Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951726

RESUMO

The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro-B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro- to pre-B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1's critical, dose-dependent role as a hematopoietic euchromatin gatekeeper.


Assuntos
Agamaglobulinemia/genética , Cromatina/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Adolescente , Adulto , Linfócitos B/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Criança , Pré-Escolar , Células Dendríticas/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lactente , Linfopoese/genética , Masculino , Mutação/genética , Células Precursoras de Linfócitos B/fisiologia , Células-Tronco/fisiologia , Adulto Jovem
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33850015

RESUMO

Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.


Assuntos
Tolerância Central/fisiologia , Células Precursoras de Linfócitos B/metabolismo , Receptores CXCR4/metabolismo , Animais , Autoanticorpos/metabolismo , Autoantígenos/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Tolerância Central/imunologia , Feminino , Humanos , Tolerância Imunológica/genética , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fenótipo , Células Precursoras de Linfócitos B/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores CXCR4/imunologia , Receptores CXCR4/fisiologia , Transdução de Sinais/genética
3.
Mol Immunol ; 128: 150-164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33129017

RESUMO

During mammalian lymphoid development, Notch signaling is necessary at multiple stages of T lymphopoiesis, including lineage commitment, and later stages of T cell effector differentiation. In contrast, outside of a defined role in the development of splenic marginal zone B cells, there is conflicting evidence regarding whether Notch signaling plays functional roles in other B cell sub-populations. Complement receptor 2 (CR2) modulates BCR-signaling and is tightly regulated throughout differentiation. During B lymphopoiesis, CR2 is detected on immature and mature B cells with high surface expression on marginal zone B cells. Here, we have explored the possibility that Notch regulates human CR2 transcriptional activity using in vitro models including a co-culture system, co-transfection gene reporters and chromatin accessibility assays. We provide evidence that Notch signaling regulates CR2 promoter activity in a mature B cell line, as well as the induction of endogenous CR2 mRNA in a non-expressing pre-B cell line. The dynamics of endogenous gene activation suggests additional unidentified factors are required to mediate surface CR2 expression on immature and mature B lineage cells.


Assuntos
Complemento C3d/genética , Células Precursoras de Linfócitos B/fisiologia , Regiões Promotoras Genéticas/genética , Receptores de Complemento 3d/genética , Receptores Notch/genética , Transdução de Sinais/genética , Transcrição Gênica/genética , Linfócitos B/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Técnicas de Cocultura/métodos , Humanos , Células K562 , Ativação Linfocitária/genética , Linfopoese/genética
4.
Sci Rep ; 10(1): 15193, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938995

RESUMO

SHOC2 scaffold protein has been mainly related to oncogenic ERK signaling through the RAS-SHOC2-PP1 phosphatase complex. In leukemic cells however, SHOC2 upregulation has been previously related to an increased 5-year event-free survival of pediatric pre-B acute lymphoid leukemia, suggesting that SHOC2 could be a potential prognostic marker. To address such paradoxical function, our study investigated how SHOC2 impact leukemic cells drug response. Our transcriptome analysis has shown that SHOC2 can modulate the DNA-damage mediated by p53. Notably, upon genetic inhibition of SHOC2 we observed a significant impairment of p53 expression, which in turn, leads to the blockage of key apoptotic molecules. To confirm the specificity of DNA-damage related modulation, several anti-leukemic drugs has been tested and we did confirm that the proposed mechanism impairs cell death upon daunorubicin-induced DNA damage of human lymphoid cells. In conclusion, our study uncovers new insights into SHOC2 function and reveals that this scaffold protein may be essential to activate a novel mechanism of p53-induced cell death in pre-B lymphoid cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Linfoide/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Daunorrubicina/uso terapêutico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia Linfoide/diagnóstico , Leucemia Linfoide/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Proteína Supressora de Tumor p53/genética , Proteínas ras/metabolismo
5.
J Immunol ; 202(12): 3423-3433, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31085591

RESUMO

Induction of programmed DNA damage and its recognition and repair are fundamental for B cell development. The ssDNA-binding protein SSB1 has been described in human cells as essential for the recognition and repair of DNA damage. To study its relevance for B cells, we recently developed Ssb1 -/- and conditional Ssb1 -/- mice. Although SSB1 loss did not affect B cell development, Ssb1 -/- cells exhibited compensatory expression of its homolog SSB2. We have now generated Ssb2 -/- mice and show in this study that SSB2 is also dispensable for B cell development and DNA damage response activation. In contrast to the single loss of Ssb1 or Ssb2, however, combined SSB1/2 deficiency caused a defect in early B cell development. We relate this to the sensitivity of B cell precursors as mature B cells largely tolerated their loss. Toxicity of combined genetic SSB1/2 loss can be rescued by ectopic expression of either SSB1 or SSB2, mimicked by expression of SSB1 ssDNA-binding mutants, and attenuated by BCL2-mediated suppression of apoptosis. SSB1/2 loss in B cell precursors further caused increased exposure of ssDNA associated with disruption of genome fragile sites, inefficient cell cycle progression, and increased DNA damage if apoptosis is suppressed. As such, our results establish SSB1/2 as safeguards of B cell development and unveil their differential requirement in immature and mature B lymphocytes.


Assuntos
Linfócitos B/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Apoptose , Diferenciação Celular , Células Cultivadas , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Genoma/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética
6.
Apoptosis ; 24(1-2): 145-156, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30578463

RESUMO

Arginase has therapeutic potential as a cytotoxic agent in some cancers, but this is unclear for precursor B acute lymphoblastic leukaemia (pre-B ALL), the commonest form of childhood leukaemia. We compared arginase cytotoxicity with asparaginase, currently used in pre-B ALL treatment, and characterised the forms of cell death induced in a pre-B ALL cell line 697. Arginase and asparaginase both efficiently killed 697 cells and mature B lymphoma cell line Ramos, but neither enzyme killed normal lymphocytes. Arginase depleted cellular arginine, and arginase-treated media induced cell death, blocked by addition of arginine or arginine-precursor citrulline. Asparaginase depleted both asparagine and glutamine, and asparaginase-treated media induced cell death, blocked by asparagine, but not glutamine. Both enzymes induced caspase cleavage and activation, chromatin condensation and phosphatidylserine exposure, indicating apoptosis. Both arginase- and asparaginase-induced death were blocked by caspase inhibitors, but with different sensitivities. BCL-2 overexpression inhibited arginase- and asparaginase-induced cell death, but did not prevent arginase-induced cytostasis, indicating a different mechanism of growth arrest. An autophagy inhibitor, chloroquine, had no effect on the cell death induced by arginase, but doubled the cell death induced by asparaginase. In conclusion, arginase causes death of lymphoblasts by arginine-depletion induced apoptosis, via mechanism distinct from asparaginase. Therapeutic implications for childhood ALL include: arginase might be used as treatment (but antagonised by dietary arginine and citrulline), chloroquine may enhance efficacy of asparaginase treatment, and partial resistance to arginase and asparaginase may develop by BCL-2 expression. Arginase or asparaginase might potentially be used to treat Burkitt lymphoma.


Assuntos
Apoptose/efeitos dos fármacos , Arginase/farmacologia , Asparaginase/farmacologia , Células Precursoras de Linfócitos B/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Arginase/fisiologia , Arginase/uso terapêutico , Asparaginase/fisiologia , Asparaginase/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Células Precursoras de Linfócitos B/fisiologia
7.
Front Immunol ; 9: 2490, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450096

RESUMO

Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has been identified as a highly relevant tumor-associated antigen in a variety of cancer indications of high unmet medical need, including renal cell carcinoma and osteosarcoma, making it an attractive target for targeted cancer therapy. Here, we describe the de novo discovery of fully human ROR2-specific antibodies and potent antibody drug conjugates (ADCs) derived thereof by combining antibody discovery from immune libraries of human immunoglobulin transgenic animals using the Transpo-mAb mammalian cell-based IgG display platform with functional screening for internalizing antibodies using a secondary ADC assay. The discovery strategy entailed immunization of transgenic mice with the cancer antigen ROR2, harboring transgenic IgH and IgL chain gene loci with limited number of fully human V, D, and J gene segments. This was followed by recovering antibody repertoires from the immunized animals, expressing and screening them as full-length human IgG libraries by transposon-mediated display in progenitor B lymphocytes ("Transpo-mAb Display") for ROR2 binding. Individual cellular "Transpo-mAb" clones isolated by single cell sorting and capable of expressing membrane-bound as well as secreted human IgG were directly screened during antibody discovery, not only for high affinity binding to human ROR2, but also functionally as ADCs using a cytotoxicity assay with a secondary anti-human IgG-toxin-conjugate. Using this strategy, we identified and validated 12 fully human, monoclonal anti-human ROR2 antibodies with nanomolar affinities that are highly potent as ADCs and could be promising candidates for the therapy of human cancer. The screening for functional and internalizing antibodies during the early phase of antibody discovery demonstrates the utility of the mammalian cell-based Transpo-mAb Display platform to select for functional binders and as a powerful tool to improve the efficiency for the development of therapeutically relevant ADCs.


Assuntos
Anticorpos Monoclonais Humanizados/isolamento & purificação , Anticorpos Monoclonais/isolamento & purificação , Imunoconjugados/isolamento & purificação , Neoplasias/terapia , Células Precursoras de Linfócitos B/fisiologia , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunização , Imunoconjugados/farmacologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Imunotoxinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Análise de Célula Única , Éxons VDJ/genética
8.
Front Immunol ; 9: 2150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294329

RESUMO

Humoral immunity depends on intrinsic B cell developmental programs guided by systemic signals that convey physiologic needs. Aberrant cues or their improper interpretation can lead to immune insufficiency or a failure of tolerance and autoimmunity. The means by which such systemic signals are conveyed remain poorly understood. Hence, further insight is essential to understanding and treating autoimmune diseases and to the development of improved vaccines. ST6Gal-1 is a sialyltransferase that constructs the α2,6-sialyl linkage on cell surface and extracellular glycans. The requirement for functional ST6Gal-1 in the development of humoral immunity is well documented. Canonically, ST6Gal-1 resides within the intracellular ER-Golgi secretory apparatus and participates in cell-autonomous glycosylation. However, a significant pool of extracellular ST6Gal-1 exists in circulation. Here, we segregate the contributions of B cell intrinsic and extrinsic ST6Gal-1 to B cell development. We observed that B cell-intrinsic ST6Gal-1 is required for marginal zone B cell development, while B cell non-autonomous ST6Gal-1 modulates B cell development and survival at the early transitional stages of the marrow and spleen. Exposure to extracellular ST6Gal-1 ex vivo enhanced the formation of IgM-high B cells from immature precursors, and increased CD23 and IgM expression. Extrinsic sialylation by extracellular ST6Gal-1 augmented BAFF-mediated activation of the non-canonical NF-kB, p38 MAPK, and PI3K/AKT pathways, and accelerated tyrosine phosphorylation after B cell receptor stimulation. in vivo, systemic ST6Gal-1 did not influence homing of B cells to the spleen but was critical for their long-term survival and systemic IgG levels. Circulatory ST6Gal-1 levels respond to inflammation, infection, and malignancy in mammals, including humans. In turn, we have shown previously that systemic ST6Gal-1 regulates inflammatory cell production by modifying bone marrow myeloid progenitors. Our data here point to an additional role of systemic ST6Gal-1 in guiding B cell development, which supports the concept that circulating ST6Gal-1 is a conveyor of systemic cues to guide the development of multiple branches of immune cells.


Assuntos
Diferenciação Celular/imunologia , Células Precursoras de Linfócitos B/fisiologia , Sialiltransferases/metabolismo , Transferência Adotiva , Animais , Sobrevivência Celular/imunologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Precursoras de Linfócitos B/transplante , Cultura Primária de Células , Sialiltransferases/genética , Baço/citologia , Baço/imunologia , Irradiação Corporal Total , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
9.
Front Immunol ; 9: 2074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271408

RESUMO

To date there has not been a study directly comparing relative Igκ rearrangement frequencies obtained from genomic DNA (gDNA) and cDNA and since each approach has potential biases, this is an important issue to clarify. Here we used deep sequencing to compare the unbiased gDNA and RNA Igκ repertoire from the same pre-B cell pool. We find that ~20% of Vκ genes have rearrangement frequencies ≥2-fold up or down in RNA vs. DNA libraries, including many members of the Vκ3, Vκ4, and Vκ6 families. Regression analysis indicates Ikaros and E2A binding are associated with strong promoters. Within the pre-B cell repertoire, we observed that individual Vκ genes rearranged at very different frequencies, and also displayed very different Jκ usage. Regression analysis revealed that the greatly unequal Vκ gene rearrangement frequencies are best predicted by epigenetic marks of enhancers. In particular, the levels of newly arising H3K4me1 peaks associated with many Vκ genes in pre-B cells are most predictive of rearrangement levels. Since H3K4me1 is associated with long range chromatin interactions which are created during locus contraction, our data provides mechanistic insight into unequal rearrangement levels. Comparison of Igκ rearrangements occurring in pro-B cells and pre-B cells from the same mice reveal a pro-B cell bias toward usage of Jκ-distal Vκ genes, particularly Vκ10-96 and Vκ1-135. Regression analysis indicates that PU.1 binding is the highest predictor of Vκ gene rearrangement frequency in pro-B cells. Lastly, the repertoires of iEκ-/- pre-B cells reveal that iEκ actively influences Vκ gene usage, particularly Vκ3 family genes, overlapping with a zone of iEκ-regulated germline transcription. These represent new roles for iEκ in addition to its critical function in promoting overall Igκ rearrangement. Together, this study provides insight into many aspects of Igκ repertoire formation.


Assuntos
Linfócitos B/fisiologia , Cadeias Leves de Imunoglobulina/genética , Células Precursoras de Linfócitos B/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA Complementar/genética , Epigênese Genética , Rearranjo Gênico de Cadeia Leve de Linfócito B , Genoma , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Região Variável de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
10.
J Immunol ; 201(11): 3258-3268, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30373855

RESUMO

The B cell survival cytokine BAFF has been linked with the pathogenesis of systemic lupus erythematosus (SLE). BAFF binds distinct BAFF-family surface receptors, including the BAFF-R and transmembrane activator and CAML interactor (TACI). Although originally characterized as a negative regulator of B cell activation, TACI signals are critical for class-switched autoantibody (autoAb) production in BAFF transgenic mice. Consistent with this finding, a subset of transitional splenic B cells upregulate surface TACI expression and contribute to BAFF-driven autoAb. In the current study, we interrogated the B cell signals required for transitional B cell TACI expression and Ab production. Surprisingly, despite established roles for dual BCR and TLR signals in autoAb production in SLE, signals downstream of these receptors exerted distinct impacts on transitional B cell TACI expression and autoAb titers. Whereas loss of BCR signals prevented transitional B cell TACI expression and resulted in loss of serum autoAb across all Ig isotypes, lack of TLR signals exerted a more limited impact restricted to autoAb class-switch recombination without altering transitional B cell TACI expression. Finally, in parallel with the protective effect of TACI deletion, loss of BAFF-R signaling also protected against BAFF-driven autoimmunity. Together, these findings highlight how multiple signaling pathways integrate to promote class-switched autoAb production by transitional B cells, events that likely impact the pathogenesis of SLE and other BAFF-dependent autoimmune diseases.


Assuntos
Autoanticorpos/metabolismo , Glomerulonefrite por IGA/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Glicoproteínas de Membrana/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptor 7 Toll-Like/metabolismo , Animais , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/genética , Modelos Animais de Doenças , Humanos , Switching de Imunoglobulina , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais , Receptor 7 Toll-Like/genética , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo
11.
Front Immunol ; 9: 2053, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250473

RESUMO

In response to external stimuli, naïve B cells proliferate and take on a range of fates important for immunity. How their fate is determined is a topic of much recent research, with candidates including asymmetric cell division, lineage priming, stochastic assignment, and microenvironment instruction. Here we manipulate the generation of plasmablasts from B lymphocytes in vitro by varying CD40 stimulation strength to determine its influence on potential sources of fate control. Using long-term live cell imaging, we directly measure times to differentiate, divide, and die of hundreds of pairs of sibling cells. These data reveal that while the allocation of fates is significantly altered by signal strength, the proportion of siblings identified with asymmetric fates is unchanged. In contrast, we find that plasmablast generation is enhanced by slowing times to divide, which is consistent with a hypothesis of competing timed stochastic fate outcomes. We conclude that this mechanistically simple source of alternative fate regulation is important, and that useful quantitative models of signal integration can be developed based on its principles.


Assuntos
Linfócitos B/fisiologia , Plasmócitos/fisiologia , Células Precursoras de Linfócitos B/fisiologia , Animais , Relógios Biológicos , Antígenos CD40/metabolismo , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Células Cultivadas , Feminino , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Processos Estocásticos
12.
Eur J Immunol ; 48(6): 975-989, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29505092

RESUMO

Hematopoietic stem cells and lineage-uncommitted progenitors are able to home to the bone marrow upon transplantation and reconstitute the host with hematopoietic progeny. Expression of miR221 in B-lineage committed preBI-cells induces their capacity to home to the bone marrow. However, the molecular mechanisms underlying miR221-controlled bone marrow homing and retention remain poorly understood. Here, we demonstrate, that miR221 regulates bone marrow retention of such B-cell precursors by targeting PTEN, thus enhancing PI3K signaling in response to the chemokine CXCL12. MiR221-enhanced PI3K signaling leads to increased expression of the anti-apoptotic protein Bcl2 and VLA4 integrin-mediated adhesion to VCAM1 in response to CXCL12 in vitro. Ablation of elevated PI3K activity abolishes the retention of miR221 expressing preBI-cells in the bone marrow. These results suggest that amplification of PI3K signaling by miR221 could be a general mechanism for bone marrow residence, shared by miR221-expressing hematopoietic cells.


Assuntos
Linfócitos B/fisiologia , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Animais , Medula Óssea/fisiologia , Adesão Celular , Diferenciação Celular , Movimento Celular , Células Cultivadas , Quimiocina CXCL12/imunologia , Integrina alfa4beta1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais
13.
J Allergy Clin Immunol ; 142(2): 630-646, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29391254

RESUMO

BACKGROUND: Roifman syndrome is a rare inherited disorder characterized by spondyloepiphyseal dysplasia, growth retardation, cognitive delay, hypogammaglobulinemia, and, in some patients, thrombocytopenia. Compound heterozygous variants in the small nuclear RNA gene RNU4ATAC, which is necessary for U12-type intron splicing, were identified recently as driving Roifman syndrome. OBJECTIVE: We studied 3 patients from 2 unrelated kindreds harboring compound heterozygous or homozygous stem II variants in RNU4ATAC to gain insight into the mechanisms behind this disorder. METHODS: We systematically profiled the immunologic and hematologic compartments of the 3 patients with Roifman syndrome and performed RNA sequencing to unravel important splicing defects in both cell lineages. RESULTS: The patients exhibited a dramatic reduction in B-cell numbers, with differentiation halted at the transitional B-cell stage. Despite abundant B-cell activating factor availability, development past this B-cell activating factor-dependent stage was crippled, with disturbed minor splicing of the critical mitogen-activated protein kinase 1 signaling component. In the hematologic compartment patients with Roifman syndrome demonstrated defects in megakaryocyte differentiation, with inadequate generation of proplatelets. Platelets from patients with Roifman syndrome were rounder, with increased tubulin and actin levels, and contained increased α-granule and dense granule markers. Significant minor intron retention in 354 megakaryocyte genes was observed, including DIAPH1 and HPS1, genes known to regulate platelet and dense granule formation, respectively. CONCLUSION: Together, our results provide novel molecular and cellular data toward understanding the immunologic and hematologic features of Roifman syndrome.


Assuntos
Linfócitos B/fisiologia , Plaquetas/fisiologia , Cardiomiopatias/genética , Síndromes de Imunodeficiência/genética , Megacariócitos/fisiologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Osteocondrodisplasias/genética , Células Precursoras de Linfócitos B/fisiologia , RNA Nuclear Pequeno/genética , Doenças Retinianas/genética , Adolescente , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Humanos , Lactente , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Linhagem , Doenças da Imunodeficiência Primária , Processamento de Proteína/genética , Transdução de Sinais/genética , Sequenciamento do Exoma
14.
J Immunol ; 199(7): 2408-2420, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28807996

RESUMO

Klhl6 belongs to the KLHL gene family, which is composed of an N-terminal BTB-POZ domain and four to six Kelch motifs in tandem. Several of these proteins function as adaptors of the Cullin3 E3 ubiquitin ligase complex. In this article, we report that Klhl6 deficiency induces, as previously described, a 2-fold reduction in mature B cells. However, we find that this deficit is centered on the inability of transitional type 1 B cells to survive and to progress toward the transitional type 2 B cell stage, whereas cells that have passed this step generate normal germinal centers (GCs) upon a T-dependent immune challenge. Klhl6-deficient type 1 B cells showed a 2-fold overexpression of genes linked with cell proliferation, including most targets of the anaphase-promoting complex/cyclosome complex, a set of genes whose expression is precisely downmodulated upon culture of splenic transitional B cells in the presence of BAFF. These results thus suggest a delay in the differentiation process of Klhl6-deficient B cells between the immature and transitional stage. We further show, in the BL2 Burkitt's lymphoma cell line, that KLHL6 interacts with Cullin3, but also that it binds to HBXIP/Lamtor5, a protein involved in cell-cycle regulation and cytokinesis. Finally, we report that KLHL6, which is recurrently mutated in B cell lymphomas, is an off-target of the normal somatic hypermutation process taking place in GC B cells in both mice and humans, thus leaving open whether, despite the lack of impact of Klhl6 deficiency on GC B cell expansion, mutants could contribute to the oncogenic process.


Assuntos
Linfócitos B/fisiologia , Proteínas de Transporte/fisiologia , Centro Germinativo/citologia , Animais , Linfócitos B/imunologia , Linfoma de Burkitt/patologia , Proteínas de Transporte/genética , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Centro Germinativo/imunologia , Humanos , Linfoma de Células B/genética , Linfoma de Células B/patologia , Camundongos , Mutação , Células Precursoras de Linfócitos B/fisiologia
15.
EMBO Rep ; 18(9): 1604-1617, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28705801

RESUMO

Precursor B lymphocytes expand upon expression of a pre-B cell receptor (pre-BCR), but then transit into a resting state in which immunoglobulin light chain gene recombination is initiated. This bi-phasic sequence is orchestrated by the IL-7 receptor (IL-7R) and pre-BCR signaling, respectively, but little is known about microRNAs fine-tuning these events. Here, we show that pre-B cells lacking miR-15 family functions exhibit prolonged proliferation due to aberrant expression of the target genes cyclin E1 and D3. As a consequence, they fail to trigger the transcriptional reprogramming normally accompanying their differentiation, resulting in a developmental block at the pre-B cell stage. Intriguingly, our data indicate that the miR-15 family is suppressed by both IL-7R and pre-BCR signaling, suggesting it is actively integrated into the regulatory circuits of developing B cells. These findings identify the miR-15 family as a novel element required to promote the switch from pre-B cell proliferation to differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , MicroRNAs/imunologia , MicroRNAs/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Animais , Linfócitos B/imunologia , Ciclina D3/genética , Ciclina E/genética , Ativação Linfocitária , Linfopoese , Camundongos , MicroRNAs/genética , Proteínas Oncogênicas/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Interleucina-7/genética , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 114(20): E3954-E3963, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461481

RESUMO

Most tissue-resident macrophages (Mφs) are believed to be derived prenatally and are assumed to maintain themselves throughout life by self-proliferation. However, in adult mice we identified a progenitor within bone marrow, early pro-B cell/fraction B, that differentiates into tissue Mφs. These Mφ precursors have non-rearranged B-cell receptor genes and coexpress myeloid (GR1, CD11b, and CD16/32) and lymphoid (B220 and CD19) lineage markers. During steady state, these precursors exit bone marrow, losing Gr1, and enter the systemic circulation, seeding the gastrointestinal system as well as pleural and peritoneal cavities but not the brain. While in these tissues, they acquire a transcriptome identical to embryonically derived tissue-resident Mφs. Similarly, these Mφ precursors also enter sites of inflammation, gaining CD115, F4/80, and CD16/32, and become indistinguishable from blood monocyte-derived Mφs. Thus, we have identified a population of cells within the bone marrow early pro-B cell compartment that possess functional plasticity to differentiate into either tissue-resident or inflammatory Mφs, depending on microenvironmental signals. We propose that these precursors represent an additional source of Mφ populations in adult mice during steady state and inflammation.


Assuntos
Ativação de Macrófagos/fisiologia , Macrófagos/imunologia , Células Precursoras de Linfócitos B/fisiologia , Animais , Linfócitos B/fisiologia , Medula Óssea , Células da Medula Óssea/fisiologia , Homeostase/fisiologia , Inflamação/imunologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo
17.
Br J Haematol ; 178(2): 267-278, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28542787

RESUMO

A better understanding of the reconstitution of the B-cell compartment during and after treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) will help to assess the immunological status and needs of post-treatment BCP-ALL patients. Using 8-colour flow cytometry and proliferation-assays, we studied the composition and proliferation of both the B-cell precursor (BCP) population in the bone marrow (BM) and mature B-cell population in peripheral blood (PB) during and after BCP-ALL therapy. We found a normal BCP differentiation pattern and a delayed formation of classical CD38dim -naive mature B-cells, natural effector B-cells and memory B-cells in patients after chemotherapy. This B-cell differentiation/maturation pattern was strikingly similar to that during initial B-cell development in healthy infants. Tissue-resident plasma cells appeared to be partly protected from chemotherapy. Also, we found that the fast recovery of naive mature B-cell numbers after chemotherapy was the result of increased de novo BCP generation, rather than enhanced B-cell proliferation in BM or PB. These results indicate that post-treatment BCP-ALL patients will eventually re-establish a B-cell compartment with a composition and B-cell receptor repertoire similar to that in healthy children. Additionally, the formation of a new memory B-cell compartment suggests that revaccination might be beneficial after BCP-ALL therapy.


Assuntos
Medula Óssea/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Células Precursoras de Linfócitos B/fisiologia , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Criança , Pré-Escolar , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/patologia , Regeneração/efeitos dos fármacos , Regeneração/fisiologia
18.
Br J Haematol ; 178(2): 257-266, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28419441

RESUMO

Flow cytometric detection of minimal residual disease (MRD) in children with B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) requires immunophenotypic discrimination between residual leukaemic cells and B-cell precursors (BCPs) which regenerate during therapy intervals. In this study, EuroFlow-based 8-colour flow cytometry and innovative analysis tools were used to first characterize the immunophenotypic maturation of normal BCPs in bone marrow (BM) from healthy children, resulting in a continuous multiparametric pathway including transition stages. This pathway was subsequently used as a reference to characterize the immunophenotypic maturation of regenerating BCPs in BM from children treated for BCP-ALL. We identified pre-B-I cells that expressed low or dim CD34 levels, in contrast to the classical CD34high pre-B-I cell immunophenotype. These CD34-dim pre-B-I cells were relatively abundant in regenerating BM (11-85% within pre-B-I subset), while hardly present in healthy control BM (9-13% within pre-B-I subset; P = 0·0037). Furthermore, we showed that some of the BCP-ALL diagnosis immunophenotypes (23%) overlapped with CD34-dim pre-B-I cells. Our results indicate that newly identified CD34-dim pre-B-I cells can be mistaken for residual BCP-ALL cells, potentially resulting in false-positive MRD outcomes. Therefore, regenerating BM, in which CD34-dim pre-B-I cells are relatively abundant, should be used as reference frame in flow cytometric MRD measurements.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Células Precursoras de Linfócitos B/fisiologia , Adolescente , Antígenos CD34/metabolismo , Medula Óssea/fisiologia , Diferenciação Celular/fisiologia , Pré-Escolar , Citometria de Fluxo , Rearranjo Gênico do Linfócito B/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Imunofenotipagem/métodos , Masculino , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/fisiopatologia , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/patologia , Regeneração
19.
Eur J Immunol ; 47(5): 911-920, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28294314

RESUMO

Deregulated expression of c-myc and bcl-xL is long known to generate transformed B cells in humans and mice. We overexpressed these genes to induce in vitro and in vivo differentiation of fetal liver-derived mouse pre-BI cells to B1-lineage pre-BII-like, immature and mature B-cell lines, and to Ig-secreting cells. In vitro, doxycycline-controlled c-myc/bcl-xL-overexpressing CD19+ CD93+ c-kikt+ IgM- pre-BI cells differentiate to and survive as CD19+ CD93+ c-kit- IgM+ immature B1 cells. Timed CpG stimulation of these oncogene-overexpressing pre-B or immature B1 cells generates either CD19+ CD93low c-kit- IgM- SLC- pre-BII-like or IgM+ MHCII+ CD73+ CD80+ CD40+ mature B1-cell lines and IgM-secreting B1 cells in vitro and fixes their state of differentiation. All cell lines are clonable, but a majority of immature and mature B1-cell clones eventually reach a nonproliferating, surviving G0 -state. Transplanted in vivo, c-myc/bcl-xL-overexpressing pre-B cells expand to mature B1 cells, and to IgM- and IgA-secreting plasmablasts and plasma cells. Within 2 months, plasmablasts have expanded most prominently in BM and spleen, indicating that the host selectively expanded development of these transformed plasma cells. The sIgM+ B1-cell lines and clones offer the possibility to study their roles in the development of B1-Ab repertoires, of B1-cell-mediated autoimmune diseases and of B1-cell malignancies.


Assuntos
Linfócitos B/fisiologia , Células Precursoras de Linfócitos B , Animais , Linfócitos B/imunologia , Diferenciação Celular , Linhagem Celular , Genes myc , Imunoglobulina A/imunologia , Imunoglobulina M/imunologia , Fígado/citologia , Fígado/imunologia , Camundongos , Plasmócitos/imunologia , Plasmócitos/fisiologia , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/fisiologia , Baço/citologia , Baço/imunologia , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
20.
J Immunol ; 198(4): 1565-1574, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062693

RESUMO

B cell development and Ig rearrangement are governed by cell type- and developmental stage-specific transcription factors. PU.1 and Spi-B are E26-transformation-specific transcription factors that are critical for B cell differentiation. To determine whether PU.1 and Spi-B are required for B cell development in the bone marrow, Spi1 (encoding PU.1) was conditionally deleted in B cells by Cre recombinase under control of the Mb1 gene in Spib (encoding Spi-B)-deficient mice. Combined deletion of Spi1 and Spib resulted in a lack of mature B cells in the spleen and a block in B cell development in the bone marrow at the small pre-B cell stage. To determine target genes of PU.1 that could explain this block, we applied a gain-of-function approach using a PU.1/Spi-B-deficient pro-B cell line in which PU.1 can be induced by doxycycline. PU.1-induced genes were identified by integration of chromatin immunoprecipitation-sequencing and RNA-sequencing data. We found that PU.1 interacted with multiple sites in the Igκ locus, including Vκ promoters and regions located downstream of Vκ second exons. Induction of PU.1 induced Igκ transcription and rearrangement. Upregulation of Igκ transcription was impaired in small pre-B cells from PU.1/Spi-B-deficient bone marrow. These studies reveal an important role for PU.1 in the regulation of Igκ transcription and rearrangement and a requirement for PU.1 and Spi-B in B cell development.


Assuntos
Linfócitos B/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica , Cadeias Leves de Imunoglobulina/genética , Células Precursoras de Linfócitos B/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Animais , Doxiciclina/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Células Precursoras de Linfócitos B/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Transativadores/deficiência , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA