Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transplant Proc ; 56(3): 712-714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355371

RESUMO

BACKGROUND: Inappropriate matching of motor and sensory fibers after nerve repair or grafting can lead to nerve recovery failure. Identifying the motor and sensory fascicles enables surgeons to match them accurately and correctly align nerve stumps, which is crucial for neural regeneration. Very few methods have been reported to differentiate between the sensory and motor nerve fascicles, and the replicability of these techniques remains unestablished. In this study, we aimed to assess the accuracy of axonal cholinesterase (CE) histochemical staining in distinguishing motor and sensory nerve fibers. METHODS: The femoral and sciatic nerves were harvested from rats. The specimens were immediately cut, frozen in isopentane, and cooled with liquid nitrogen. Nerve serial cross-sections were processed for hematoxylin and eosin staining, followed by CE histochemistry. The staining protocol solutions included acetylthiocholine iodide, phosphate buffer, cobalt sulfate hydrate, potassium phosphate monobasic, sulfuric acid, sodium bicarbonate, glutaraldehyde, and ammonium sulfide. RESULTS: Cross-sections of nerves containing efferent and afferent nerve fibers in segregated fascicles showed that CE activity was confined to motor neurons. A histochemical study revealed that motor fibers with high cholinesterase activity can be differentiated from sensory fibers. The motor branches of the femoral and sciatic nerves showed specific axonal staining, whereas the sensory branch did not show any specific staining. CONCLUSION: CE histochemical staining is a useful technique for distinguishing between motor and sensory nerve fibers. It can be potentially useful in improving the outcomes of nerve grafts or extremity allotransplantation surgery.


Assuntos
Colinesterases , Neurônios Motores , Nervo Isquiático , Coloração e Rotulagem , Animais , Nervo Isquiático/enzimologia , Ratos , Colinesterases/metabolismo , Colinesterases/análise , Coloração e Rotulagem/métodos , Neurônios Motores/enzimologia , Axônios/enzimologia , Células Receptoras Sensoriais/enzimologia , Masculino , Nervo Femoral , Ratos Sprague-Dawley
2.
Dev Cell ; 56(7): 976-984.e3, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33823136

RESUMO

Axon remodeling through sprouting and pruning contributes to the refinement of developing neural circuits. A prominent example is the pruning of developing sensory axons deprived of neurotrophic support, which is mediated by a caspase-dependent (apoptotic) degeneration process. Distal sensory axons possess a latent apoptotic pathway, but a cell body-derived signal that travels anterogradely down the axon is required for pathway activation. The signaling mechanisms that underlie this anterograde process are poorly understood. Here, we show that the tumor suppressor P53 is required for anterograde signaling. Interestingly loss of P53 blocks axonal but not somatic (i.e., cell body) caspase activation. Unexpectedly, P53 does not appear to have an acute transcriptional role in this process and instead appears to act in the cytoplasm to directly activate the mitochondrial apoptotic pathway in axons. Our data support the operation of a cytoplasmic role for P53 in the anterograde death of developing sensory axons.


Assuntos
Axônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Axônios/enzimologia , Axônios/metabolismo , Caspases/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Camundongos , Domínios Proteicos , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína bcl-X/antagonistas & inibidores
3.
J Cell Physiol ; 235(5): 4605-4617, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31663116

RESUMO

Spinal cord injury (SCI) is a devastating disease. Strategies that enhance the intrinsic regenerative ability are very important for the recovery of SCI to radically prevent the occurrence of sensory disorders. Epidermal growth factor (EGF) showed a limited effect on the growth of primary sensory neuron neurites due to the degradation of phosphorylated-epidermal growth factor receptor (p-EGFR) in a manner dependent on Casitas B-lineage lymphoma (CBL) (an E3 ubiquitin-protein ligase). MiR-22-3p predicted from four databases could target CBL to inhibit the expression of CBL, increase p-EGFR levels and neurites length via STAT3/GAP43 pathway rather than Erk1/2 axis. EGF, EGFR, and miR-22-3p were downregulated sharply after injury. In vivo miR-22-3p Agomir application could regulate CBL/p-EGFR/p-STAT3/GAP43/p-GAP43 axis, and restore spinal cord sensory conductive function. This study clarified the mechanism of the limited promotion effect of EGF on adult primary sensory neuron neurite and targeting miR-22-3p could be a novel strategy to treat sensory dysfunction after SCI.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/metabolismo , Proteína GAP-43/metabolismo , MicroRNAs/metabolismo , Regeneração Nervosa , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Receptoras Sensoriais/enzimologia , Traumatismos da Medula Espinal/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Potenciais Somatossensoriais Evocados , Feminino , MicroRNAs/genética , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal , Oligonucleotídeos/farmacologia , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-cbl/genética , Ratos Wistar , Recuperação de Função Fisiológica , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
4.
J Neurogenet ; 33(3): 157-163, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30955404

RESUMO

Axonal extension and synaptic targeting are usually completed during early development, but the axonal length and synaptic integrity need to be actively maintained during later developmental stages and the adult life. Failure in the axonal length maintenance and the subsequent axonal degeneration have been associated with neurological disorders, but currently little is known about the genetic factors controlling this process. Here, we show that regulated intracellular levels of cAMP-dependent protein kinase A (PKA) are critical for the axon maintenance during the transition from the early to the later larval stages in the Drosophila class IV dendritic arborization (da) sensory neurons. Our data indicate that when the intracellular levels of PKA are increased via genetic manipulations, these peripheral neurons initially form synapses with wild-type appearance, at their predicted ventral nerve cord (VNC) target sites (in the first and second instar larval stages), but that their synapses disintegrate, and the axons retract and become fragmented in the subsequent larval stages (third larval stage). The affected axonal endings at the disintegrated synaptic sites still express the characteristic presynaptic and cytoskeletal markers such as Bruchpilot and Fascin, indicating that the synapse had been initially properly formed, but that it later lost its integrity. Finally, the phenotype is significantly more prominent in the axons of the neurons whose cell bodies are located in the posterior body segments. We propose that the reason for this is the fact that during the larval development the posterior neurons face a much greater challenge while trying to keep up with the fast-paced growth of the larval body, and that PKA is critical for this process. Our data reveal PKA as a novel factor in the axonal length and synapse integrity maintenance in sensory neurons. These results could be of help in understanding neurological disorders characterized by destabilized synapses.


Assuntos
Axônios/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurogênese/fisiologia , Células Receptoras Sensoriais/enzimologia , Sinapses/enzimologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Larva/enzimologia , Larva/crescimento & desenvolvimento
5.
Mol Pain ; 14: 1744806918777406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29712513

RESUMO

Irritable bowel syndrome is a disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that stressors presented during gestational periods could have long-term effects on the offspring's tissue structure and function, which may predispose to gastrointestinal diseases. The aim of the present study is to determine whether prenatal maternal stressis a adverse factor affecting gastrointestinal sensitivity and to investigate possible mechanisms underlying prenatal maternal stress-induced visceral hypersensitivity in adult offspring. Prenatal maternal stress was induced in pregnant Sprague-Dawley rats by exposure to heterotypic intermitent stress from gestational day 7 to delivery. Prenatal maternal stress significantly increased visceromotor response to colorectal distention in adult offspring from the age of 6 weeks to 10 weeks. Prenatal maternal stress also enhanced neuronal excitability including depolarization of resting membrane potentials, reduction in rheobase, and an increase in the number of action potentials evoked by 2× and 3× rheobase current stimultion of colon-specific dorsal root ganglion neurons. Prenatal maternal stress remarkably enhanced expression of cystathionine-ß-synthase and Nav1.7 in T13-L2 thoracolumbar dorsal root ganglions both at protein and mRNA levels. Intraperitoneal injection of aminooxyacetic acid, an inhibitor of cystathionine-ß-synthase, attenuated prenatal maternal stress-induced visceral hypersensitivity in a dose-dependent manner. A consecutive seven-day administration of aminooxyacetic acid reversed the hyperexcitability of colon-specific dorsal root ganglion neurons and markedly reduced Nav1.7 expression. These results indicate that the presence of multiple psychophysical stressors during pregnancy is associated with visceral hypersensitivity in offspring, which is likely mediated by an upregualtion of cystathionine-ß-synthase and Nav1.7 expression. Prenatal maternal stress might be a significant contributor to irritable bowel syndrome, and cystathionine-ß-synthase might be a potential target for treatment for chronic visceral hypersensitivity in patients with irritable bowel syndrome.


Assuntos
Cistationina beta-Sintase/metabolismo , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Células Receptoras Sensoriais/enzimologia , Transdução de Sinais , Estresse Psicológico/complicações , Dor Visceral/enzimologia , Dor Visceral/etiologia , Animais , Células Cultivadas , Colo/inervação , Colo/patologia , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/genética , Eletromiografia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Masculino , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Especificidade de Órgãos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Dor Visceral/patologia
6.
J Cell Biol ; 216(11): 3655-3675, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877995

RESUMO

Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug.


Assuntos
Anilidas/farmacologia , Lesões por Esmagamento/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Receptor trkA/antagonistas & inibidores , Nervo Isquiático/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Degeneração Walleriana , Fibras Adrenérgicas/efeitos dos fármacos , Fibras Adrenérgicas/enzimologia , Fibras Adrenérgicas/patologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Axônios/efeitos dos fármacos , Axônios/enzimologia , Axônios/patologia , Células Cultivadas , Lesões por Esmagamento/enzimologia , Lesões por Esmagamento/genética , Lesões por Esmagamento/patologia , Citoproteção , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Genótipo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/enzimologia , Neurônios Motores/patologia , Mutação , Neurônios/enzimologia , Neurônios/patologia , Fenótipo , Fosforilação , Ratos Sprague-Dawley , Receptor trkA/genética , Receptor trkA/metabolismo , Nervo Isquiático/enzimologia , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Neuropatia Ciática/enzimologia , Neuropatia Ciática/genética , Neuropatia Ciática/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fatores de Tempo , Transcrição Gênica
7.
Neuroscience ; 352: 97-105, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28389375

RESUMO

Striatal-enriched phosphatase 61 (STEP61) is a member of intracellular protein tyrosine phosphatases, which is involved in the regulation of synaptic plasticity and a line of neuropsychiatric disorders. This protein tyrosine phosphatase is also abundant in pain-related spinal cord dorsal horn neurons. However, whether and how this tyrosine phosphatase modulates the nociceptive plasticity and behavioral hypersensitivity remain largely unknown. The present study recorded the long-term potentiation (LTP) of primary afferent C fiber-evoked field potentials in vivo in superficial dorsal horn of rats, and tested the possible role of STEP61 in spinal LTP. We found that LTP induction significantly increased STEP61 phosphorylation at Ser221 residue, a key molecular event that has been shown to impair the phosphatase activity. The STEP61 hypoactivity allowed for the activation of three substrates, GluN2B subunit-containing N-methyl-d-aspartate-subtype glutamate receptors, Src-family protein tyrosine kinase member Fyn and extracellular signal-regulated kinase 1/2, through which the thresholds for LTP induction were noticeably decreased. To reinstate STEP61 activity, we overexpressed wild-type STEP61 [STEP61(WT)] in spinal dorsal horn, finding that STEP61(WT) completely blunted LTP induction. Behavioral tests showed that LTP blockade by STEP61(WT) correlated with a long-lasting alleviation of thermal hypersensitivity and mechanical allodynia induced by chronic constriction injury of sciatic nerves. These data implicated that STEP61 exerted a negative control over spinal nociceptive plasticity, which might have therapeutic benefit in pathological pain.


Assuntos
Potenciação de Longa Duração/fisiologia , Neuralgia/patologia , Proteínas Tirosina Fosfatases/metabolismo , Células Receptoras Sensoriais/enzimologia , Corno Dorsal da Medula Espinal/patologia , Vias Aferentes/fisiopatologia , Animais , Butadienos/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fibras Nervosas/fisiologia , Nitrilas/farmacologia , Medição da Dor , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução Genética
8.
Acta Physiol Hung ; 102(2): 125-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26100301

RESUMO

The Young's modulus of 10-12-day-old chick embryos' sensory neurons cultivated in dissociated cell culture was measured using a PeakForce Quantitative Nanomechanical Mapping atomic force microscopy. The native cells were tested in control experiments and after application of ouabain. At low "endogenous" concentration of 10⁻¹° M, ouabain tended to increase the rigidity of sensory neurons. We hypothesize that this trend resulted from activation of Na⁺,K⁺-ATPase signal-transducing function.


Assuntos
Gânglios Espinais/enzimologia , Microscopia de Força Atômica , Células Receptoras Sensoriais/enzimologia , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Módulo de Elasticidade , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/embriologia , Ouabaína/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Biomed Res Int ; 2015: 394257, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685786

RESUMO

Chronic pain represents a major public health problem worldwide. Current pharmacological treatments for chronic pain syndromes, including neuropathic pain, are only partially effective, with significant pain relief achieved in 40-60% of patients. Recent studies suggest that the mammalian target of rapamycin (mTOR) kinase and downstream effectors may be implicated in the development of chronic inflammatory, neuropathic, and cancer pain. The expression and activity of mTOR have been detected in peripheral and central regions involved in pain transmission. mTOR immunoreactivity was found in primary sensory axons, in dorsal root ganglia (DRG), and in dorsal horn neurons. This kinase is a master regulator of protein synthesis, and it is critically involved in the regulation of several neuronal functions, including the synaptic plasticity that is a major mechanism leading to the development of chronic pain. Enhanced activation of this pathway is present in different experimental models of chronic pain. Consistently, pharmacological inhibition of the kinase activity turned out to have significant antinociceptive effects in several experimental models of inflammatory and neuropathic pain. We will review the main evidence from animal and human studies supporting the hypothesis that mTOR may be a novel pharmacological target for the management of chronic pain.


Assuntos
Dor Crônica , Gânglios Espinais/enzimologia , Neuralgia , Manejo da Dor , Células Receptoras Sensoriais/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/enzimologia , Humanos , Neuralgia/tratamento farmacológico , Neuralgia/enzimologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
10.
J Neurosci Res ; 93(2): 321-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25231731

RESUMO

The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-ß in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Corpos Aórticos/patologia , Estradiol/farmacologia , Hipoglicemia/patologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Células Receptoras Sensoriais/enzimologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Glicemia , Modelos Animais de Doenças , Estradiol/uso terapêutico , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Hipoglicemia/tratamento farmacológico , Microdissecção e Captura a Laser , Ovariectomia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Genesis ; 52(10): 833-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25074687

RESUMO

Matrix metalloproteinases (MMPs) are a large and complex family of zinc-dependent endoproteinases widely recognized for their roles in remodeling the extracellular matrix (ECM) during embryonic development, wound healing, and tissue homeostasis. Their misregulation is central to many pathologies, and they have therefore been the focus of biomedical research for decades. These proteases have also recently emerged as mediators of neural development and synaptic plasticity in vertebrates, however, understanding of the mechanistic basis of these roles and the molecular identities of the MMPs involved remains far from complete. We have identified a zebrafish orthologue of mmp25 (a.k.a. leukolysin; MT6-MMP), a membrane-type, furin-activated MMP associated with leukocytes and invasive carcinomas, but which we find is expressed by a subset of the sensory neurons during normal embryonic development. We detect high levels of Mmp25ß expression in the trigeminal, craniofacial, and posterior lateral line ganglia in the hindbrain, and in Rohon-Beard cells in the dorsal neural tube during the first 48 h of embryonic development. Knockdown of Mmp25ß expression with morpholino oligonucleotides results in larvae that are uncoordinated and insensitive to touch, and which exhibit defects in the development of sensory neural structures. Using in vivo zymography, we observe that Mmp25ß morphant embryos show reduced Type IV collagen degradation in regions of the head traversed by elongating axons emanating from the trigeminal ganglion, suggesting that Mmp25ß may play a pivotal role in mediating ECM remodeling in the vicinity of these elongating axons.


Assuntos
Gânglios Sensitivos/enzimologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Células Receptoras Sensoriais/enzimologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Colágeno Tipo IV/metabolismo , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário , Matriz Extracelular/enzimologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Gânglios Sensitivos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Metaloproteinases da Matriz Associadas à Membrana/genética , Especificidade de Órgãos , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
12.
Cell Rep ; 6(5): 783-791, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24582961

RESUMO

Dendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophila sensory neurons, through complete pruning and regeneration, can elaborate two distinct dendritic trees, innervating independent sensory fields. An expression screen identified Cysteine proteinase-1 (Cp1) as a critical regulator of this process. Unlike known ecdysone effectors, Cp1-mutant ddaC neurons pruned larval dendrites normally but failed to regrow adult dendrites. Cp1 expression was upregulated/concentrated in the nucleus during metamorphosis, controlling production of a truncated Cut homeodomain transcription factor. This truncated Cut, but not the full-length protein, allowed Cp1-mutant ddaC neurons to regenerate higher-order adult dendrites. These results identify a molecular pathway needed for dendrite regrowth after pruning, which allows the same neuron to innervate distinct sensory fields.


Assuntos
Cisteína Endopeptidases/metabolismo , Dendritos/enzimologia , Proteínas de Drosophila/metabolismo , Células Receptoras Sensoriais/enzimologia , Animais , Drosophila , Isoformas de Proteínas
13.
PLoS One ; 9(2): e88962, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551199

RESUMO

Perinatal hypoxic ischemia (H-I) causes brain damage and long-term neurological impairments, leading to motor dysfunctions and cerebral palsy. Many studies have demonstrated that the TrkB-ERK1/2 signaling pathway plays a key role in mediating the protective effect of brain-derived neurotrophic factor (BDNF) following perinatal H-I brain injury in experimental animals. In the present study, we explored the neuroprotective effects of the TrkB-specific agonist monoclonal antibody 29D7 on H-I brain injury in neonatal rats. First, we found that intracerebroventricular (icv) administration of 29D7 in normal P7 rats markedly increased the levels of phosphorylated ERK1/2 and phosphorylated AKT in neurons up to 24 h. Second, P7 rats received icv administration of 29D7 and subjected to H-I injury induced by unilateral carotid artery ligation and exposure to hypoxia (8% oxygen). We found that 29D7, to a similar extent to BDNF, significantly inhibited activation of caspase-3, a biochemical hallmark of apoptosis, following H-I injury. Third, we found that this 29D7-mediated neuroprotective action persisted at least up to 5 weeks post-H-I injury as assessed by brain tissue loss, implicating long-term neurotrophic effects rather than an acute delay of cell death. Moreover, the long-term neuroprotective effect of 29D7 was tightly correlated with sensorimotor functional recovery as assessed by a tape-removal test, while 29D7 did not significantly improve rotarod performance. Taken together, these findings demonstrate that pretreatment with the TrkB-selective agonist 29D7 significantly increases neuronal survival and behavioral recovery following neonatal hypoxic-ischemic brain injury.


Assuntos
Anticorpos/farmacologia , Hipóxia-Isquemia Encefálica/patologia , Atividade Motora/efeitos dos fármacos , Receptor trkB/agonistas , Células Receptoras Sensoriais/patologia , Animais , Animais Recém-Nascidos , Anticorpos/administração & dosagem , Temperatura Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/enzimologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Injeções Intraventriculares , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/enzimologia
14.
Int J Clin Exp Pathol ; 7(12): 8602-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674224

RESUMO

Prostatic acid phosphatase (PAP) is expressed in nociceptive dorsal root ganglion (DRG) neurons and functions as an ectonucleotidase that dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine to suppress pain via activating A1-adenosine receptor (A1R) in dorsal spinal cord. However, the effect of peripheral nerve injury on the expression of PAP has not been reported until now. In the present study we found that PAP expression in DRG neurons is significantly decreased from the 2nd day after peripheral nerve injury and reaches the bottom at the 14th. In addition, intrathecal PAP injection can reduce mechanical allodynia induced by spared nerve injury. Our findings suggest that the decrease of PAP is involved in pathophysiological mechanisms of neuropathic pain.


Assuntos
Fosfatase Ácida/biossíntese , Neuralgia/enzimologia , Células Receptoras Sensoriais/enzimologia , Animais , Regulação para Baixo , Gânglios Espinais/enzimologia , Hiperalgesia/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Masculino , Traumatismos dos Nervos Periféricos/enzimologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
15.
J Clin Invest ; 123(12): 5023-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24231349

RESUMO

Chronic pain is a major clinical problem, yet the mechanisms underlying the transition from acute to chronic pain remain poorly understood. In mice, reduced expression of GPCR kinase 2 (GRK2) in nociceptors promotes cAMP signaling to the guanine nucleotide exchange factor EPAC1 and prolongs the PGE2-induced increase in pain sensitivity (hyperalgesia). Here we hypothesized that reduction of GRK2 or increased EPAC1 in dorsal root ganglion (DRG) neurons would promote the transition to chronic pain. We used 2 mouse models of hyperalgesic priming in which the transition from acute to chronic PGE2-induced hyperalgesia occurs. Hyperalgesic priming with carrageenan induced a sustained decrease in nociceptor GRK2, whereas priming with the PKCε agonist ΨεRACK increased DRG EPAC1. When either GRK2 was increased in vivo by viral-based gene transfer or EPAC1 was decreased in vivo, as was the case for mice heterozygous for Epac1 or mice treated with Epac1 antisense oligodeoxynucleotides, chronic PGE2-induced hyperalgesia development was prevented in the 2 priming models. Using the CFA model of chronic inflammatory pain, we found that increasing GRK2 or decreasing EPAC1 inhibited chronic hyperalgesia. Our data suggest that therapies targeted at balancing nociceptor GRK2 and EPAC1 levels have promise for the prevention and treatment of chronic pain.


Assuntos
Dor Crônica/prevenção & controle , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Hiperalgesia/fisiopatologia , Animais , Carragenina/toxicidade , Bovinos , Dor Crônica/etiologia , Dor Crônica/genética , Dor Crônica/fisiopatologia , AMP Cíclico/fisiologia , Dinoprostona/fisiologia , Feminino , Quinase 2 de Receptor Acoplado a Proteína G/biossíntese , Quinase 2 de Receptor Acoplado a Proteína G/genética , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Inativação Gênica , Terapia Genética , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Membro Posterior/inervação , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/terapia , Injeções Espinhais , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Nociceptores/enzimologia , Nociceptores/fisiologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Oligopeptídeos/toxicidade , Proteínas Recombinantes de Fusão/genética , Nervo Isquiático/patologia , Sistemas do Segundo Mensageiro , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/fisiologia
16.
J Neurosci ; 32(49): 17540-53, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23223278

RESUMO

Axon degeneration initiated by trophic factor withdrawal shares many features with programmed cell death, but many prior studies discounted a role for caspases in this process, particularly Caspase-3. Recently, Caspase-6 was implicated based on pharmacological and knockdown evidence, and we report here that genetic deletion of Caspase-6 indeed provides partial protection from degeneration. However, we find at a biochemical level that Caspase-6 is activated effectively only by Caspase-3 but not other "upstream" caspases, prompting us to revisit the role of Caspase-3. In vitro, we show that genetic deletion of Caspase-3 is fully protective against sensory axon degeneration initiated by trophic factor withdrawal, but not injury-induced Wallerian degeneration, and we define a biochemical cascade from prosurvival Bcl2 family regulators to Caspase-9, then Caspase-3, and then Caspase-6. Only low levels of active Caspase-3 appear to be required, helping explain why its critical role has been obscured in prior studies. In vivo, Caspase-3 and Caspase-6-knockout mice show a delay in developmental pruning of retinocollicular axons, thereby implicating both Caspase-3 and Caspase-6 in axon degeneration that occurs as a part of normal development.


Assuntos
Axônios/enzimologia , Caspase 3/fisiologia , Caspase 6/fisiologia , Degeneração Neural/enzimologia , Colículos Superiores/crescimento & desenvolvimento , Animais , Axônios/patologia , Axônios/ultraestrutura , Caspase 3/genética , Caspase 6/genética , Células Cultivadas , Ativação Enzimática/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Molecular/métodos , Degeneração Neural/genética , Degeneração Neural/patologia , Fator de Crescimento Neural/efeitos adversos , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/patologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Colículos Superiores/enzimologia , Degeneração Walleriana/enzimologia , Degeneração Walleriana/genética , Degeneração Walleriana/patologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/fisiologia
17.
Chem Senses ; 37(9): 849-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923146

RESUMO

The rodent vomeronasal organ plays an important role in many social behaviors. Using the calcium imaging technique with the dye fluo-4 we measured intracellular calcium concentration changes induced by the application of sulfated steroids to neurons isolated from the vomeronasal organ of female mice. We found that a mix of 10 sulfated steroids from the androgen, estrogen, pregnanolone, and glucocorticoid families induced a calcium response in 71% of neurons. Moreover, 31% of the neurons responded to a mix composed of 3 glucocorticoid-derived compounds, and 28% responded to a mix composed of 3 pregnanolone-derived compounds. Immunohistochemistry showed that neurons responding to sulfated steroids expressed phosphodiesterase 4A, a marker specific for apical neurons expressing V1R receptors. None of the neuron that responded to 1 mix responded also to the other, indicating a specificity of the responses. Some neurons responded to more than 1 individual component of the glucocorticoid-derived mix tested at high concentration, suggesting that these neurons are broadly tuned, although they still displayed strong specificity, remaining unresponsive to high concentrations of the ineffective compounds.


Assuntos
Células Receptoras Sensoriais/efeitos dos fármacos , Esteroides/farmacologia , Sulfatos/química , Órgão Vomeronasal/metabolismo , Compostos de Anilina/química , Animais , Cálcio/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Feminino , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/metabolismo , Esteroides/química , Xantenos/química
18.
Mol Pain ; 8: 48, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22742729

RESUMO

BACKGROUND: Cystitis causes considerable neuronal plasticity in the primary afferent pathways. The molecular mechanism and signal transduction underlying cross talk between the inflamed urinary bladder and sensory sensitization has not been investigated. RESULTS: In a rat cystitis model induced by cyclophosphamide (CYP) for 48 h, the mRNA and protein levels of the excitatory neurotransmitter calcitonin gene-related peptide (CGRP) are increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. Cystitis-induced CGRP expression in L6 DRG is triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reverses CGRP up-regulation during cystitis. CGRP expression in the L6 DRG neurons is also enhanced by retrograde NGF signaling when NGF is applied to the nerve terminals of the ganglion-nerve two-compartmented preparation. Characterization of the signaling pathways in cystitis- or NGF-induced CGRP expression reveals that the activation (phosphorylation) of extracellular signal-regulated protein kinase (ERK)5 but not Akt is involved. In L6 DRG during cystitis, CGRP is co-localized with phospho-ERK5 but not phospho-Akt. NGF-evoked CGRP up-regulation is also blocked by inhibition of the MEK/ERK pathway with specific MEK inhibitors U0126 and PD98059, but not by inhibition of the PI3K/Akt pathway with inhibitor LY294002. Further examination shows that cystitis-induced cAMP-responsive element binding protein (CREB) activity is expressed in CGRP bladder afferent neurons and is co-localized with phospho-ERK5 but not phospho-Akt. Blockade of NGF action in vivo reduces the number of DRG neurons co-expressing CGRP and phospho-CREB, and reverses cystitis-induced increases in micturition frequency. CONCLUSIONS: A specific pathway involving NGF-ERK5-CREB axis plays an essential role in cystitis-induced sensory activation.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/genética , Cistite/enzimologia , Cistite/patologia , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/enzimologia , Animais , Anticorpos Neutralizantes/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/enzimologia , Vértebras Lombares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Fator de Crescimento Neural/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação , Bexiga Urinária/patologia
19.
Mol Pain ; 8: 46, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22713297

RESUMO

BACKGROUND: The plasma membrane Ca2+-ATPase (PMCA) is the principal means by which sensory neurons expel Ca2+ and thereby regulate the concentration of cytoplasmic Ca2+ and the processes controlled by this critical second messenger. We have previously found that painful nerve injury decreases resting cytoplasmic Ca2+ levels and activity-induced cytoplasmic Ca2+ accumulation in axotomized sensory neurons. Here we examine the contribution of PMCA after nerve injury in a rat model of neuropathic pain. RESULTS: PMCA function was isolated in dissociated sensory neurons by blocking intracellular Ca2+ sequestration with thapsigargin, and cytoplasmic Ca2+ concentration was recorded with Fura-2 fluorometry. Compared to control neurons, the rate at which depolarization-induced Ca2+ transients resolved was increased in axotomized neurons after spinal nerve ligation, indicating accelerated PMCA function. Electrophysiological recordings showed that blockade of PMCA by vanadate prolonged the action potential afterhyperpolarization, and also decreased the rate at which neurons could fire repetitively. CONCLUSION: We found that PMCA function is elevated in axotomized sensory neurons, which contributes to neuronal hyperexcitability. Accelerated PMCA function in the primary sensory neuron may contribute to the generation of neuropathic pain, and thus its modulation could provide a new pathway for peripheral treatment of post-traumatic neuropathic pain.


Assuntos
Axotomia , Membrana Celular/enzimologia , Neuralgia/enzimologia , Neuralgia/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células Receptoras Sensoriais/enzimologia , Nervos Espinhais/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuralgia/fisiopatologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Trocador de Sódio e Cálcio/metabolismo , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/enzimologia , Nervos Espinhais/fisiopatologia , Tapsigargina/farmacologia
20.
Brain ; 135(Pt 6): 1751-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22561641

RESUMO

Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gânglios Espinais/patologia , Doenças Mitocondriais/patologia , Doenças do Sistema Nervoso Periférico/patologia , Células Receptoras Sensoriais/enzimologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Potenciais da Membrana/genética , Camundongos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/etiologia , Membranas Mitocondriais/efeitos dos fármacos , Mutação/genética , Fibras Nervosas Mielinizadas/patologia , Neuritos/patologia , Consumo de Oxigênio/efeitos dos fármacos , Técnicas de Patch-Clamp , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/etiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Estimulação Física/efeitos adversos , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Resveratrol , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/uso terapêutico , Fatores de Transcrição/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA