PPI group (15/164, 9.1%) than in the control group (3/374, 0.8%) (P < 0.01). CONCLUSION: Novel GCM and GCSM endoscopic findings in the corpus area seem to be strongly associated with PPI use.


Assuntos
Mucosa Gástrica/efeitos dos fármacos , Inibidores da Bomba de Prótons/efeitos adversos , Gastropatias/tratamento farmacológico , Idoso , Biópsia , Dilatação Patológica , Endoscopia do Sistema Digestório , Feminino , Mucosa Gástrica/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/patologia , Estudos Retrospectivos , Gastropatias/patologia
15.
Gastroenterology ; 152(4): 762-766.e7, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27932312

RESUMO

Parietal cell atrophy is considered to cause metaplasia in the stomach. We developed mice that express the diphtheria toxin receptor specifically in parietal cells to induce their death, and found this to increase proliferation in the normal stem cell zone and neck but not to cause metaplastic reprogramming of chief cells. Furthermore, the metaplasia-inducing agents tamoxifen or DMP-777 still induced metaplasia even after previous destruction of parietal cells by diphtheria toxin. Atrophy of parietal cells alone therefore is not sufficient to induce metaplasia: completion of metaplastic reprogramming of chief cells requires mechanisms beyond parietal cell injury or death.


Assuntos
Apoptose , Celulas Principais Gástricas/patologia , Células Parietais Gástricas/patologia , Células Parietais Gástricas/fisiologia , Estômago/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Atrofia/induzido quimicamente , Azetidinas , Proliferação de Células , Reprogramação Celular , Celulas Principais Gástricas/metabolismo , Toxina Diftérica/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Peptídeos e Proteínas de Sinalização Intercelular , Fator Intrínseco/metabolismo , Metaplasia/induzido quimicamente , Metaplasia/genética , Metaplasia/metabolismo , Camundongos , Células Parietais Gástricas/efeitos dos fármacos , Peptídeos/metabolismo , Piperazinas , Lectinas de Plantas/metabolismo , Tamoxifeno
16.
Methods Mol Biol ; 1422: 329-39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27246044

RESUMO

Parietal cell loss represents the initial step in the sequential progression toward gastric adenocarcinoma. In the setting of chronic inflammation, the expansion of the mucosal response to parietal cell loss characterizes a crucial transition en route to gastric dysplasia. Here, we detail methods for using the selective estrogen receptor modulator tamoxifen as a novel tool to rapidly and reversibly induce parietal cell loss in mice in order to study the mechanisms that underlie these pre-neoplastic events.


Assuntos
Células Parietais Gástricas/patologia , Lesões Pré-Cancerosas/induzido quimicamente , Neoplasias Gástricas/induzido quimicamente , Tamoxifeno/toxicidade , Animais , Modelos Animais de Doenças , Injeções , Metaplasia , Camundongos , Células Parietais Gástricas/efeitos dos fármacos , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/patologia , Tamoxifeno/administração & dosagem
17.
J Endocrinol Invest ; 39(4): 389-400, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26256408

RESUMO

PURPOSE: Estrogenic symptoms of liver disease patients including biliary tract disorder with high frequency is observed in clinical cases. However, the origin of 17ß-estradiol which is abundant enough to cause symptoms remains uncertain. In male rats, it has been reported that the parietal cells which have an abundance of aromatase-synthesized 17ß-estradiol, and a part of 17ß-estradiol secreted into the portal vein, may flow into the systemic circulation under a pathophysiological condition of the liver including bile duct ligation (BDL). The aim of this study is to reveal the origin of 17ß-estradiol increment in female rats and to investigate the effect of BDL on the ovary during the estrus cycle. METHODS: Wistar female rats were used, and the common bile duct was ligated twice and transected completely at 7 days before termination. Serum portal venous and arterial 17ß-estradiol levels, Cyp19a1 expressions, aromatase protein levels, and estrogen receptor (ER) α levels in the liver were measured during the estrus cycle. RESULTS: Both arterial and portal venous 17ß-estradiol levels increased 2.9 times at proestrus and maintained constant levels during the cycle. The expression of Cyp19a1 and aromatase protein in the stomach maintained constant levels, and significantly decreased during the estrus cycle in the ovary. Hepatic ERα protein and Esr1 expressions decrease by BDL in all stages. CONCLUSIONS: These results suggest that the increment of serum 17ß-estradiol levels in obstructive cholestasis induced by BDL is derived from 17ß-estradiol secreted from the parietal cells in females as well as males.


Assuntos
Bilirrubina/metabolismo , Colestase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Células Parietais Gástricas/metabolismo , Animais , Ductos Biliares/cirurgia , Western Blotting , Colestase/tratamento farmacológico , Colestase/patologia , Colesterol/metabolismo , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Técnicas Imunoenzimáticas , Ligadura , Fígado/efeitos dos fármacos , Fígado/metabolismo , Células Parietais Gástricas/efeitos dos fármacos , Veia Porta/efeitos dos fármacos , Veia Porta/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Biol Chem ; 290(47): 28272-28285, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26405038

RESUMO

The digestive function of the stomach depends on acidification of the gastric lumen. Acid secretion into the lumen is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. A coupling protein is ezrin, whose phosphorylation at Ser-66 by PKA is required for parietal cell activation. However, little is known regarding the molecular mechanism(s) by which this signaling pathway operates in gastric acid secretion. Here we show that PKA cooperates with MST4 to orchestrate histamine-elicited acid secretion by phosphorylating ezrin at Ser-66 and Thr-567. Histamine stimulation activates PKA, which phosphorylates MST4 at Thr-178 and then promotes MST4 kinase activity. Interestingly, activated MST4 then phosphorylates ezrin prephosphorylated by PKA. Importantly, MST4 is important for acid secretion in parietal cells because either suppression of MST4 or overexpression of non-phosphorylatable MST4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, overexpressing MST4 phosphorylation-deficient ezrin results in an inhibition of gastric acid secretion. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ezrin signaling cascade to polarized epithelial secretion in gastric parietal cells.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácido Gástrico/metabolismo , Histamina/farmacologia , Células Parietais Gástricas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Células Parietais Gástricas/metabolismo , Fosforilação , Ligação Proteica , Coelhos , Transdução de Sinais
19.
Bioorg Khim ; 41(5): 619-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26762101

RESUMO

A series of novel piperazine analogues bearing quinolin-8-yloxy-butan--ones/pyridin-2-yloxy-ethanones were synthesized by a simple and convenient approach based on various substituted piperazine incorporating quinoline and pyridine moieties. The analogues were evaluated for in vitro antioxidant activity against 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and ferrous ion radical scavenging activities and anti-inflammatory activity by inhibition of Vipera russelli venom (PLA2) and gastric K+/H(+)-ATPase activities. Most of the title compounds exhibited promising activity. Best antioxidant and PLA2-inhibiting activities were found for piperazine analogues with phenyl and nitro phenyl groups, whereas methoxy group on phenyl piperazine indicated selectivity for the H+/K(+)-ATPase.


Assuntos
Anti-Inflamatórios/síntese química , Antioxidantes/síntese química , Inibidores Enzimáticos/síntese química , Piperazinas/síntese química , Piridinas/química , Quinolinas/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Radicais Livres/química , Fosfolipases A2 do Grupo II/antagonistas & inibidores , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Estrutura Molecular , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/enzimologia , Picratos/química , Piperazinas/química , Piperazinas/farmacologia , Ovinos
20.
FEBS Lett ; 587(24): 3898-905, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24188822

RESUMO

ERp57 is a ubiquitous ER chaperone that has disulfide isomerase activity. Here, we found that both ERp57 and gastric H(+),K(+)-ATPase are expressed in a sample derived from the apical canalicular membranes of parietal cells. Overexpression of ERp57 in HEK293 cells stably expressing H(+),K(+)-ATPase significantly increased the ATPase activity without changing the expression level of H(+),K(+)-ATPase. Interestingly, overexpression of a catalytically inactive mutant of ERp57 (C57S/C60S/C406S/C409S) in the cells also increased H(+),K(+)-ATPase activity. In contrast, knockdown of endogenous ERp57 in H(+),K(+)-ATPase-expressing cells significantly decreased ATPase activity without changing the expression level of H(+),K(+)-ATPase. Overexpression and knockdown of ERp57 had no significant effect on the expression and function of Na(+),K(+)-ATPase. These results suggest that ERp57 positively regulates H(+),K(+)-ATPase activity apart from its chaperoning function.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Células Parietais Gástricas/metabolismo , Isomerases de Dissulfetos de Proteínas/fisiologia , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , ATPase Trocadora de Hidrogênio-Potássio/genética , Células HEK293 , Humanos , Chaperonas Moleculares/fisiologia , Células Parietais Gástricas/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA