Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Adv Anat Embryol Cell Biol ; 237: 105-122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946079

RESUMO

A striking feature of the carotid body (CB) is its remarkable degree of plasticity in a variety of neurotransmitter/modulator systems in response to environmental stimuli, particularly following hypoxic exposure of animals and during ascent to high altitude. Current evidence suggests that acetylcholine and adenosine triphosphate are two major excitatory neurotransmitter candidates in the hypoxic CB, and they may also be involved as co-transmitters in hypoxic signaling. Conversely, dopamine, histamine and nitric oxide have recently been considered inhibitory transmitters/modulators of hypoxic chemosensitivity. It has also been revealed that interactions between excitatory and inhibitory messenger molecules occur during hypoxia. On the other hand, alterations in purinergic neurotransmitter mechanisms have been implicated in ventilatory acclimatization to hypoxia. Chronic hypoxia also induces profound changes in other neurochemical systems within the CB such as the catecholaminergic, peptidergic and nitrergic, which in turn may contribute to increased ventilatory and chemoreceptor responsiveness to hypoxia at high altitude. Taken together, current data suggest that complex interactions among transmitters markedly influence hypoxia-induced transmitter release from the CB. In addition, the expression of a wide variety of growth factors, proinflammatory cytokines and their receptors have been identified in CB parenchymal cells in response to hypoxia and their upregulated expression could mediate the local inflammation and functional alteration of the CB under hypoxic conditions.


Assuntos
Corpo Carotídeo , Animais , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Hipóxia/metabolismo , Trifosfato de Adenosina/metabolismo , Neurotransmissores/metabolismo
2.
Adv Exp Med Biol ; 1427: 185-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322349

RESUMO

In mammals, cardiorespiratory reflexes originating in the carotid body (CB) help maintain homeostasis by matching oxygen supply to oxygen demand. CB output to the brainstem is shaped by synaptic interactions at a "tripartite synapse" consisting of chemosensory (type I) cells, abutting glial-like (type II) cells, and sensory (petrosal) nerve terminals. Type I cells are stimulated by several blood-borne metabolic stimuli, including the novel chemoexcitant lactate. During chemotransduction, type I cells depolarize and release a multitude of excitatory and inhibitory neurotransmitters/neuromodulators including ATP, dopamine (DA), histamine, and angiotensin II (ANG II). However, there is a growing appreciation that the type II cells may not be silent partners. Thus, similar to astrocytes at "tripartite synapses" in the CNS, type II cells may contribute to the afferent output by releasing "gliotransmitters" such as ATP. Here, we first consider whether type II cells can also sense lactate. Next, we review and update the evidence supporting the roles of ATP, DA, histamine, and ANG II in cross talk among the three main CB cellular elements. Importantly, we consider how conventional excitatory and inhibitory pathways, together with gliotransmission, help to coordinate activity within this network and thereby modulate afferent firing frequency during chemotransduction.


Assuntos
Corpo Carotídeo , Hormônios Peptídicos , Animais , Corpo Carotídeo/fisiologia , Histamina/metabolismo , Neurotransmissores/metabolismo , Sinapses/metabolismo , Dopamina/metabolismo , Trifosfato de Adenosina/metabolismo , Oxigênio/metabolismo , Células Quimiorreceptoras/metabolismo , Mamíferos/metabolismo
3.
EBioMedicine ; 80: 104044, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35533501

RESUMO

BACKGROUND: Breathing disorders (BD) (apnoeas/hypopneas, periodic breathing) are highly prevalent in chronic heart failure (CHF) and are associated with altered central respiratory control. Ample evidence identifies the retrotrapezoid nucleus (RTN) as an important chemosensitivity region for ventilatory control and generation of BD in CHF, however little is known about the cellular mechanisms underlying the RTN/BD relationship. Within the RTN, astrocyte-mediated purinergic signalling modulates respiration, but the potential contribution of RTN astrocytes to BD in CHF has not been explored. METHODS: Selective neuron and/or astrocyte-targeted interventions using either optogenetic and chemogenetic manipulations in the RTN of CHF rats were used to unveil the contribution of the RTN on the development/maintenance of BD, the role played by astrocytes in BD and the molecular mechanism underpinning these alterations. FINDINGS: We showed that episodic photo-stimulation of RTN neurons triggered BD in healthy rats, and that RTN neurons ablation in CHF animals eliminates BD. Also, we found a reduction in astrocytes activity and ATP bioavailability within the RTN of CHF rats, and that chemogenetic restoration of normal RTN astrocyte activity and ATP levels improved breathing regularity in CHF. Importantly, P"X/ P2X7 receptor (P2X7r) expression was reduced in RTN astrocytes from CHF rats and viral vector-mediated delivery of human P2X7 P2X7r into astrocytes increases ATP bioavailability and abolished BD. INTERPRETATION: Our results support that RTN astrocytes play a pivotal role on BD generation and maintenance in the setting CHF by a mechanism encompassing P2X7r signalling. FUNDING: This study was funded by the National Research and Development Agency of Chile (ANID).


Assuntos
Astrócitos , Insuficiência Cardíaca , Receptores Purinérgicos P2X7 , Transtornos Respiratórios , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Células Quimiorreceptoras/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ratos , Receptores Purinérgicos P2X7/metabolismo , Transtornos Respiratórios/metabolismo , Transtornos Respiratórios/patologia
4.
mBio ; 12(4): e0181921, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34340539

RESUMO

The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA's sensing profile, we screened for diverse TlpA ligands using ligand binding arrays. TlpA bound seven ligands with affinities in the low- to middle-micromolar ranges. Three of these ligands, arginine, fumarate, and cysteine, were TlpA-dependent chemoattractants, while the others elicited no response. Molecular docking experiments, site-directed point mutants, and competition surface plasmon resonance binding assays suggested that TlpA binds ligands via both the membrane-distal and -proximal dCache_1 binding pockets. Surprisingly, one of the nonactive ligands, glucosamine, acted as a chemotaxis antagonist, preventing the chemotaxis response to chemoattractant ligands, and acted to block the binding of ligands irrespective of whether they bound the membrane-distal or -proximal dCache_1 subdomains. In total, these results suggest that TlpA senses multiple attractant ligands as well as antagonist ones, an emerging theme in chemotaxis systems. IMPORTANCE Numerous chemotactic bacterial pathogens depend on the ability to sense a diverse array of signals through chemoreceptors to achieve successful colonization and virulence within their host. The signals sensed by chemoreceptors, however, are not always fully understood. This is the case for TlpA, a dCache_1 chemoreceptor of H. pylori that enables the bacterium to induce less inflammation during chronic infections. H. pylori causes a significant global disease burden, which is driven by the development of gastric inflammation. Accordingly, it is essential to understand the processes by which H. pylori modulates host inflammation. This work uncovers the signals that TlpA can sense and highlights the underappreciated ability to regulate chemotactic responses by antagonistic chemoreceptor ligands, which is an emerging theme among other chemotactic systems.


Assuntos
Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Quimiotaxia , Glucosamina/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Mutação Puntual
5.
Sci Rep ; 11(1): 17133, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429473

RESUMO

Chemosensory receptors play a crucial role in distinguishing the wide range of volatile/soluble molecules by binding them with high accuracy. Chemosensation is the main sensory modality in organisms lacking long-range sensory mechanisms like vision/hearing. Despite its low number of sensory neurons, the nematode Caenorhabditis elegans possesses several chemosensory receptors, allowing it to detect about as many odorants as mammals. Here, we show that C. elegans displays attraction towards urine samples of women with breast cancer, avoiding control ones. Behavioral assays on animals lacking AWC sensory neurons demonstrate the relevance of these neurons in sensing cancer odorants: calcium imaging on AWC increases the accuracy of the discrimination (97.22%). Also, chemotaxis assays on animals lacking GPCRs expressed in AWC allow to identify receptors involved in binding cancer metabolites, suggesting that an alteration of a few metabolites is sufficient for the cancer discriminating behavior of C. elegans, which may help identify a fundamental fingerprint of breast cancer.


Assuntos
Biomarcadores Tumorais/urina , Neoplasias da Mama/urina , Caenorhabditis elegans/fisiologia , Quimiotaxia , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiologia , Feminino , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
Mol Metab ; 51: 101231, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33831593

RESUMO

OBJECTIVE: GPR64/ADGRG2 is an orphan Adhesion G protein-coupled receptor (ADGR) known to be mainly expressed in the parathyroid gland and epididymis. This investigation aimed to delineate the cellular expression of GPR64 throughout the body with focus on the gastrointestinal (GI) tract. METHODS: Transgenic Gpr64mCherry reporter mice were histologically examined throughout the body and reporter protein expression in intestinal tuft cells was confirmed by specific cell ablation. The GPCR repertoire of intestinal Gpr64mCherry-positive tuft cells was analyzed by quantitative RT-PCR analysis and in situ hybridization. The Gpr64mCherry was crossed into the general tuft cell reporter Trpm5GFP to generate small intestinal organoids for time-lapse imaging. Intestinal tuft cells were isolated from small intestine, FACS-purified and transcriptionally compared using RNA-seq analysis. RESULTS: Expression of the Gpr64mCherry reporter was identified in multiple organs and specifically in olfactory microvillous cells, enteric nerves, and importantly in respiratory and GI tuft cells. In the small intestine, cell ablation targeting Gpr64-expressing epithelial cells eliminated tuft cells. Transcriptional analysis of small intestinal Gpr64mCherry -positive tuft cells confirmed expression of Gpr64 and the chemo-sensors Sucnr1, Gprc5c, Drd3, and Gpr41/Ffar3. Time-lapse studies of organoids from Trpm5GFP:Gpr64mCherry mice revealed sequential expression of initially Trpm5GFP and subsequently also Gpr64mCherry in maturing intestinal tuft cells. RNA-seq analysis of small intestinal tuft cells based on these two markers demonstrated a dynamic change in expression of transcription factors and GPCRs from young to mature tuft cells. CONCLUSIONS: GPR64 is expressed in chemosensory epithelial cells across a broad range of tissues; however, in the GI tract, GPR64 is remarkably selectively expressed in mature versus young immunoregulatory tuft cells.


Assuntos
Células Quimiorreceptoras/metabolismo , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Intestino Delgado/citologia , Masculino , Camundongos , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética
7.
Biochem Biophys Res Commun ; 549: 194-199, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33721671

RESUMO

Chemotaxis is the process of sensing chemical gradients and navigating towards favourable conditions. Bacterial chemotaxis is mediated by arrays of trans-membrane chemoreceptor proteins. The most common class of chemoreceptors have periplasmic ligand-binding domains (LBDs) that detect extracellular chemical signs and transduce these signals to the downstream chemotaxis machinery. The repertoire of chemoreceptor proteins in a bacterium determines the range of environmental signals to which it can respond. Pseudomonas syringae pv. actinidiae (Psa) is a plant pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Compared to many other bacteria, Psa has a large number of chemoreceptors encoded in its genome (43) and most of these remain uncharacterized. A previous study identified PscC as a potential chemoreceptor for l-proline and other amino acid ligands. Here, we have characterized the interaction of PscC-LBD with l-proline using a combination of isothermal titration calorimetry (ITC) and X-ray crystallography. ITC confirmed direct binding of l-proline to PscC-LBD with KD value of 5.0 µM. We determined the structure of PscC-LBD in complex with l-proline. Our structural analysis showed that PscC-LBD adopts similar double-CACHE fold to several other amino acid chemoreceptors. A comparison of the PscC-LDB to other dCACHE structures highlights residues in the binding cavity which contribute to its ligand specificity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras/metabolismo , Prolina/metabolismo , Pseudomonas syringae/metabolismo , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Domínios Proteicos
9.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187094

RESUMO

Many bacteria possess multiple chemosensory pathways that are composed of homologous signaling proteins. These pathways appear to be functionally insulated from each other, but little information is available on the corresponding molecular basis. We report here a novel mechanism that contributes to pathway insulation. We show that, of the four CheB paralogs of Pseudomonas aeruginosa PAO1, only CheB2 recognizes a pentapeptide at the C-terminal extension of the McpB (Aer2) chemoreceptor (KD = 93 µM). McpB is the sole chemoreceptor that stimulates the Che2 pathway, and CheB2 is the methylesterase of this pathway. Pectobacterium atrosepticum SCRI1043 has a single CheB, CheB_Pec, and 19 of its 36 chemoreceptors contain a C-terminal pentapeptide. The deletion of cheB_Pec abolished chemotaxis, but, surprisingly, none of the pentapeptides bound to CheB_Pec. To determine the corresponding structural basis, we solved the 3D structure of CheB_Pec. Its structure aligned well with that of the pentapeptide-dependent enzyme from Salmonella enterica. However, no electron density was observed in the CheB_Pec region corresponding to the pentapeptide-binding site in the Escherichia coli CheB. We hypothesize that this structural disorder is associated with the failure to bind pentapeptides. Combined data show that CheB methylesterases can be divided into pentapeptide-dependent and independent enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Células Quimiorreceptoras/metabolismo , Quimiotaxia/fisiologia , Escherichia coli/metabolismo , Metiltransferases/metabolismo , Pectobacterium/metabolismo , Pseudomonas aeruginosa/metabolismo , Salmonella enterica/metabolismo , Transdução de Sinais/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-32836214

RESUMO

Chemoreception is critical for insect behaviors such as foraging, host searching and oviposition. The process of chemoreception is mediated by a series of proteins, including odorant-binding proteins (OBPs), gustatory receptors (GRs), odorant receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs) and sensory neuron membrane proteins (SNMPs). The tephritid stem gall fly, Procecidochares utilis Stone, is a type of egg parasitic insect, which is an effective biological control agent for the invasive weed Ageratina adenophora in many countries. However, the study of molecular components related to the olfactory system of P. utilis has not been investigated. Here, we conducted the developmental transcriptome (egg, first-third instar larva, pupa, female and male adult) of P. utilis using next-generation sequencing technology and identified a total of 133 chemosensory genes, including 40 OBPs, 29 GRs, 24 ORs, 28 IRs, 6 CSPs, and 6 SNMPs. The sequences of these candidate chemosensory genes were confirmed by BLAST, and phylogenetic analysis was performed. Quantitative real-time PCR (qRT-PCR) confirmed that the expression levels of the candidate OBPs varied at the different developmental stages of P. utilis with most OBPs expressed mainly in the pupae, female and male adults but scarcely in eggs and larvae, which was consistent with the differentially expressed genes (DEGs) analysis using the fragments per kilobase per million fragments (FPKM) value. Our results provide a significant contribution towards the knowledge of the set of chemosensory proteins and help advance the use of P. utilis as biological control agents.


Assuntos
Antenas de Artrópodes/metabolismo , Proteínas de Artrópodes/metabolismo , Células Quimiorreceptoras/metabolismo , Tephritidae/metabolismo , Transcriptoma , Animais , Antenas de Artrópodes/crescimento & desenvolvimento , Proteínas de Artrópodes/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Filogenia , Tephritidae/genética , Tephritidae/crescimento & desenvolvimento
11.
J Mol Histol ; 51(4): 421-435, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32617896

RESUMO

Tuft cells are a rare population of chemosensory cells at the mucosal surface epithelia of hollow organs. Their name-giving morphological feature is an apical tuft of stiff microvilli. Accordingly, the actin-binding protein, villin, was identified as one of the first tuft cell markers in immunohistochemical analysis. Unfortunately, villin expression is not restricted to tuft cells, but is also prominent e.g. in enterocytes, which limits the use of this gene as a marker and as an experimental tool to genetically target tuft cells. Here, we report that the villin-related protein, advillin, is a specific tuft cell marker in the gastro-intestinal and biliary tract epithelia. In situ hybridization and immunohistochemistry revealed that advillin expression, unlike villin, was restricted to solitary cholinergic tuft cells in the mucosal linings of the small and large intestine, and in the gall bladder. In the glandular stomach, villin and advillin mRNA were present in all epithelial cells, while detectable protein levels were confined to solitary tuft cells. Advillin expression was no longer detectable in the mucosa of the intestinal and biliary tract from Pou2f3 deficient mice that lack tuft cells. Finally, crossing Avil-Cre transgenic mice with a double-fluorescent reporter mouse line resulted in specific targeting of gastro-intestinal and biliary tuft cells. Our analysis introduces advillin as a selective marker and tool in histological and functional analysis of the alimentary tract tuft cell system.


Assuntos
Sistema Biliar/metabolismo , Biomarcadores/metabolismo , Células Quimiorreceptoras/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Proteínas dos Microfilamentos/metabolismo , Animais , Células Epiteliais/metabolismo , Epitélio/metabolismo , Feminino , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Transgênicos , Microvilosidades/metabolismo
12.
Respir Physiol Neurobiol ; 276: 103368, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061712

RESUMO

The Lateral Hypothalamus/Perifornical Area (LH/PFA) has been shown to be involved with the hypercapnic ventilatory response, in a state-dependent manner. We have demonstrated that purinergic signaling through ATP in the LH/PFA has an excitatory effect in ventilatory response to CO2 in awake rats in the dark phase of the diurnal cycle, but it is unknown whether the ATP metabolite adenosine, acting in the LH/PFA, modulates the ventilatory responses to hypercapnia. Here, we studied the effects of the microdialysis of adenosine (A1/A2 adenosine receptors agonist; 17 mM) and an A1 receptor antagonist (DPCPX; 0.1 mM) into the LH/PFA of conscious rats on ventilation in room air and in 7% CO2 during the light and the dark phases of the diurnal cycle. The microdialysis of adenosine and DPCPX caused no change in the CO2 ventilatory responses of rats during wakefulness or NREM sleep in either the dark or light period. Our data suggest that adenosine in the LH/PFA does not contribute to the hypercapnic ventilatory response in conscious rats.


Assuntos
Adenosina/metabolismo , Células Quimiorreceptoras/metabolismo , Fórnice/metabolismo , Hipercapnia/metabolismo , Hipotálamo/metabolismo , Ventilação Pulmonar/fisiologia , Animais , Temperatura Corporal/fisiologia , Dióxido de Carbono , Microdiálise , Ratos , Fenômenos Fisiológicos Respiratórios
13.
Respir Physiol Neurobiol ; 274: 103383, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31923590

RESUMO

We previously found that maternal cigarette smoke (CS) exposure resulted in impairment of central chemoreception and oxidative stress and mitochondrial dysfunction of parafacial respiratory group (pFRG, a critical site for mammalian central chemoreception) in neonatal rats. The present work was carried out to identify if maternal CS exposure could disturb the glutamate (GLU)-ergic and γ-aminobutyric acid (GABA)-ergic balance in pFRG of neonatal rats. We found that maternal CS exposure induced a decrease in GLU content and consequently in GLU/GABA ratio in pFRG of neonatal rats. Maternal CS exposure also decreased glutamine content and glutaminase and glutamine synthetase activity in offspring pFRG. In addition, expression of vesicular glutamate transporter 2 was depressed, and those of glutamate transporter 1 and GABA transporter 3 were elevated by maternal CS exposure. These results indicate that maternal CS exposure leads to a disturbance of GLU/GABA balance in pFRG of the neonatal rats, which might contribute to the suppression of central chemoreception in maternal CS-exposed offspring.


Assuntos
Relógios Biológicos/efeitos dos fármacos , Células Quimiorreceptoras , Fumar Cigarros/efeitos adversos , Ácido Glutâmico/metabolismo , Bulbo , Efeitos Tardios da Exposição Pré-Natal , Centro Respiratório , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/metabolismo , Feminino , Bulbo/efeitos dos fármacos , Bulbo/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Centro Respiratório/efeitos dos fármacos , Centro Respiratório/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 318(1): H78-H89, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675256

RESUMO

The role of the acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex is unknown, despite the fact that ASIC1a is opened by decreases in pH in the physiological range. This fact prompted us to test the hypothesis that ASIC1a plays an important role in evoking the exercise pressor reflex in decerebrated rats with freely perfused hindlimb muscles. To test this hypothesis, we measured the effect of injecting two ASIC1a blockers into the arterial supply of the triceps surae muscles on the reflex pressor responses to four maneuvers, namely 1) static contraction of the triceps surae muscles (i.e., the exercise pressor reflex), 2) calcaneal tendon stretch, 3) intra-arterial injection of lactic acid, and 4) intra-arterial injection of diprotonated phosphate. We found that the 2 ASIC1a blockers, psalmotoxin-1 (200 ng/kg) and mambalgin-1 (6.5 µg/kg), decreased the pressor responses to static contraction as well as the peak pressor responses to injection of lactic acid and diprotonated phosphate. In contrast, neither ASIC1a blocker had any effect on the pressor responses to tendon stretch. Importantly, we found that ASIC1a blockade significantly decreased the pressor response to static contraction after a latency of at least 8 s. Our results support the hypothesis that ASIC1a plays a key role in evoking the metabolic component of the exercise pressor reflex.NEW & NOTEWORTHY The role played by acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex remains unknown. In decerebrated rats with freely perfused femoral arteries, blocking ASIC1a with psalmotoxin-1 or mambalgin-1 significantly attenuated the pressor response to static contraction, lactic acid, and diprotonated phosphate injection but had no effect on the pressor response to stretch. We conclude that ASIC1a plays a key role in evoking the exercise pressor reflex by responding to contraction-induced metabolites, such as protons.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Sistema Nervoso Autônomo/fisiologia , Células Quimiorreceptoras/metabolismo , Contração Muscular , Fusos Musculares/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Reflexo , Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Estado de Descerebração , Venenos Elapídicos/farmacologia , Membro Posterior , Concentração de Íons de Hidrogênio , Masculino , Moduladores de Transporte de Membrana/farmacologia , Fusos Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Peptídeos/farmacologia , Ratos Sprague-Dawley , Venenos de Aranha/farmacologia
15.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L27-L40, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617729

RESUMO

Enhanced central chemoreflex (CC) gain is observed in volume overload heart failure (HF) and is correlated with autonomic dysfunction and breathing disorders. The aim of this study was to determine the role of the CC in the development of respiratory and autonomic dysfunction in HF. Volume overload was surgically created to induce HF in male Sprague-Dawley rats. Radiotelemetry transmitters were implanted for continuous monitoring of blood pressure and heart rate. After recovering from surgery, conscious unrestrained rats were exposed to episodic hypercapnic stimulation [EHS; 10 cycles/5 min, inspiratory fraction of carbon dioxide (FICO2) 7%] in a whole body plethysmograph for recording of cardiorespiratory function. To determine the contribution of CC to cardiorespiratory variables, selective ablation of chemoreceptor neurons within the retrotrapezoid nucleus (RTN) was performed via injection of saporin toxin conjugated to substance P (SSP-SAP). Vehicle-treated rats (HF+Veh and Sham+Veh) were used as controls for SSP-SAP experiments. Sixty minutes post-EHS, minute ventilation was depressed in sham animals relative to HF animals (ΔV̇e: -5.55 ± 2.10 vs. 1.24 ± 1.35 mL/min 100 g, P < 0.05; Sham+Veh vs. HF+Veh). Furthermore, EHS resulted in autonomic imbalance, cardiorespiratory entrainment, and ventilatory disturbances in HF+Veh but not Sham+Veh rats, and these effects were significantly attenuated by SSP-SAP treatment. Also, the apnea-hypopnea index (AHI) was significantly lower in HF+SSP-SAP rats compared with HF+Veh rats (AHI: 5.5 ± 0.8 vs. 14.4 ± 1.3 events/h, HF+SSP-SAP vs. HF+Veh, respectively, P < 0.05). Finally, EHS-induced respiratory-cardiovascular coupling in HF rats depends on RTN chemoreceptor neurons because it was reduced by SSP-SAP treatment. Overall, EHS triggers ventilatory plasticity and elicits cardiorespiratory abnormalities in HF that are largely dependent on RTN chemoreceptor neurons.


Assuntos
Doenças do Sistema Nervoso Autônomo/fisiopatologia , Sistema Nervoso Central/fisiopatologia , Células Quimiorreceptoras/metabolismo , Insuficiência Cardíaca/fisiopatologia , Neurônios/fisiologia , Transtornos Respiratórios/fisiopatologia , Animais , Doenças do Sistema Nervoso Autônomo/metabolismo , Pressão Sanguínea/fisiologia , Sistema Nervoso Central/metabolismo , Insuficiência Cardíaca/metabolismo , Frequência Cardíaca/fisiologia , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Respiração , Transtornos Respiratórios/metabolismo
16.
Semin Cancer Biol ; 60: 362-364, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622661

RESUMO

The tissue organization field theory (TOFT) presented completely new, different from the previous one, perspective of research on neoplasm processes. It implicates that secretory neuroepithelial-like cells (NECs), putative chemoreceptors are probably responsible for the control of squamous epithelial cells proliferation in the digestive tract during hypoxia in gut breathing fish (GBF). On the other hand, chemoreceptors dysfunction can lead to uncontrolled proliferation and risk of cancer development in mammals, including humans. The studies on NECs like cells (signal capturing and transduction) may be crucial for understanding the processes of controlling the proliferation of squamous epithelial cells in the digestive tract of GBF fish during hypoxia states. This knowledge can contribute to the explanation of cancer processes.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Quimiorreceptoras/metabolismo , Suscetibilidade a Doenças , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Predisposição Genética para Doença , Humanos , Neoplasias/patologia
17.
PLoS Biol ; 17(8): e3000395, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31465435

RESUMO

The gastric pathogen Helicobacter pylori requires a noncanonical cytosolic chemoreceptor transducer-like protein D (TlpD) for efficient colonization of the mammalian stomach. Here, we reconstituted a complete chemotransduction signaling complex in vitro with TlpD and the chemotaxis (Che) proteins CheW and CheA, enabling quantitative assays for potential chemotaxis ligands. We found that TlpD is selectively sensitive at micromolar concentrations to bleach (hypochlorous acid, HOCl), a potent antimicrobial produced by neutrophil myeloperoxidase during inflammation. HOCl acts as a chemoattractant by reversibly oxidizing a conserved cysteine within a 3His/1Cys Zn-binding motif in TlpD that inactivates the chemotransduction signaling complex. We found that H. pylori is resistant to killing by millimolar concentrations of HOCl and responds to HOCl in the micromolar range by increasing its smooth-swimming behavior, leading to chemoattraction to HOCl sources. We show related protein domains from Salmonella enterica and Escherichia coli possess similar reactivity toward HOCl. We propose that this family of proteins enables host-associated bacteria to sense sites of tissue inflammation, a strategy that H. pylori uses to aid in colonizing and persisting in inflamed gastric tissue.


Assuntos
Quimiotaxia/fisiologia , Helicobacter pylori/metabolismo , Receptores de Formil Peptídeo/metabolismo , Proteínas de Bactérias/metabolismo , Clareadores , Células Quimiorreceptoras/metabolismo , Fatores Quimiotáticos/metabolismo , Citosol/metabolismo , Citosol/fisiologia , Helicobacter pylori/fisiologia , Ácido Hipocloroso , Oxirredução , Receptores de Formil Peptídeo/fisiologia , Transdução de Sinais
18.
J Physiol ; 597(19): 4991-5008, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31426127

RESUMO

KEY POINTS: Adenosine and ATP are excitatory neurotransmitters involved in the carotid body (CB) response to hypoxia. During ageing the CB exhibits a decline in its functionality, demonstrated by decreased hypoxic responses. In aged rats (20-24 months old) there is a decrease in: basal and hypoxic release of adenosine and ATP from the CB; expression of adenosine and ATP receptors in the petrosal ganglion; carotid sinus nerve (CSN) activity in response to hypoxia; and ventilatory responses to ischaemic hypoxia. There is also an increase in SNAP25, ENT1 and CD73 expression. It is concluded that, although CSN activity and ventilatory responses to hypoxia decrease with age, adjustments in purinergic metabolism in the CB in aged animals are present aiming to maintain the contribution of adenosine and ATP. The possible significance of the findings in the context of ageing and in CB-associated pathologies is considered. ABSTRACT: During ageing the carotid body (CB) exhibits a decline in its functionality. Here we investigated the effect of ageing on functional CB characteristics as well as the contribution of adenosine and ATP to CB chemosensory activity. Experiments were performed in 3-month-old and 20- to 24-month-old male Wistar rats. Ageing decreased: the number of tyrosine hydroxylase immune-positive cells, but not type II cells or nestin-positive cells in the CB; the expression of P2X2 and A2A receptors in the petrosal ganglion; and the basal and hypoxic release of adenosine and ATP from the CB. Ageing increased ecto-nucleotidase (CD73) immune-positive cells and the expression of synaptosome associated protein 25 (SNAP25) and equilibrative nucleoside transporter 1 (ENT1) in the CB. Additionally, ageing did not modify basal carotid sinus nerve (CSN) activity or the activity in response to hypercapnia, but decreased CSN activity in hypoxia. The contribution of adenosine and ATP to stimuli-evoked CSN chemosensory activity in aged animals followed the same pattern of 3-month-old animals. Bilateral common carotid occlusions during 5, 10 and 15 s increased ventilation proportionally to the duration of ischaemia, an effect decreased by ageing. ATP contributed around 50% to ischaemic-ventilatory responses in young and aged rats; the contribution of adenosine was dependent on the intensity of ischaemia, being maximal in ischaemias of 5 s (50%) and much smaller in 15 s ischaemias. Our results demonstrate that both ATP and adenosine contribute to CB chemosensory activity in ageing. Though CB responses to hypoxia, but not to hypercapnia, decrease with age, the relative contribution of both ATP and adenosine for CB activity is maintained.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/metabolismo , Envelhecimento , Animais , Antinematódeos/farmacologia , Corpo Carotídeo/citologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Suramina/farmacologia , Triazinas/farmacologia , Triazóis/farmacologia
19.
Br J Clin Pharmacol ; 85(6): 1103-1113, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30357885

RESUMO

Disorders of the skeleton are frequently accompanied by bone pain and a decline in the functional status of the patient. Bone pain occurs following a variety of injuries and diseases including bone fracture, osteoarthritis, low back pain, orthopedic surgery, fibrous dysplasia, rare bone diseases, sickle cell disease and bone cancer. In the past 2 decades, significant progress has been made in understanding the unique population of sensory and sympathetic nerves that innervate bone and the mechanisms that drive bone pain. Following physical injury of bone, mechanotranducers expressed by sensory nerve fibres that innervate bone are activated and sensitized so that even normally non-noxious loading or movement of bone is now being perceived as noxious. Injury of the bone also causes release of factors that; directly excite and sensitize sensory nerve fibres, upregulate proalgesic neurotransmitters, receptors and ion channels expressed by sensory neurons, induce ectopic sprouting of sensory and sympathetic nerve fibres resulting in a hyper-innervation of bone, and central sensitization in the brain that amplifies pain. Many of these mechanisms appear to be involved in driving both nonmalignant and malignant bone pain. Results from human clinical trials suggest that mechanism-based therapies that attenuate one type of bone pain are often effective in attenuating pain in other seemingly unrelated bone diseases. Understanding the specific mechanisms that drive bone pain in different diseases and developing mechanism-based therapies to control this pain has the potential to fundamentally change the quality of life and functional status of patients suffering from bone pain.


Assuntos
Osso e Ossos/inervação , Células Quimiorreceptoras/metabolismo , Longevidade , Mecanorreceptores/metabolismo , Dor Musculoesquelética/fisiopatologia , Limiar da Dor , Sistema Nervoso Simpático/fisiopatologia , Fatores Etários , Analgésicos/uso terapêutico , Animais , Sensibilização do Sistema Nervoso Central , Humanos , Dor Musculoesquelética/tratamento farmacológico , Dor Musculoesquelética/epidemiologia , Dor Musculoesquelética/psicologia , Percepção da Dor , Limiar da Dor/efeitos dos fármacos , Qualidade de Vida , Fatores de Risco
20.
Exp Physiol ; 104(2): 244-253, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456914

RESUMO

NEW FINDINGS: What is the central question of this study? The mammalian carotid body (CB) is a peripheral chemoreceptor organ involved in O2 and CO2 /H+ homeostasis. Recent studies suggest that 5-HT, released from CB receptor cells, can stimulate adjacent glial-like type II cells, leading to an increase in intracellular Ca2+ (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. The aim of this study was to elucidate the role of protein kinases in the 5-HT-[Ca2+ ]i -Panx-1 signalling pathway. What is the main finding and its importance? Src family kinase and protein kinase A, acting downstream from Δ[Ca2+ ]i , played central roles in 5-HT-mediated Panx-1 channel activation. This provides new insight into mechanisms regulating CB excitation, especially in pathophysiological conditions. ABSTRACT: Chemoreceptor (type I) cells of the rodent carotid body (CB) synthesize and release several neurotransmitters/neuromodulators, including 5-hydroxytryptamine (5-HT), implicated in enhanced CB excitation after exposure to chronic intermittent hypoxia, e.g. sleep apnoea. However, recent studies suggest that 5-HT can robustly stimulate adjacent glial-like type II cells via ketanserin-sensitive 5-HT2 receptors, leading to intracellular Ca2+ elevation (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. Using dissociated rat CB cultures, we investigated the role of protein kinases in the intracellular signalling pathways in type II cells. In isolated type II cells, 5-HT activated a Panx-1-like inward current (I5-HT ) that was reversibly inhibited by the Src family kinase inhibitor PP2 (1 µm), but not by its inactive analogue, PP3 (1 µm). Moreover, I5-HT was reversibly inhibited (>90%) by H89 (1 µm), a protein kinase A blocker, whereas the protein kinase C blocker GF109203X (2 µm) was largely ineffective. In contrast, the P2Y2R agonist UTP (100 µm) activated Panx-1-like currents that were reversibly inhibited (∼60%) by either H89 or GF109203X. Using fura-2 spectrofluorimetry, the 5-HT-induced Δ[Ca2+ ]i was unaffected by PP2, H89 and GF109293X, suggesting that the kinases acted downstream of the Ca2+ rise. Given that intracellular Ca2+ chelation was previously shown to block receptor-mediated Panx-1 current activation in type II cells, these data suggest that CB neuromodulators use overlapping, but not necessarily identical, signalling pathways to activate Panx-1 channels and release ATP, a CB excitatory neurotransmitter. In conclusion, these studies provide new mechanistic insight into 5-HT signalling in the CB that has pathophysiological relevance.


Assuntos
Cálcio/metabolismo , Corpo Carotídeo/metabolismo , Conexinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Proteína Quinase C/metabolismo , Serotonina/metabolismo , Animais , Células Cultivadas , Células Quimiorreceptoras/metabolismo , Neurotransmissores/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA