Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
1.
Nucleic Acids Res ; 52(10): 5895-5911, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716875

RESUMO

Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood. Here, we have identified a new group of RNA-guided pAgo nucleases and demonstrated that a representative pAgo from this group, AmAgo from the mesophilic bacterium Alteromonas macleodii, binds guide RNAs of varying lengths for specific DNA targeting. Unlike most pAgos and eAgos, AmAgo is strictly specific to hydroxylated RNA guides containing a 5'-adenosine. AmAgo and related pAgos are co-encoded with a conserved RNA endonuclease from the HEPN superfamily (Ago-associated protein, Agap-HEPN). In vitro, Agap cleaves RNA between guanine and adenine nucleotides producing hydroxylated 5'-A guide oligonucleotides bound by AmAgo. In vivo, Agap cooperates with AmAgo in acquiring guide RNAs and counteracting bacteriophage infection. The AmAgo-Agap pair represents the first example of a pAgo system that autonomously produces RNA guides for DNA targeting and antiviral defense, which holds promise for programmable DNA targeting in biotechnology.


Assuntos
Proteínas Argonautas , DNA , RNA Guia de Sistemas CRISPR-Cas , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , DNA/metabolismo , DNA/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ribonucleases/metabolismo , Ribonucleases/genética , Células Procarióticas/metabolismo
2.
Environ Microbiol Rep ; 16(2): e13236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444282

RESUMO

Corals engage in symbioses with micro-organisms that provide nutrients and protect the host. Where the prokaryotic microbes perform their symbiotic functions within a coral is, however, poorly understood. Here, we studied the tissue-specific microbiota of the coral Corallium rubrum by dissecting its tissues from the skeleton and separating the white polyps from the red-coloured coenenchyme, followed by 16S rRNA gene metabarcoding of the three fractions. Dissection was facilitated by incubating coral fragments in RNAlater, which caused tissues to detach from the skeleton. Our results show compartmentalisation of the microbiota. Specifically, Endozoicomonas, Parcubacteria and a Gammaproteobacteria were primarily located in polyps, whereas Nitrincolaceae and one Spirochaeta phylotype were found mainly in the coenenchyme. The skeleton-associated microbiota was distinct from the microbiota in the tissues. Given the difference in tissue colour and microbiota of the polyps and coenenchyme, we analysed the microbiota of three colormorphs of C. rubrum (red, pink, white), finding that the main difference was a very low abundance of Spirochaeta in white colormorphs. While the functions of C. rubrum's symbionts are unknown, their localisation within the colony suggests that microhabitats exist, and the presence of Spirochaeta appears to be linked to the colour of C. rubrum.


Assuntos
Antozoários , Gammaproteobacteria , Animais , RNA Ribossômico 16S/genética , Bactérias/genética , Células Procarióticas , Gammaproteobacteria/genética
3.
Sci Adv ; 10(5): eadk9345, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306423

RESUMO

Subcellular compartments often serve to store nutrients or sequester labile or toxic compounds. As bacteria mostly do not possess membrane-bound organelles, they often have to rely on protein-based compartments. Encapsulins are one of the most prevalent protein-based compartmentalization strategies found in prokaryotes. Here, we show that desulfurase encapsulins can sequester and store large amounts of crystalline elemental sulfur. We determine the 1.78-angstrom cryo-EM structure of a 24-nanometer desulfurase-loaded encapsulin. Elemental sulfur crystals can be formed inside the encapsulin shell in a desulfurase-dependent manner with l-cysteine as the sulfur donor. Sulfur accumulation can be influenced by the concentration and type of sulfur source in growth medium. The selectively permeable protein shell allows the storage of redox-labile elemental sulfur by excluding cellular reducing agents, while encapsulation substantially improves desulfurase activity and stability. These findings represent an example of a protein compartment able to accumulate and store elemental sulfur.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Células Procarióticas/metabolismo , Oxirredução , Enxofre/metabolismo
4.
Curr Opin Cell Biol ; 86: 102321, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219525

RESUMO

All eukaryotes can be traced back to a single shared ancestral lineage that emerged from interactions between different prokaryotic cells. Current models of eukaryogenesis describe various selective forces and evolutionary mechanisms that contributed to the formation of eukaryotic cells. Central to this process were significant changes in cellular structure, resulting in the configuration of a new cell type characterized by internal membrane compartments. Additionally, eukaryogenesis results in a life cycle that relies on cell-cell fusion. We discuss the potential roles of proteins involved in remodeling cellular membranes, highlighting two critical stages in the evolution of eukaryotes: the internalization of symbiotic partners and a scenario wherein the emergence of sexual reproduction is linked to a polyploid ancestor generated by cell-cell fusion.


Assuntos
Fusão de Membrana , Células Procarióticas , Filogenia , Células Procarióticas/metabolismo , Células Eucarióticas/metabolismo , Eucariotos , Evolução Biológica
5.
Cell ; 186(17): 3619-3631.e13, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595565

RESUMO

During viral infection, cells can deploy immune strategies that deprive viruses of molecules essential for their replication. Here, we report a family of immune effectors in bacteria that, upon phage infection, degrade cellular adenosine triphosphate (ATP) and deoxyadenosine triphosphate (dATP) by cleaving the N-glycosidic bond between the adenine and sugar moieties. These ATP nucleosidase effectors are widely distributed within multiple bacterial defense systems, including cyclic oligonucleotide-based antiviral signaling systems (CBASS), prokaryotic argonautes, and nucleotide-binding leucine-rich repeat (NLR)-like proteins, and we show that ATP and dATP degradation during infection halts phage propagation. By analyzing homologs of the immune ATP nucleosidase domain, we discover and characterize Detocs, a family of bacterial defense systems with a two-component phosphotransfer-signaling architecture. The immune ATP nucleosidase domain is also encoded within diverse eukaryotic proteins with immune-like architectures, and we show biochemically that eukaryotic homologs preserve the ATP nucleosidase activity. Our findings suggest that ATP and dATP degradation is a cell-autonomous innate immune strategy conserved across the tree of life.


Assuntos
Viroses , Humanos , Células Eucarióticas , Células Procarióticas , Trifosfato de Adenosina , N-Glicosil Hidrolases
6.
Chembiochem ; 24(15): e202300305, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262077

RESUMO

Ubiquitin (Ub) proteoforms control nearly every aspect of eukaryotic cell biology through their diversity. Inspired by the widely used Ub C-terminal electrophiles (Ub-E), here we report the identification of multivalent binding of Ub with deubiquitylating enzymes (Dubs) using genetic code expansion (GCE) and crosslinking mass spectrometry. While the Ub-Es only gather structural information with the S1 Dub sites, we demonstrate that GCE of Ub with p-benzoyl-L-phenylalanine enables identification of interaction modes beyond the S1 site with a panel of Dubs of both eukaryotic and prokaryotic origin. Collectively, this represents the next generation of Ub-based affinity probes with a unique ability to unravel Ub interaction landscapes beyond what is afforded by cysteine-based chemistries.


Assuntos
Células Procarióticas , Ubiquitina , Ubiquitina/metabolismo , Células Procarióticas/metabolismo , Células Eucarióticas , Ubiquitinação
7.
Syst Biol ; 72(3): 694-712, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-36827095

RESUMO

Prokaryotic genomes are often considered to be mosaics of genes that do not necessarily share the same evolutionary history due to widespread horizontal gene transfers (HGTs). Consequently, representing evolutionary relationships of prokaryotes as bifurcating trees has long been controversial. However, studies reporting conflicts among gene trees derived from phylogenomic data sets have shown that these conflicts can be the result of artifacts or evolutionary processes other than HGT, such as incomplete lineage sorting, low phylogenetic signal, and systematic errors due to substitution model misspecification. Here, we present the results of an extensive exploration of phylogenetic conflicts in the cyanobacterial order Nostocales, for which previous studies have inferred strongly supported conflicting relationships when using different concatenated phylogenomic data sets. We found that most of these conflicts are concentrated in deep clusters of short internodes of the Nostocales phylogeny, where the great majority of individual genes have low resolving power. We then inferred phylogenetic networks to detect HGT events while also accounting for incomplete lineage sorting. Our results indicate that most conflicts among gene trees are likely due to incomplete lineage sorting linked to an ancient rapid radiation, rather than to HGTs. Moreover, the short internodes of this radiation fit the expectations of the anomaly zone, i.e., a region of the tree parameter space where a species tree is discordant with its most likely gene tree. We demonstrated that concatenation of different sets of loci can recover up to 17 distinct and well-supported relationships within the putative anomaly zone of Nostocales, corresponding to the observed conflicts among well-supported trees based on concatenated data sets from previous studies. Our findings highlight the important role of rapid radiations as a potential cause of strongly conflicting phylogenetic relationships when using phylogenomic data sets of bacteria. We propose that polytomies may be the most appropriate phylogenetic representation of these rapid radiations that are part of anomaly zones, especially when all possible genomic markers have been considered to infer these phylogenies. [Anomaly zone; bacteria; horizontal gene transfer; incomplete lineage sorting; Nostocales; phylogenomic conflict; rapid radiation; Rhizonema.].


Assuntos
Cianobactérias , Genoma , Filogenia , Evolução Biológica , Células Procarióticas , Cianobactérias/genética
8.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498841

RESUMO

Horizontal gene transfer (HGT) is well described in prokaryotes: it plays a crucial role in evolution, and has functional consequences in insects and plants. However, less is known about HGT in humans. Studies have reported bacterial integrations in cancer patients, and microbial sequences have been detected in data from well-known human sequencing projects. Few of the existing tools for investigating HGT are highly automated. Thanks to the adoption of Nextflow for life sciences workflows, and to the standards and best practices curated by communities such as nf-core, fully automated, portable, and scalable pipelines can now be developed. Here we present nf-core/hgtseq to facilitate the analysis of HGT from sequencing data in different organisms. We showcase its performance by analysing six exome datasets from five mammals. Hgtseq can be run seamlessly in any computing environment and accepts data generated by existing exome and whole-genome sequencing projects; this will enable researchers to expand their analyses into this area. Fundamental questions are still open about the mechanisms and the extent or role of horizontal gene transfer: by releasing hgtseq we provide a standardised tool which will enable a systematic investigation of this phenomenon, thus paving the way for a better understanding of HGT.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Animais , Humanos , Células Procarióticas , Bactérias/genética , Sequência de Bases , Filogenia , Mamíferos/genética
10.
Subcell Biochem ; 99: 35-82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151373

RESUMO

ATP-binding cassette (ABC) transporters are one of the largest families of membrane proteins in prokaryotic organisms. Much is now understood about the structure of these transporters and many reviews have been written on that subject. In contrast, less has been written on the assembly of ABC transporter complexes and this will be a major focus of this book chapter. The complexes are formed from two cytoplasmic subunits that are highly conserved (in terms of their primary and three-dimensional structures) across the whole family. These ATP-binding subunits give rise to the name of the family. They must assemble with two transmembrane subunits that will typically form the permease component of the transporter. The transmembrane subunits have been found to be surprisingly diverse in structure when the whole family is examined, with seven distinct folds identified so far. Hence nucleotide-binding subunits appear to have been bolted on to a variety of transmembrane platforms during evolution, leading to a greater variety in function. Furthermore, many importers within the family utilise a further external substrate-binding component to trap scarce substrates and deliver them to the correct permease components. In this chapter, we will discuss whether assembly of the various ABC transporter subunits occurs with high fidelity within the crowded cellular environment and whether promiscuity in assembly of transmembrane and cytoplasmic components can occur. We also discuss the new AlphaFold protein structure prediction tool which predicts a new type of transmembrane domain fold within the ABC transporters that is associated with cation exporters of bacteria and plants.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Membrana Transportadoras , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nucleotídeos/metabolismo , Células Procarióticas/metabolismo
11.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077274

RESUMO

Among proteins that interact with DNA or RNA, more or less specifically, there is a special group of relatively small polypeptides which are present in prokaryotic cells and interact with nucleic acids [...].


Assuntos
Ácidos Nucleicos , Células Procarióticas , DNA/metabolismo , Ácidos Nucleicos/metabolismo , Células Procarióticas/metabolismo , RNA/metabolismo
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(6): 944-948, 2022 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-35790447

RESUMO

OBJECTIVE: To express and purify the antigenic peptide of adeno-associated virus (AAV) capsid conserved regions in prokaryotic cells and prepare its rabbit polyclonal antibody. METHODS: The DNA sequence encoding the conserved regions of AAV capsid protein was synthesized and cloned into the vector pET30a to obtain the plasmid pET30a-AAV-CR for prokaryotic expression and purification of the conserved peptides. Coomassie blue staining and Western blotting were used to identify the AAV conserved peptides. Japanese big ear white rabbits were immunized with AAV conserved region protein to prepare polyclonal antibody, with the rabbits injected with PBS as the control group. The antibody titer was determined with ELISA, and the performance of the antibody for recognizing capsid protein sequences of AAV1-AAV10 was assessed with Western blotting and immunofluorescence assay. RESULTS: The plasmid pET30a-AAV-CR was successfully constructed, and a recombinant protein with a relative molecular mass of 17000 was obtained. The purified protein induced the production of antibodies against the conserved regions of AAV capsid in rabbits, and the titer of the purified antibodies reached 1:320 000. The antibodies were capable of recognizing a wide range of capsid protein sequences of AAV1-AAV10. CONCLUSION: We successfully obtained the polyclonal antibodies against AAV capsid conserved region protein from rabbits, which facilitate future studies of AAV vector development and the biological functions of AAV.


Assuntos
Capsídeo , Dependovirus , Animais , Anticorpos , Proteínas do Capsídeo/genética , Dependovirus/genética , Células Procarióticas , Coelhos , Proteínas Recombinantes/genética
13.
Nucleic Acids Res ; 50(11): 6052-6066, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35694833

RESUMO

Genome-scale metabolic models have been recognised as useful tools for better understanding living organisms' metabolism. merlin (https://www.merlin-sysbio.org/) is an open-source and user-friendly resource that hastens the models' reconstruction process, conjugating manual and automatic procedures, while leveraging the user's expertise with a curation-oriented graphical interface. An updated and redesigned version of merlin is herein presented. Since 2015, several features have been implemented in merlin, along with deep changes in the software architecture, operational flow, and graphical interface. The current version (4.0) includes the implementation of novel algorithms and third-party tools for genome functional annotation, draft assembly, model refinement, and curation. Such updates increased the user base, resulting in multiple published works, including genome metabolic (re-)annotations and model reconstructions of multiple (lower and higher) eukaryotes and prokaryotes. merlin version 4.0 is the only tool able to perform template based and de novo draft reconstructions, while achieving competitive performance compared to state-of-the art tools both for well and less-studied organisms.


Assuntos
Genoma , Neurofibromina 2 , Algoritmos , Células Procarióticas , Software
14.
mBio ; 13(3): e0097022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35536003

RESUMO

Lloyd and Tahon recently criticized proposed bacterial phylum nomenclature changes (K.G. Lloyd, G. Tahon, Nat Rev Microbiol 20:123-124, 2022, https://doi.org/10.1038/s41579-022-00684-2) precipitated by the International Committee on Systematics of Prokaryotes (ICSP)'s official recognition of phylum nomenclature rules. Here, we extend the critique. While we applaud bringing consistency to phylum names, we prognosticate what this minute but momentous change entails for the future of microbial nomenclature and how this will sow confusion among researchers. Several pitfalls of the proposed ICSP framework-based nomenclature are also detailed, including (i) improper type genus name and suffix usage, (ii) loss of Bacteria/Archaea distinctions, (iii) disruption of major phylum name prefixes, and (iv) absence of organism name prevalidation. Finally, we suggest new names for the key bacterial phyla Proteobacteria (Proteobacteriota), Firmicutes (Firmicuteota), Actinobacteria (Actinobacteriota), and Tenericutes (Tenericuteota), while keeping the archaeal phylum names Crenarchaeota, Thaumarchaeota, and Euryarchaeota. Together, these changes will help researchers attain chaos-free uniform nomenclature.


Assuntos
Actinobacteria , Euryarchaeota , Animais , Archaea/genética , Bactérias/genética , Feminino , Células Procarióticas , Suínos
15.
Nat Commun ; 13(1): 276, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022401

RESUMO

Proteasomes are present in eukaryotes, archaea and Actinobacteria, including the human pathogen Mycobacterium tuberculosis, where proteasomal degradation supports persistence inside the host. In mycobacteria and other members of Actinobacteria, prokaryotic ubiquitin-like protein (Pup) serves as a degradation tag post-translationally conjugated to target proteins for their recruitment to the mycobacterial proteasome ATPase (Mpa). Here, we use single-particle cryo-electron microscopy to determine the structure of Mpa in complex with the 20S core particle at an early stage of pupylated substrate recruitment, shedding light on the mechanism of substrate translocation. Two conformational states of Mpa show how substrate is translocated stepwise towards the degradation chamber of the proteasome core particle. We also demonstrate, in vitro and in vivo, the importance of a structural feature in Mpa that allows formation of alternating charge-complementary interactions with the proteasome resulting in radial, rail-guided movements during the ATPase conformational cycle.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Células Procarióticas/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/química , Ubiquitinas/metabolismo , Actinobacteria/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo
17.
Cells ; 10(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943812

RESUMO

The invention of a scanning electron microscopy (SEM) pushed the imaging methods and allowed for the observation of cell details with a high resolution. Currently, SEM appears as an extremely useful tool to analyse the morphology of biological samples. The aim of this paper is to provide a set of guidelines for using SEM to analyse morphology of prokaryotic and eukaryotic cells, taking as model cases Escherichia coli bacteria and B-35 rat neuroblastoma cells. Herein, we discuss the necessity of a careful sample preparation and provide an optimised protocol that allows to observe the details of cell ultrastructure (≥ 50 nm) with a minimum processing effort. Highlighting the versatility of morphometric descriptors, we present the most informative parameters and couple them with molecular processes. In this way, we indicate the wide range of information that can be collected through SEM imaging of biological materials that makes SEM a convenient screening method to detect cell pathology.


Assuntos
Células Eucarióticas/ultraestrutura , Guias como Assunto , Microscopia Eletrônica de Varredura , Células Procarióticas/ultraestrutura , Animais , Escherichia coli/ultraestrutura , Humanos , Modelos Biológicos
18.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769071

RESUMO

The growth of complexity in evolution is a most intriguing phenomenon. Using gene phylostratigraphy, we showed this growth (as reflected in regulatory mechanisms) in the human genome, tracing the path from prokaryotes to hominids. Generally, the different regulatory gene families expanded at different times, yet only up to the Euteleostomi (bony vertebrates). The only exception was the expansion of transcription factors (TF) in placentals; however, we argue that this was not related to increase in general complexity. Surprisingly, although TF originated in the Prokaryota while chromatin appeared only in the Eukaryota, the expansion of epigenetic factors predated the expansion of TF. Signaling receptors, tumor suppressors, oncogenes, and aging- and disease-associated genes (indicating vulnerabilities in terms of complex organization and strongly enrichment in regulatory genes) also expanded only up to the Euteleostomi. The complexity-related gene properties (protein size, number of alternative splicing mRNA, length of untranslated mRNA, number of biological processes per gene, number of disordered regions in a protein, and density of TF-TF interactions) rose in multicellular organisms and declined after the Euteleostomi, and possibly earlier. At the same time, the speed of protein sequence evolution sharply increased in the genes that originated after the Euteleostomi. Thus, several lines of evidence indicate that molecular mechanisms of complexity growth were changing with time, and in the phyletic lineage leading to humans, the most salient shift occurred after the basic vertebrate body plan was fixed with bony skeleton. The obtained results can be useful for evolutionary medicine.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Genoma Humano , Animais , Epigênese Genética , Hominidae/genética , Humanos , Família Multigênica , Oncogenes , Células Procarióticas/metabolismo , Fatores de Transcrição/genética
19.
Cells ; 10(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34831193

RESUMO

Although glioblastoma (GBM) stem-like cells (GSCs), which retain chemo-radio resistance and recurrence, are key prognostic factors in GBM patients, the molecular mechanisms of GSC development are largely unknown. Recently, several studies revealed that extrinsic ribosome incorporation into somatic cells resulted in stem cell properties and served as a key trigger and factor for the cell reprogramming process. In this study, we aimed to investigate the mechanisms underlying GSCs development by focusing on extrinsic ribosome incorporation into GBM cells. Ribosome-induced cancer cell spheroid (RICCS) formation was significantly upregulated by ribosome incorporation. RICCS showed the stem-like cell characters (number of cell spheroid, stem cell markers, and ability for trans differentiation towards adipocytes and osteocytes). In RICCS, the phosphorylation and protein expression of ribosomal protein S6 (RPS6), an intrinsic ribosomal protein, and STAT3 phosphorylation were upregulated, and involved in the regulation of cell spheroid formation. Consistent with those results, glioma-derived extrinsic ribosome also promoted GBM-RICCS formation through intrinsic RPS6 phosphorylation. Moreover, in glioma patients, RPS6 phosphorylation was dominantly observed in high-grade glioma tissues, and predominantly upregulated in GSCs niches, such as the perinecrosis niche and perivascular niche. Those results indicate the potential biological and clinical significance of extrinsic ribosomal proteins in GSC development.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Ribossomos/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação , Células Procarióticas/metabolismo , Proteína S6 Ribossômica/metabolismo , Esferoides Celulares/patologia
20.
Biochemistry ; 60(44): 3277-3291, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34670078

RESUMO

Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.


Assuntos
Bactérias/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/metabolismo , Transporte Biológico , Catálise , Homeostase , Transporte de Íons , Cinética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Oxirredução , Estresse Oxidativo , Células Procarióticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA