Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656648

RESUMO

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Assuntos
Astrócitos , Diferenciação Celular , Deficiências de Ferro , Oligodendroglia , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Transporte de Cátions/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ratos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Desferroxamina/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ferro/metabolismo
2.
Acta Pharmacol Sin ; 43(3): 552-562, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935286

RESUMO

We previously show that fatty acid-binding protein 3 (FABP3) triggers α-synuclein (Syn) accumulation and induces dopamine neuronal cell death in Parkinson disease mouse model. But the role of fatty acid-binding protein 7 (FABP7) in the brain remains unclear. In this study we investigated whether FABP7 was involved in synucleinopathies. We showed that FABP7 was co-localized and formed a complex with Syn in Syn-transfected U251 human glioblastoma cells, and treatment with arachidonic acid (100 M) significantly promoted FABP7-induced Syn aggregation, which was associated with cell death. We demonstrated that synthetic FABP7 ligand 6 displayed a high affinity against FABP7 with Kd value of 209 nM assessed in 8-anilinonaphthalene-1-sulfonic acid (ANS) assay; ligand 6 improved U251 cell survival via disrupting the FABP7-Syn interaction. We showed that activation of phospholipase A2 (PLA2) by psychosine (10 M) triggered oligomerization of endogenous Syn and FABP7, and induced cell death in both KG-1C human oligodendroglia cells and oligodendrocyte precursor cells (OPCs). FABP7 ligand 6 (1 M) significantly decreased Syn oligomerization and aggregation thereby prevented KG-1C and OPC cell death. This study demonstrates that FABP7 triggers α-synuclein oligomerization through oxidative stress, while FABP7 ligand 6 can inhibit FABP7-induced Syn oligomerization and aggregation, thereby rescuing glial cells and oligodendrocytes from cell death.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Estresse Oxidativo/fisiologia , alfa-Sinucleína/metabolismo , Animais , Ácido Araquidônico/farmacologia , Morte Celular/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Fosfolipases A2/efeitos dos fármacos , Ligação Proteica/fisiologia , Psicosina/farmacologia
3.
Mol Neurobiol ; 59(1): 93-106, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626343

RESUMO

Anesthetics are commonly used in various medical procedures. Accumulating evidence suggests that early-life anesthetics exposure in infants and children affects brain development, causing psychiatric and neurological disorders. However, the underlying mechanisms are poorly understood. Using zebrafish larvae as a model, we found that the proliferation and migration of oligodendrocyte progenitor cells (OPCs) were severely impaired by the exposure of midazolam (MDZ), an anesthetic widely used in pediatric surgery and intensive care medicine, leading to a reduction of oligodendroglial lineage cell in the dorsal spinal cord. This defect was mimicked by the bath application of translocator protein (TSPO) agonists and partially rescued by genetic downregulation of TSPO. Cell transplantation experiments showed that requirement of TSPO for MDZ-induced oligodendroglial lineage cell defects is cell-autonomous. Furthermore, transmission electron microscopy and in vivo electrophysiological recording experiments demonstrated that MDZ exposure caused axon hypomyelination and action potential propagation retardation, resulting in delayed behavior initiation. Thus, our findings reveal that MDZ affects oligodendroglial lineage cell development and myelination in young animals, raising the care about its clinic use in infants and children.


Assuntos
Anestésicos Intravenosos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Midazolam/farmacologia , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Receptores de GABA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Receptores de GABA/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Mol Neurobiol ; 59(1): 161-176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34635980

RESUMO

Spinal cord injury (SCI), a devastating neurological impairment, usually imposes a long-term psychological stress and high socioeconomic burden for the sufferers and their family. Recent researchers have paid arousing attention to white matter injury and the underlying mechanism following SCI. Ferroptosis has been revealed to be associated with diverse diseases including stroke, cancer, and kidney degeneration. Ferrostatin-1, a potent inhibitor of ferroptosis, has been illustrated to curb ferroptosis in neurons, subsequently improving functional recovery after traumatic brain injury (TBI) and SCI. However, the role of ferroptosis in white matter injury and the therapeutic effect of ferrostatin-1 on SCI are still unknown. Here, our results indicated that ferroptosis played a pivotal role in the secondary white matter injury, and ferrostatin-1 could reduce iron and reactive oxygen species (ROS) accumulation and downregulate the ferroptosis-related genes and its products of IREB2 and PTGS2 to further inhibit ferroptosis in oligodendrocyte, finally reducing white matter injury and promoting functional recovery following SCI in rats. Meanwhile, the results demonstrated that ferrostatin-1 held the potential of inhibiting the activation of reactive astrocyte and microglia. Mechanically, the present study deciphers the potential mechanism of white matter damage, which enlarges the therapeutic effects of ferrostatin-1 on SCI and even in other central nervous system (CNS) diseases existing ferroptosis.


Assuntos
Cicloexilaminas/farmacologia , Ferroptose/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Substância Branca/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Feminino , Ferro/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/metabolismo , Substância Branca/metabolismo
5.
Biol Pharm Bull ; 44(2): 181-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33518671

RESUMO

Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into oligodendrocytes and myelinate axons. The number of OPCs is reportedly increased in brain lesions in some demyelinating diseases and during ischemia; however, these cells also secrete cytokines and elicit both protective and deleterious effects in response to brain injury. The mechanism regulating the behaviors of OPCs in physiological and pathological conditions must be elucidated to control these cells and to treat demyelinating diseases. Here, we focused on transient receptor potential melastatin 3 (TRPM3), a Ca2+-permeable channel that is activated by the neurosteroid pregnenolone sulfate (PS) and body temperature. Trpm3+/Pdgfra+ OPCs were detected in the cerebral cortex (CTX) and corpus callosum (CC) of P4 and adult rats by in situ hybridization. Trpm3 expression was detected in primary cultured rat OPCs and was increased by treatment with tumor necrosis factor α (TNFα). Application of PS (30-100 µM) increased the Ca2+ concentration in OPCs and this effect was inhibited by co-treatment with the TRP channel blocker Gd3+ (100 µM) or the TRPM3 inhibitor isosakuranetin (10 µM). Stimulation of TRPM3 with PS (50 µM) did not affect the differentiation or migration of OPCs. The number of Trpm3+ OPCs was markedly increased in demyelinated lesions in an endothelin-1 (ET-1)-induced ischemic rat model. In conclusion, TRPM3 is functionally expressed in OPCs in vivo and in vitro and is upregulated in inflammatory conditions such as ischemic insults and TNFα treatment, implying that TRPM3 is involved in the regulation of specific behaviors of OPCs in pathological conditions.


Assuntos
Córtex Cerebral/patologia , Doenças Desmielinizantes/patologia , Células Precursoras de Oligodendrócitos/patologia , Acidente Vascular Cerebral Lacunar/patologia , Canais de Cátion TRPM/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Corpo Caloso/irrigação sanguínea , Corpo Caloso/citologia , Corpo Caloso/patologia , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Humanos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Pregnenolona/farmacologia , Cultura Primária de Células , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Acidente Vascular Cerebral Lacunar/complicações , Canais de Cátion TRPM/agonistas , Regulação para Cima
6.
Exp Biol Med (Maywood) ; 246(10): 1198-1209, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33557607

RESUMO

White matter lesion (WML) is caused by chronic cerebral hypoperfusion, which are usually associated with cognitive impairment. Evidence from recent studies has shown that ginkgolide B has a neuroprotective effect that could be beneficial for the treatment of ischemia; however, it is not clear whether ginkgolide B has a protective effect on WML. Our data show that ginkgolide B can promote the differentiation of oligodendrocyte precursor cell (OPC) into oligodendrocytes and promote oligodendrocyte survival following a WML. Ginkgolide B (5, 10, 20 mg/kg) or saline is administered intraperitoneally every day after WML. After 4 weeks, the data of Morris water maze suggested that rats' memory and learning abilities were impaired, and the administration of ginkgolide B enhanced behavioral achievement. Also, treatment with ginkgolide B significantly attenuated this loss of myelin. Our result suggests that ginkgolide B promotes the differentiation of OPC into oligodendrocytes. We also found that ginkgolide B ameliorates oligodendrocytes apoptosis. Furthermore, ginkgolide B enhanced the expression of phosphorylated Akt and CREB. In conclusion, our data firstly show that ginkgolide B promotes oligodendrocyte genesis and oligodendrocyte myelin following a WML, possibly involving the Akt and CREB pathways.


Assuntos
Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ginkgolídeos/farmacologia , Lactonas/farmacologia , Células Precursoras de Oligodendrócitos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Substância Branca/patologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Memória/efeitos dos fármacos , Teste do Labirinto Aquático de Morris , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/patologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Substância Branca/efeitos dos fármacos , Substância Branca/fisiopatologia
7.
Neurobiol Dis ; 148: 105181, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189883

RESUMO

INTRODUCTION: Alterations of white matter integrity and subsequent white matter structural deficits are consistent findings in Fetal Alcohol Syndrome (FAS), but knowledge regarding the molecular mechanisms underlying these abnormalities is incomplete. Experimental rodent models of FAS have shown dysregulation of cytokine expression leading to apoptosis of oligodendrocyte precursor cells (OPCs) and altered oligodendrocyte (OL) differentiation, but whether this is representative of human FAS pathogenesis has not been determined. METHODS: Fetal brain tissue (12.2-21.4 weeks gestation) from subjects undergoing elective termination of pregnancy was collected according to an IRB-approved protocol. Ethanol (EtOH) exposure status was classified based on a detailed face-to-face questionnaire adapted from the National Institute on Alcohol Abuse and Alcoholism Prenatal Alcohol and Sudden Infant Death Syndrome and Stillbirth (PASS) study. Twenty EtOH-exposed fetuses were compared with 20 gestational age matched controls. Cytokine and OPC marker mRNA expression was quantified by Real-Time Polymerase chain reaction (qRT-PCR). Patterns of protein expression of OPC markers and active Capase-3 were studied by Fluorescence Activated Cell Sorting (FACS). RESULTS: EtOH exposure was associated with reduced markers of cell viability, OPC differentiation, and OL maturation, while early OL differentiation markers were unchanged or increased. Expression of mRNAs for proteins specific to more mature forms of OL lineage (platelet-derived growth factor α (PDGFRα) and myelin basic protein (MBP) was lower in the EtOH group than in controls. Expression of the multifunctional growth and differentiation-promoting growth factor IGF-1, which is essential for normal development, also was reduced. Reductions were not observed for markers of early stages of OL differentiation, including Nuclear transcription factor NK-2 homeobox locus 2 (Nkx2.2). Expression of mRNAs for the proinflammatory cytokine, tumor necrosis factor-α (TNFα), and several proinflammatory chemokines was higher in the EtOH group compared to controls, including: Growth regulated protein alpha/chemokine (C-X-C motif) ligand 1 (GRO-α/CXCL1), Interleukin 8/chemokine (C-X-C motif) ligand 8 (IL8/CXCL8), Chemokine (C-X-C motif) ligand 6/Granulocyte chemotactic protein 2 (CXCL16/GCP2), epithelial-derived neutrophil-activating protein 78/chemokine (C-X-C motif) ligand 5 (ENA-78/CXCL5), monocyte chemoattractant protein-1 (MCP-1). EtOH exposure also was associated with an increase in the proportion of cells expressing markers of early stage OPCs, such as A2B5 and NG2. Finally, apoptosis (measured by caspase-3 activation) was increased substantially in the EtOH group compared to controls. CONCLUSION: Prenatal EtOH exposure is associated with excessive OL apoptosis and/or delayed OL maturation in human fetal brain. This is accompanied by markedly dysregulated expression of several chemokines and cytokines, in a pattern predictive of increased OL cytotoxicity and reduced OL differentiation. These findings are consistent with findings in animal models of FAS.


Assuntos
Consumo de Bebidas Alcoólicas , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Aborto Induzido , Adulto , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Transtornos do Espectro Alcoólico Fetal , Feto/efeitos dos fármacos , Feto/metabolismo , Idade Gestacional , Humanos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Adulto Jovem
8.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003644

RESUMO

An adequate protection from oxidative and inflammatory reactions, together with the promotion of oligodendrocyte progenitor (OP) differentiation, is needed to recover from myelin damage in demyelinating diseases. Mitochondria are targets of inflammatory and oxidative insults and are essential in oligodendrocyte differentiation. It is known that nuclear factor-erythroid 2-related factor/antioxidant responsive element (NRF2/ARE) and peroxisome proliferator-activated receptor gamma/PPAR-γ response element (PPAR-γ/PPRE) pathways control inflammation and overcome mitochondrial impairment. In this study, we analyzed the effects of activators of these pathways on mitochondrial features, protection from inflammatory/mitochondrial insults and cell differentiation in OP cultures, to depict the specificities and similarities of their actions. We used dimethyl-fumarate (DMF) and pioglitazone (pio) as agents activating NRF2 and PPAR-γ, respectively, and two synthetic hybrids acting differently on the NRF2/ARE pathway. Only DMF and compound 1 caused early effects on the mitochondria. Both DMF and pio induced mitochondrial biogenesis but different antioxidant repertoires. Moreover, pio induced OP differentiation more efficiently than DMF. Finally, DMF, pio and compound 1 protected from tumor necrosis factor-alpha (TNF-α) insult, with pio showing faster kinetics of action and compound 1 a higher activity than DMF. In conclusion, NRF2 and PPAR-γ by inducing partially overlapping pathways accomplish complementary functions aimed at the preservation of mitochondrial function, the defense against oxidative stress and the promotion of OP differentiation.


Assuntos
Mitocôndrias/genética , Fator 2 Relacionado a NF-E2/genética , Oligodendroglia/efeitos dos fármacos , PPAR gama/genética , Animais , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Biogênese de Organelas , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pioglitazona/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
9.
Acta Neuropathol Commun ; 8(1): 120, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727582

RESUMO

Multiple system atrophy (MSA) is pathologically characterized by the presence of fibrillar α-synuclein-immunoreactive inclusions in oligodendrocytes. Although the myelinating process of oligodendrocytes can be observed in adult human brains, little is known regarding the presence of α-synuclein pathology in immature oligodendrocytes and how their maturation and myelination are affected in MSA brains. Recently, breast carcinoma amplified sequence 1 (BCAS1) has been found to be specifically expressed in immature oligodendrocytes undergoing maturation and myelination. Here, we analyzed the altered dynamics of oligodendroglial maturation in both MSA brains and primary oligodendroglial cell cultures which were incubated with α-synuclein pre-formed fibrils. The numbers of BCAS1-expressing oligodendrocytes that displayed a matured morphology negatively correlated with the density of pathological inclusions in MSA brains but not with that in Parkinson's disease and diffuse Lewy body disease. In addition, a portion of the BCAS1-expressing oligodendrocyte population showed cytoplasmic inclusions, which were labeled with antibodies against phosphorylated α-synuclein and cleaved caspase-9. Further in vitro examination indicated that the α-synuclein pre-formed fibrils induced cytoplasmic inclusions in the majority of BCAS1-expressing oligodendrocytes. In contrast, the majority of BCAS1-non-expressing mature oligodendrocytes did not develop inclusions on day 4 after maturation induction. Furthermore, exposure of α-synuclein pre-formed fibrils in the BCAS1-positive phase caused a reduction in oligodendroglial cell viability. Our results indicated that oligodendroglial maturation and myelination are impaired in the BCAS1-positive phase of MSA brains, which may lead to the insufficient replacement of defective oligodendrocytes. In vitro, the high susceptibility of BCAS1-expressing primary oligodendrocytes to the extracellular α-synuclein pre-formed fibrils suggests the involvement of insufficient oligodendroglial maturation in MSA disease progression and support the hypothesis that the BCAS1-positive oligodendrocyte lineage cells are prone to take up aggregated α-synuclein in vivo.


Assuntos
Atrofia de Múltiplos Sistemas/patologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Humanos , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Ratos , Ratos Sprague-Dawley
10.
Int J Mol Med ; 46(3): 1217-1224, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32582975

RESUMO

The inflammatory cytokine interleukin (IL)­1ß has been implicated in demyelinating diseases, such as multiple sclerosis and experimental autoimmune encephalomyelitis, and brain degenerative diseases, such as Alzheimer's disease. However, the cellular and molecular mechanisms underlying the damaging effects of IL­1ß on myelination are poorly understood. Therefore, the present study was designed to investigate whether IL­1ß modifies the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) through regulating the miR­202­3p/ß­catenin/glioma­associated oncogene homolog 1 (Gli1) axis. It was observed that IL­1ß significantly attenuated the proliferation and differentiation of OPCs, as evidenced by a decrease in bromodeoxyuridine incorporation and reduced percentage of myelin basic protein­positive cells among the total number of oligodendrocyte transcription factor 2­positive cells. In addition, IL­1ß markedly decreased the expression of miR­202­3p and increased the protein expression of ß­catenin and Gli1, all of which were reversed by the IL­1ß inhibitor, IL­1Ra. Treatment with the ß­catenin inhibitor XAV939, Gli1 siRNA, or miR­202­3p mimic transfection, attenuated the IL­1ß­induced suppression of OPC proliferation and differentiation. Treatment with XAV939 decreased the expression of Gli1. Transfection of miR­202­3p mimic attenuated the expression of ß­catenin and Gli1. As demonstrated by the findings of the present study, IL­1ß suppressed the proliferation and differentiation of OPCs through regulation of the miR­202­3p/ß­catenin/Gli1 axis. Therefore, the miR­202­3p/ß­catenin/Gli1 axis may be of value as a therapeutic target in multiple sclerosis.


Assuntos
Interleucina-1beta/metabolismo , MicroRNAs/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , beta Catenina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Compostos Heterocíclicos com 3 Anéis/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
11.
PLoS One ; 15(5): e0233859, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470040

RESUMO

Mechanisms implicated in disease progression in multiple sclerosis include continued oligodendrocyte (OL)/myelin injury and failure of myelin repair. Underlying causes include metabolic stress with resultant energy deficiency. Biotin is a cofactor for carboxylases involved in ATP production that impact myelin production by promoting fatty acid synthesis. Here, we investigate the effects of high dose Biotin (MD1003) on the functional properties of post-natal rat derived oligodendrocyte progenitor cells (OPCs). A2B5 positive OPCs were assessed using an in vitro injury assay, culturing cells in either DFM (DMEM/F12+N1) or "stress media" (no glucose (NG)-DMEM), with Biotin added over a range from 2.5 to 250 µg/ml, and cell viability determined after 24 hrs. Biotin reduced the increase in OPC cell death in the NG condition. In nanofiber myelination assays, biotin increased the percentage of ensheathing cells, the number of ensheathed segments per cell, and length of ensheathed segments. In dispersed cell culture, Biotin also significantly increased ATP production, assessed using a Seahorse bio-analyzer. For most assays, the positive effects of Biotin were observed at the higher end of the dose-response analysis. We conclude that Biotin, in vitro, protects OL lineage cells from metabolic injury, enhances myelin-like ensheathment, and is associated with increased ATP production.


Assuntos
Trifosfato de Adenosina/biossíntese , Biotina/farmacologia , Linhagem da Célula/efeitos dos fármacos , Oligodendroglia/citologia , Adulto , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Ratos Sprague-Dawley
12.
Biochem Pharmacol ; 177: 113956, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251679

RESUMO

Oligodendrocytes are the only myelinating cells in the brain and differentiate from their progenitors (OPCs) throughout adult life. However, this process fails in demyelinating pathologies. Adenosine is emerging as an important player in OPC differentiation and we recently demonstrated that adenosine A2A receptors inhibit cell maturation by reducing voltage-dependent K+ currents. No data are available to date about the A2B receptor (A2BR) subtype. The bioactive lipid mediator sphingosine-1-phosphate (S1P) and its receptors (S1P1-5) are also crucial modulators of OPC development. An interaction between this pathway and the A2BR is reported in peripheral cells. We studied the role of A2BRs in modulating K+ currents and cell differentiation in OPC cultures and we investigated a possible interplay with S1P signaling. Our data indicate that the A2BR agonist BAY60-6583 and its new analogue P453 inhibit K+ currents in cultured OPC and the effect was prevented by the A2BR antagonist MRS1706, by K+ channel blockers and was differently modulated by the S1P analogue FTY720-P. An acute (10 min) exposure of OPCs to BAY60-6583 also increased the phosphorylated form of sphingosine kinase 1 (SphK1). A chronic (7 days) treatment with the same agonist decreased OPC differentiation whereas SphK1/2 inhibition exerted the opposite effect. Furthermore, A2BR was overexpressed during OPC differentiation, an effect prevented by the pan SphK1/2 inhibitor VPC69047. Finally, A2BR silenced cells showed increased cell maturation, decreased SphK1 expression and enhanced S1P lyase levels. We conclude that A2BRs inhibit K+ currents and cell differentiation and positively modulate S1P synthesis in cultured OPCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Células Precursoras de Oligodendrócitos/metabolismo , Canais de Potássio/metabolismo , Receptor A2B de Adenosina/metabolismo , Esfingosina/análogos & derivados , Aminopiridinas/farmacologia , Animais , Células Cultivadas , Humanos , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Organofosfatos/farmacologia , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Purinas/farmacologia , Interferência de RNA , Ratos Wistar , Receptor A2B de Adenosina/genética , Transdução de Sinais/efeitos dos fármacos , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato/metabolismo
13.
Nutr Neurosci ; 23(12): 931-945, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30806182

RESUMO

During the development of the central nervous system, oligodendrocytes (OLs) are responsible for myelination, the formation of the myelin sheath around axons. This process enhances neuronal connectivity and supports the maturation of emerging cognitive functions. In humans, recent evidence suggests that early life nutrition may affect myelination. In the present study, we investigated the impact of a blend containing docosahexaenoic acid, arachidonic acid, vitamin B12, vitamin B9, iron and sphingomyelin, or each of these nutrients individually, on oligodendrocyte precursor cells (OPCs) proliferation and maturation into OLs as well as their myelinating properties. By using an in vitro model, developed to study each step of myelination, we found that the nutrient blend increased the number of OPCs and promoted their differentiation and maturation into OLs, as measured by quantifying A2B5 positive cells, myelin-associated glycoprotein (MAG) positive cells and area, myelin binding protein (MBP) positive cells and area, respectively. Moreover, measuring myelination by quantifying the overlapping signal between neurofilament and either MAG or MBP revealed a positive effect of the blend on OLs myelinating properties. In contrast, treatment with each individual nutrient resulted in differential effects on the various readouts. This work suggests that dietary intake of these nutrients during early life, might be beneficial for myelination.


Assuntos
Ácido Araquidônico/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Fólico/administração & dosagem , Ferro/administração & dosagem , Bainha de Mielina/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Esfingomielinas/administração & dosagem , Vitamina B 12/administração & dosagem , Animais , Células Cultivadas , Bainha de Mielina/fisiologia , Neurônios/fisiologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/fisiologia , Ratos Wistar
14.
Cell Stem Cell ; 25(4): 473-485.e8, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585093

RESUMO

The age-related failure to produce oligodendrocytes from oligodendrocyte progenitor cells (OPCs) is associated with irreversible neurodegeneration in multiple sclerosis (MS). Consequently, regenerative approaches have significant potential for treating chronic demyelinating diseases. Here, we show that the differentiation potential of adult rodent OPCs decreases with age. Aged OPCs become unresponsive to pro-differentiation signals, suggesting intrinsic constraints on therapeutic approaches aimed at enhancing OPC differentiation. This decline in functional capacity is associated with hallmarks of cellular aging, including decreased metabolic function and increased DNA damage. Fasting or treatment with metformin can reverse these changes and restore the regenerative capacity of aged OPCs, improving remyelination in aged animals following focal demyelination. Aged OPCs treated with metformin regain responsiveness to pro-differentiation signals, suggesting synergistic effects of rejuvenation and pro-differentiation therapies. These findings provide insight into aging-associated remyelination failure and suggest therapeutic interventions for reversing such declines in chronic disease.


Assuntos
Envelhecimento/fisiologia , Sistema Nervoso Central/fisiologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Esclerose Múltipla/terapia , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Dano ao DNA , Feminino , Humanos , Masculino , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/transplante , Ratos , Rejuvenescimento , Remielinização , Transplante de Células-Tronco
15.
PLoS One ; 14(9): e0221747, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31490950

RESUMO

Multiple sclerosis (MS) is characterized by demyelinated lesions in the central nervous system. Destruction of myelin and secondary damage to axons and neurons leads to significant disability, particularly in people with progressive MS. Accumulating evidence suggests that the potential for myelin repair exists in MS, although for unclear reasons this process fails. The cells responsible for producing myelin, the oligodendrocytes, and their progenitors, oligodendrocyte precursor cells (OPCs), have been identified at the site of lesions, even in adults. Their presence suggests the possibility that endogenous remyelination without transplantation of donor stem cells may be a mechanism for myelin repair in MS. Strategies to develop novel therapies have focused on induction of signaling pathways that stimulate OPCs to mature into myelin-producing oligodendrocytes that could then possibly remyelinate lesions. We have been investigating pharmacological approaches to enhance OPC differentiation, and have identified that the combination of two agents, triiodothyronine (T3) and quetiapine, leads to an additive effect on OPC differentiation and consequent myelin production via both overlapping and distinct signaling pathways. While the ultimate production of myelin requires cholesterol biosynthesis, we identified that quetiapine enhances gene expression in this pathway more potently than T3. Two blockers of cholesterol production, betulin and simvastatin, reduced OPC differentiation into myelin producing oligodendrocytes. Elucidating the nature of agents that lead to complementary and additive effects on oligodendrocyte differentiation and myelin production may pave the way for more efficient induction of remyelination in people with MS.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colesterol/biossíntese , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Fumarato de Quetiapina/farmacologia , Tri-Iodotironina/farmacologia , Animais , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Básica da Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/farmacologia , Triterpenos/farmacologia
16.
Brain Res ; 1720: 146294, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201815

RESUMO

Oligodendrocytes (OLGs) support neuronal system and have crucial roles for brain homeostasis. As the renewal and regeneration of OLGs derived from oligodendrocyte precursor cells (OPCs) are inhibited by various pathological conditions, the restoration of impaired oligodendrogenesis is a therapeutic strategy for OLG-related diseases such as subcortical ischemic vascular dementia (SIVD). Fingolimod (FTY720), a drug for multiple sclerosis, is reported to elicit a cytoprotective effect on OPCs in vitro. However, the effects of fingolimod against ischemia-induced suppression of OPC differentiation remain unknown. Hence, the purpose of this study was to investigate the effectiveness of fingolimod against ischemia-induced suppression of oligodendrogenesis. For the in vitro experiments, primary rat cultured OPCs were incubated with a non-lethal concentration of CoCl2 to induce chemical hypoxic conditions and were treated with or without fingolimod-phosphate. We found that low concentration fingolimod-phosphate directly rescued ischemia-induced suppression of OPC differentiation via the phosphoinositide 3-kinase-Akt pathway. For the in vivo experiments, we used a mouse model of SIVD generated by bilateral common carotid artery stenosis. On day 28 after surgery, fingolimod ameliorated ischemia-induced demyelination and promoted oligodendrogenesis under prolonged cerebral hypoperfusion. The present study demonstrates that fingolimod can promote oligodendrogenesis under ischemic conditions and may be a therapeutic candidate for SIVD.


Assuntos
Cloridrato de Fingolimode/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/metabolismo , Animais , Isquemia Encefálica/patologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Cloridrato de Fingolimode/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Branca/patologia
17.
J Neurosci ; 39(12): 2184-2194, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30696729

RESUMO

A significant unmet need for patients with multiple sclerosis (MS) is the lack of U.S. Food and Drug Administration (FDA)-approved remyelinating therapies. We have identified a compelling remyelinating agent, bazedoxifene (BZA), a European Medicines Agency (EMA)-approved (and FDA-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM) that could move quickly from bench to bedside. This therapy stands out as a tolerable alternative to previously identified remyelinating agents and other candidates within this family. Using an unbiased high-throughput screen, with subsequent validation in both murine and human oligodendrocyte precursor cells (OPCs) and coculture systems, we find that BZA enhances differentiation of OPCs into functional oligodendrocytes. Using an in vivo murine model of focal demyelination, we find that BZA enhances OPC differentiation and remyelination. Of critical importance, we find that BZA acts independently of its presumed target, the ER, in both in vitro and in vivo systems. Using a massive computational data integration approach, we independently identify six possible candidate targets through which SERMs may mediate their effect on remyelination. Of particular interest, we identify EBP (encoding 3ß-hydroxysteroid-Δ8,Δ7-isomerase), a key enzyme in the cholesterol biosynthesis pathway, which was previously implicated as a target for remyelination. These findings provide valuable insights into the implications for SERMs in remyelination for MS and hormonal research at large.SIGNIFICANCE STATEMENT Therapeutics targeted at remyelination failure, which results in axonal degeneration and ultimately disease progression, represent a large unmet need in the multiple sclerosis (MS) population. Here, we have validated a tolerable European Medicines Agency-approved (U.S. Food and Drug Administration-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM), bazedoxifene (BZA), as a potent agent of oligodendrocyte precursor cell (OPC) differentiation and remyelination. SERMs, which were developed as nuclear ER-α and ER-ß agonists/antagonists, have previously been implicated in remyelination and neuroprotection, following a heavy focus on estrogens with underwhelming and conflicting results. We show that nuclear ERs are not required for SERMs to mediate their potent effects on OPC differentiation and remyelination in vivo and highlight EBP, an enzyme in the cholesterol biosynthesis pathway that could potentially act as a target for SERMs.


Assuntos
Indóis/administração & dosagem , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Remielinização/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia
18.
Neurosci Bull ; 35(3): 434-446, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30684125

RESUMO

The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells (OPCs) to differentiate, since OPCs and oligodendrocyte-lineage cells that are unable to fully differentiate are found in the areas of demyelination. Thus, promoting the differentiation of OPCs is vital for the treatment of demyelinating diseases. Shikimic acid (SA) is mainly derived from star anise, and is reported to have anti-influenza, anti-oxidation, and anti-tumor effects. In the present study, we found that SA significantly promoted the differentiation of cultured rat OPCs without affecting their proliferation and apoptosis. In mice, SA exerted therapeutic effects on experimental autoimmune encephalomyelitis (EAE), such as alleviating clinical EAE scores, inhibiting inflammation, and reducing demyelination in the CNS. SA also promoted the differentiation of OPCs as well as their remyelination after lysolecithin-induced demyelination. Furthermore, we showed that the promotion effect of SA on OPC differentiation was associated with the up-regulation of phosphorylated mTOR. Taken together, our results demonstrated that SA could act as a potential drug candidate for the treatment of demyelinating diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Ácido Chiquímico/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doenças Desmielinizantes/prevenção & controle , Encefalite/prevenção & controle , Encefalomielite Autoimune Experimental/prevenção & controle , Feminino , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
19.
J Neuroimmunol ; 331: 28-35, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29566973

RESUMO

Remyelination following myelin/oligodendrocyte injury in the central nervous system (CNS) is dependent on oligodendrocyte progenitor cells (OPCs) migrating into lesion sites, differentiating into myelinating oligodendrocytes (OLs), and ensheathing axons. Experimental models indicate that robust OPC-dependent remyelination can occur in the CNS; in contrast, histologic and imaging studies of lesions in the human disease multiple sclerosis (MS) indicate the variable extent of this response, which is particularly limited in more chronic MS lesions. Immune-mediated mechanisms can contribute either positively or negatively to the presence and functional responses of OPCs. This review addresses i) the molecular signature and functional properties of OPCs in the adult human brain; ii) the status (presence and function) of OPCs in MS lesions; iii) experimental models and in vitro data highlighting the contribution of adaptive and innate immune constituents to OPC injury and remyelination; and iv) effects of MS-directed immunotherapies on OPCs, either directly or indirectly via effects on specific immune constituents.


Assuntos
Encéfalo/citologia , Células Precursoras de Oligodendrócitos/imunologia , Imunidade Adaptativa , Adulto , Animais , Antígenos de Diferenciação/análise , Diferenciação Celular , Células Cultivadas , Glucose/farmacologia , Humanos , Imunidade Inata , Imunoterapia , Camundongos , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Proteínas do Tecido Nervoso/análise , Neuroimunomodulação , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/citologia , Ratos , Remielinização/fisiologia
20.
Glia ; 66(11): 2503-2513, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500113

RESUMO

Neuroinflammatory diseases such as multiple sclerosis are characterized by infiltration of lymphocytes into the central nervous system followed by demyelination and axonal degeneration. While evidence suggests that activated T lymphocytes induce neurotoxicity and impair function of neural stem cells, the effect of T cells on oligodendrocyte progenitor cells (OPCs) is still uncertain, partly due to the difficulty in obtaining human OPCs. Here we studied the effect of activated T cells on OPCs using OPCs derived from human hematopoietic stem cells or from human fetal brain. OPCs were exposed to supernatants (sups) from activated T cells. Cell proliferation was determined by EdU incorporation and CellQuanti-Blue assays. Surprisingly, we found that sups from activated T cells induced OPC proliferation by regulating cell cycle progression. Vascular endothelial growth factor A (VEGF-A) transcripts were increased in T cells after activation. Immunodepletion of VEGF-A from activated T cell sups significantly attenuated its effect on OPC proliferation. Furthermore, VEGF receptor 2 (VEGFR2) was expressed on OPCs and its inhibition also attenuated activated T cell-induced OPC proliferation. Thus, activated T cells have a trophic role by promoting OPC proliferation via the VEGFR2 pathway.


Assuntos
Proliferação de Células/fisiologia , Citocinas/metabolismo , Células Precursoras de Oligodendrócitos/fisiologia , Regulação para Cima/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Encéfalo/citologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feto/anatomia & histologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transfecção , Regulação para Cima/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA