Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.073
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720342

RESUMO

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Assuntos
Neoplasias Encefálicas , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Células Supressoras Mieloides/imunologia , Glioma/imunologia , Glioma/terapia , Glioma/patologia , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/patologia , Animais , Imunoterapia/métodos , Linfócitos T Reguladores/imunologia
2.
Front Immunol ; 15: 1352821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711517

RESUMO

Pancreatic cancer is a significant cause of cancer-related mortality and often presents with limited treatment options. Pancreatic tumors are also notorious for their immunosuppressive microenvironment. Irreversible electroporation (IRE) is a non-thermal tumor ablation modality that employs high-voltage microsecond pulses to transiently permeabilize cell membranes, ultimately inducing cell death. However, the understanding of IRE's impact beyond the initiation of focal cell death in tumor tissue remains limited. In this study, we demonstrate that IRE triggers a unique mix of cell death pathways and orchestrates a shift in the local tumor microenvironment driven, in part, by reducing the myeloid-derived suppressor cell (MDSC) and regulatory T cell populations and increasing cytotoxic T lymphocytes and neutrophils. We further show that IRE drives induce cell cycle arrest at the G0/G1 phase in vitro and promote inflammatory cell death pathways consistent with pyroptosis and programmed necrosis in vivo. IRE-treated mice exhibited a substantial extension in progression-free survival. However, within a span of 14 days, the tumor immune cell populations reverted to their pre-treatment composition, which resulted in an attenuation of the systemic immune response targeting contralateral tumors and ultimately resulting in tumor regrowth. Mechanistically, we show that IRE augments IFN- Î³ signaling, resulting in the up-regulation of the PD-L1 checkpoint in pancreatic cancer cells. Together, these findings shed light on potential mechanisms of tumor regrowth following IRE treatment and offer insights into co-therapeutic targets to improve treatment strategies.


Assuntos
Modelos Animais de Doenças , Eletroporação , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia , Camundongos , Linhagem Celular Tumoral , Células Supressoras Mieloides/imunologia , Camundongos Endogâmicos C57BL , Humanos , Linfócitos T Reguladores/imunologia , Feminino
3.
J Nanobiotechnology ; 22(1): 237, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735920

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) promote tumor growth, metastasis, and lead to immunotherapy resistance. Studies revealed that miRNAs are also expressed in MDSCs and promote the immunosuppressive function of MDSCs. Currently, few studies have been reported on inducible cellular microvesicle delivery of nucleic acid drugs targeting miRNA in MDSCs for the treatment of malignant tumors. RESULTS AND CONCLUSION: In this study, we designed an artificial DNA named G-quadruplex-enhanced circular single-stranded DNA-9 (G4-CSSD9), that specifically adsorbs the miR-9 sequence. Its advanced DNA folding structure, rich in tandem repeat guanine (G-quadruplex), also provides good stability. Mesenchymal stem cells (MSCs) were prepared into nanostructured vesicles by membrane extrusion. The MSC microvesicles-encapsulated G4-CSSD9 (MVs@G4-CSSD9) was delivered into MDSCs, which affected the downstream transcription and translation process, and reduced the immunosuppressive function of MDSCs, so as to achieve the purpose of treating melanoma. In particular, it provides an idea for the malignant tumor treatment.


Assuntos
DNA de Cadeia Simples , Quadruplex G , Células-Tronco Mesenquimais , MicroRNAs , Células Supressoras Mieloides , Animais , Células Supressoras Mieloides/metabolismo , Camundongos , DNA de Cadeia Simples/química , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , DNA Circular/química , Humanos , Melanoma/tratamento farmacológico
4.
Front Immunol ; 15: 1390327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742106

RESUMO

Introduction: Tuberculous pleural effusion (TPE) stands as one of the primary forms of extrapulmonary tuberculosis (TB) and frequently manifests in regions with a high prevalence of TB, consequently being a notable cause of pleural effusion in such areas. However, the differentiation between TPE and parapneumonic pleural effusion (PPE) presents diagnostic complexities. This study aimed to evaluate the potential of myeloid-derived suppressor cells (MDSCs) in the pleural fluid as a potential diagnostic marker for distinguishing between TPE and PPE. Methods: Adult patients, aged 18 years or older, who presented to the emergency room of a tertiary referral hospital and received a first-time diagnosis of pleural effusion, were prospectively enrolled in the study. Various immune cell populations, including T cells, B cells, natural killer (NK) cells, and MDSCs, were analyzed in both pleural fluid and peripheral blood samples. Results: In pleural fluid, the frequency of lymphocytes, including T, B, and NK cells, was notably higher in TPE compared to PPE. Conversely, the frequency of polymorphonuclear (PMN)-MDSCs was significantly higher in PPE. Notably, compared to traditional markers such as the neutrophil-to-lymphocyte ratio and adenosine deaminase level, the frequency of PMN-MDSCs emerged as a more effective discriminator between PPE and TPE. PMN-MDSCs demonstrated superior positive and negative predictive values and exhibited a higher area under the curve in the receiver operating characteristic curve analysis. PMN-MDSCs in pleural effusion increased the levels of reactive oxygen species and suppressed the production of interferon-gamma from T cells following nonspecific stimulation. These findings suggest that MDSC-mediated immune suppression may contribute to the pathology of both TPE and PPE. Discussion: The frequency of PMN-MDSCs in pleural fluid is a clinically useful indicator for distinguishing between TPE and PPE.


Assuntos
Biomarcadores , Células Supressoras Mieloides , Derrame Pleural , Tuberculose Pulmonar , Humanos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Masculino , Feminino , Derrame Pleural/imunologia , Derrame Pleural/diagnóstico , Pessoa de Meia-Idade , Diagnóstico Diferencial , Adulto , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/imunologia , Idoso , Pneumonia/diagnóstico , Pneumonia/imunologia , Estudos Prospectivos , Tuberculose Pleural/diagnóstico , Tuberculose Pleural/imunologia
5.
Proc Natl Acad Sci U S A ; 121(20): e2306776121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709933

RESUMO

A high-fat diet (HFD) is a high-risk factor for the malignant progression of cancers through the disruption of the intestinal microbiota. However, the role of the HFD-related gut microbiota in cancer development remains unclear. This study found that obesity and obesity-related gut microbiota were associated with poor prognosis and advanced clinicopathological status in female patients with breast cancer. To investigate the impact of HFD-associated gut microbiota on cancer progression, we established various models, including HFD feeding, fecal microbiota transplantation, antibiotic feeding, and bacterial gavage, in tumor-bearing mice. HFD-related microbiota promotes cancer progression by generating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, the HFD microbiota released abundant leucine, which activated the mTORC1 signaling pathway in myeloid progenitors for PMN-MDSC differentiation. Clinically, the elevated leucine level in the peripheral blood induced by the HFD microbiota was correlated with abundant tumoral PMN-MDSC infiltration and poor clinical outcomes in female patients with breast cancer. These findings revealed that the "gut-bone marrow-tumor" axis is involved in HFD-mediated cancer progression and opens a broad avenue for anticancer therapeutic strategies by targeting the aberrant metabolism of the gut microbiota.


Assuntos
Neoplasias da Mama , Diferenciação Celular , Dieta Hiperlipídica , Progressão da Doença , Microbioma Gastrointestinal , Leucina , Células Supressoras Mieloides , Animais , Dieta Hiperlipídica/efeitos adversos , Leucina/metabolismo , Feminino , Humanos , Camundongos , Células Supressoras Mieloides/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Obesidade/microbiologia , Obesidade/metabolismo , Obesidade/patologia , Linhagem Celular Tumoral
6.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745150

RESUMO

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


Assuntos
Antígeno CD11b , Cirrose Hepática , Regeneração Hepática , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides , Animais , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Camundongos , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Regeneração Hepática/fisiologia , Antígeno CD11b/metabolismo , Masculino , Modelos Animais de Doenças , Fígado/patologia , Fígado/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Concanavalina A , Ligadura , Lipopolissacarídeos , Interleucina-10/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Estreladas do Fígado/metabolismo , Técnicas de Cocultura , Hepatócitos/metabolismo , Hepatócitos/patologia , Ductos Biliares
7.
J Cancer Res Clin Oncol ; 150(5): 243, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717677

RESUMO

Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.


Assuntos
Neoplasias Associadas a Colite , Neoplasias Colorretais , Células Supressoras Mieloides , Humanos , Células Supressoras Mieloides/imunologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/etiologia , Neoplasias Associadas a Colite/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Animais , Colite/complicações , Colite/imunologia
8.
Exp Hematol ; 129: 104125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38743005

RESUMO

The revised International Prognostic Index (R-IPI) is an important prognostic tool in diffuse large B cell lymphoma (DLBCL); however, outcomes can vary markedly within R-IPI groups, and additional prognostic markers are needed. We conducted a prospective observational study to evaluate the circulating immature myeloid (IM) cell subsets and cytokine profiles of 31 patients with newly diagnosed DLBCL before and after chemoimmunotherapy. Among circulating IM cells, myeloid-derived suppressor cells (MDSCs) were the predominant cell type (73.8% ± 26%). At baseline, circulating monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) were predominantly mutually exclusive. Patients with DLBCL clustered into three distinct immunotypes according to MDSC levels and subtype predominance: M-MDSChigh, PMN-MDSChigh, and MDSClow. The M-MDSChigh immunotype was associated with the germinal center B cell-like (GCB) subtype and elevated serum IL-8 and MIP-1α levels. PMN-MDSChigh was associated with the non-GCB subtype and elevated IL-8, MCP-1, IP-10, TNFα, and IL-1Ra levels. Standard chemoimmunotherapy partially reduced M-MDSC distribution across the MDSClow and M-MDSChigh groups. By contrast, among the MDSClow and PMN-MDSChigh groups, PMN-MDSCs persisted after treatment. Two high-risk patients with non-GCB DLBCL and MDSClow immunotype experienced early disease recurrence within 12 months of treatment completion. This study demonstrates that distinct types of MDSCs are associated with subtypes of DLBCL. MDSC levels are dynamic and may be associated with disease status. Persistence of PMN-MDSCs among high-risk patients with DLBCL may be associated with early relapse.


Assuntos
Linfoma Difuso de Grandes Células B , Células Supressoras Mieloides , Humanos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Células Supressoras Mieloides/metabolismo , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Prognóstico , Inflamação/patologia , Adulto , Estudos Prospectivos , Idoso de 80 Anos ou mais , Citocinas/sangue , Imunoterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
9.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703051

RESUMO

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Assuntos
Linfócitos do Interstício Tumoral , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Supressoras Mieloides/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia , Tolerância Imunológica , Animais , Macrófagos Associados a Tumor/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Mieloides/imunologia
10.
Sci Transl Med ; 16(747): eadi2952, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748775

RESUMO

Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.


Assuntos
Tolerância Imunológica , Interleucina-6 , Células Matadoras Naturais , Células Supressoras Mieloides , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Interleucina-6/metabolismo , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Animais , Humanos , Transdução de Sinais , Microambiente Tumoral/imunologia , Camundongos Knockout , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia
11.
Oncoimmunology ; 13(1): 2338965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590799

RESUMO

Immunotherapy has revolutionized the treatment of cancers. Reinvigorating lymphocytes with checkpoint blockade has become a cornerstone of immunotherapy for multiple tumor types, but the treatment of glioblastoma has not yet shown clinical efficacy. A major hurdle to treat GBM with checkpoint blockade is the high degree of myeloid-mediated immunosuppression in brain tumors that limits CD8 T-cell activity. A potential strategy to improve anti-tumor efficacy against glioma is to use myeloid-modulating agents to target immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. We found that the co-inhibition of the chemokine receptors CCR2 and CCR5 in murine model of glioma improves the survival and synergizes robustly with anti-PD-1 therapy. Moreover, the treatment specifically reduced the infiltration of monocytic-MDSCs (M-MDSCs) into brain tumors and increased lymphocyte abundance and cytokine secretion by tumor-infiltrating CD8 T cells. The depletion of T-cell subsets and myeloid cells abrogated the effects of CCR2 and CCR5 blockade, indicating that while broad depletion of myeloid cells does not improve survival, specific reduction in the infiltration of immunosuppressive myeloid cells, such as M-MDSCs, can boost the anti-tumor immune response of lymphocytes. Our study highlights the potential of CCR2/CCR5 co-inhibition in reducing myeloid-mediated immunosuppression in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Células Supressoras Mieloides , Humanos , Camundongos , Animais , Glioma/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Células Mieloides/patologia , Neoplasias Encefálicas/tratamento farmacológico , Microambiente Tumoral , Receptores CCR2 , Receptores CCR5/uso terapêutico
12.
BMC Infect Dis ; 24(1): 399, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609858

RESUMO

BACKGROUND: Immunosuppression is a leading cause of septic death. Therefore, it is necessary to search for biomarkers that can evaluate the immune status of patients with sepsis. We assessed the diagnostic and prognostic value of low-density neutrophils (LDNs) and myeloid-derived suppressor cells (MDSCs) subsets in the peripheral blood mononuclear cells (PBMCs) of patients with sepsis. METHODS: LDNs and MDSC subsets were compared among 52 inpatients with sepsis, 33 inpatients with infection, and 32 healthy controls to investigate their potential as immune indicators of sepsis. The percentages of LDNs, monocytic MDSCs (M-MDSCs), and polymorphonuclear MDSCs (PMN-MDSCs) in PBMCs were analyzed. Sequential organ failure assessment (SOFA) scores, C-reactive protein (CRP), and procalcitonin (PCT) levels were measured concurrently. RESULTS: The percentages of LDNs and MDSC subsets were significantly increased in infection and sepsis as compared to control. MDSCs performed similarly to CRP and PCT in diagnosing infection or sepsis. LDNs and MDSC subsets positively correlated with PCT and CRP levels and showed an upward trend with the number of dysfunctional organs and SOFA score. Non-survivors had elevated M-MDSCs compared with that of patients who survived sepsis within 28 days after enrollment. CONCLUSIONS: MDSCs show potential as a diagnostic biomarker comparable to CRP and PCT, in infection and sepsis, even in distinguishing sepsis from infection. M-MDSCs show potential as a prognostic biomarker of sepsis and may be useful to predict 28-day hospital mortality in patients with sepsis.


Assuntos
Células Supressoras Mieloides , Sepse , Humanos , Leucócitos Mononucleares , Prognóstico , Pacientes Internados , Diagnóstico Precoce , Sepse/diagnóstico , Proteína C-Reativa , Pró-Calcitonina , Biomarcadores
13.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609922

RESUMO

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fotoquimioterapia , Biomimética , Linfócitos T CD8-Positivos , Decitabina/farmacologia , Terapia Fototérmica , Neoplasias/tratamento farmacológico
14.
BMC Biol ; 22(1): 88, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641823

RESUMO

BACKGROUND: Immunosuppressive status is prevalent in cancer patients and increases the complexity of tumor immunotherapy. It has been found that Listeria-vectored tumor vaccines had the potential ability of two-side regulatory effect on the immune response during immunotherapy. RESULTS: The results show that the combined immunotherapy with the LM∆E6E7 and LI∆E6E7, the two cervical cancer vaccine candidate strains constructed by our lab, improves the antitumor immune response and inhibits the suppressive immune response in tumor-bearing mice in vivo, confirming the two-sided regulatory ability of the immune response caused by Listeria-vectored tumor vaccines. The immunotherapy reduces the expression level of myeloid-derived suppressor cells (MDSCs)-inducing factors and then inhibits the phosphorylation level of STAT3 protein, the regulatory factor of MDSCs differentiation, to reduce the MDSCs formation ability. Moreover, vaccines reduce the expression of functional molecules associated with MDSCs may by inhibiting the phosphorylation level of the JAK1-STAT1 and JAK2-STAT3 pathways in tumor tissues to attenuate the immunosuppressive function of MDSCs. CONCLUSIONS: Immunotherapy with Listeria-vectored cervical cancer vaccines significantly reduces the level and function of MDSCs in vivo, which is the key point to the destruction of immunosuppression. The study for the first to elucidate the mechanism of breaking the immunosuppression.


Assuntos
Vacinas Anticâncer , Células Supressoras Mieloides , Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Vacinas Anticâncer/metabolismo , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/metabolismo , Fosforilação , Transdução de Sinais
15.
J Immunother Cancer ; 12(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663936

RESUMO

RATIONALE: Androgen deprivation therapy (ADT) is pivotal in treating recurrent prostate cancer and is often combined with external beam radiation therapy (EBRT) for localized disease. However, for metastatic castration-resistant prostate cancer, EBRT is typically only used in the palliative setting, because of the inability to radiate all sites of disease. Systemic radiation treatments that preferentially irradiate cancer cells, known as radiopharmaceutical therapy or targeted radionuclide therapy (TRT), have demonstrable benefits for treating metastatic prostate cancer. Here, we explored the use of a novel TRT, 90Y-NM600, specifically in combination with ADT, in murine prostate tumor models. METHODS: 6-week-old male FVB mice were implanted subcutaneously with Myc-CaP tumor cells and given a single intravenous injection of 90Y-NM600, in combination with ADT (degarelix). The combination and sequence of administration were evaluated for effect on tumor growth and infiltrating immune populations were analyzed by flow cytometry. Sera were assessed to determine treatment effects on cytokine profiles. RESULTS: ADT delivered prior to TRT (ADT→TRT) resulted in significantly greater antitumor response and overall survival than if delivered after TRT (TRT→ADT). Studies conducted in immunodeficient NRG mice failed to show a difference in treatment sequence, suggesting an immunological mechanism. Myeloid-derived suppressor cells (MDSCs) significantly accumulated in tumors following TRT→ADT treatment and retained immune suppressive function. However, CD4+ and CD8+ T cells with an activated and memory phenotype were more prevalent in the ADT→TRT group. Depletion of Gr1+MDSCs led to greater antitumor response following either treatment sequence. Chemotaxis assays suggested that tumor cells secreted chemokines that recruited MDSCs, notably CXCL1 and CXCL2. The use of a selective CXCR2 antagonist, reparixin, further improved antitumor responses and overall survival when used in tumor-bearing mice treated with TRT→ADT. CONCLUSION: The combination of ADT and TRT improved antitumor responses in murine models of prostate cancer, however, this was dependent on the order of administration. This was found to be associated with one treatment sequence leading to an increase in infiltrating MDSCs. Combining treatment with a CXCR2 antagonist improved the antitumor effect of this combination, suggesting a possible approach for treating advanced human prostate cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias da Próstata , Animais , Masculino , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacologia , Humanos , Linhagem Celular Tumoral , Radioisótopos de Ítrio/uso terapêutico , Radioisótopos de Ítrio/farmacologia , Modelos Animais de Doenças , Antagonistas de Androgênios/uso terapêutico , Antagonistas de Androgênios/farmacologia , Terapia Combinada
16.
Cancer Res Commun ; 4(4): 1135-1149, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38598844

RESUMO

Preclinical studies imply that surgery triggers inflammation that may entail tumor outgrowth and metastasis. The potential impact of surgery-induced inflammation in human pancreatic cancer is insufficiently explored. This study included 17 patients with periampullary cancer [pancreatic ductal adenocarcinoma (PDAC) n = 14, ampullary carcinoma n = 2, cholangiocarcinoma n = 1] undergoing major pancreatic cancer surgery with curative intent. We analyzed the potential impact of preoperative and postoperative immune phenotypes and function on postoperative survival with >30 months follow-up. The surgery entailed prompt expansion of monocytic myeloid-derived suppressor cells (M-MDSC) that generated NOX2-derived reactive oxygen species (ROS). Strong induction of immunosuppressive M-MDSC after surgery predicted poor postoperative survival and coincided with reduced functionality of circulating natural killer (NK) cells. The negative impact of surgery-induced M-MDSC on survival remained significant in separate analysis of patients with PDAC. M-MDSC-like cells isolated from patients after surgery significantly suppressed NK cell function ex vivo, which was reversed by inhibition of NOX2-derived ROS. High NOX2 subunit expression within resected tumors from patients with PDAC correlated with poor survival whereas high expression of markers of cytotoxic cells associated with longer survival. The surgery-induced myeloid inflammation was recapitulated in vivo in a murine model of NK cell-dependent metastasis. Surgical stress thus induced systemic accumulation of M-MDSC-like cells and promoted metastasis of NK cell-sensitive tumor cells. Genetic or pharmacologic suppression of NOX2 reduced surgery-induced inflammation and distant metastasis in this model. We propose that NOX2-derived ROS generated by surgery-induced M-MDSC may be targeted for improved outcome after pancreatic cancer surgery. SIGNIFICANCE: Pancreatic cancer surgery triggered pronounced accumulation of NOX2+ myeloid-derived suppressor cells that inhibited NK cell function and negatively prognosticated postoperative patient survival. We propose the targeting of M-MDSC as a conceivable strategy to reduce postoperative immunosuppression in pancreatic cancer.


Assuntos
Células Supressoras Mieloides , NADPH Oxidase 2 , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio , Feminino , Humanos , Masculino , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/mortalidade , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Período Pós-Operatório , Espécies Reativas de Oxigênio/metabolismo
17.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636823

RESUMO

Immunotherapy is a promising and long-lasting tumor treatment method, but it is challenged by the complex metabolism of tumors. To optimize immunotherapy, it is essential to further investigate the key proteins that regulate tumor metabolism and immune response. STAT3 plays a crucial role in regulating tumor dynamic metabolism and affecting immune cell function by responding to various cytokines and growth factors, which can be used as a potential target for immunotherapy. This review focuses on the crosstalk between STAT3 and tumor metabolism (including glucose, lipid, and amino acid metabolism) and its impact on the differentiation and function of immune cells such as T cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), and reveals potential treatment strategies.


Assuntos
Neoplasias , Fator de Transcrição STAT3 , Humanos , Fator de Transcrição STAT3/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Imunoterapia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Metabolismo dos Lipídeos
18.
Cell Death Dis ; 15(3): 198, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459020

RESUMO

Immune checkpoint inhibitors (ICIs) are now the first-line treatment for patients with advanced melanoma. Despite promising clinical results, many patients fail to respond to these therapies. BH3 mimetics, a novel class of small molecule inhibitors that bind and inhibit anti-apoptotic members of the BCL2 family proteins such as BCL2 or MCL1, have been very successful in treating hematologic malignancies. However, there are limited studies on the immunomodulatory role of the BH3 mimetics. Several factors contribute to ICI resistance including myeloid-derived suppressor cells (MDSCs) that exert immunosuppressive effects through direct and indirect inhibition of antitumor immunity. Thus, targeting MDSCs to enhance antitumor immunity has the potential to enhance the efficacy of ICIs. In this study, we show that the MCL1 inhibitor S64315 reduces melanoma tumor growth in an immune cell-dependent manner in mice. Specifically, S64315 enhances antitumor immunity by reducing MDSC frequency and by promoting the activity of CD8+T cells. Additionally, human MDSCs are 10 times more sensitive to S64315 than cutaneous melanoma lines. Further, we found that a higher expression of MCL1 is associated with poor survival for patients treated with anti-PD-1. Finally, combining S64315 and anti-PD-1 significantly slowed tumor growth compared to either agent alone. Together, this proof-of-concept study demonstrates the potential of combining an MCL1 inhibitor with anti-PD-1 in the treatment of melanoma. It justifies the further development of next generation MCL1 inhibitors to improve efficacy of ICIs in treating malignant melanoma.


Assuntos
Antineoplásicos , Melanoma , Células Supressoras Mieloides , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Melanoma/tratamento farmacológico , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Células Supressoras Mieloides/metabolismo
19.
Cancer Med ; 13(4): e6917, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457241

RESUMO

BACKGROUND: In this study, we investigated infection-related tumor growth, focusing on myeloid-derived suppressor cells (MDSCs) in clinical and experimental settings. PATIENTS AND METHODS: In the clinical study, a total 109 patients who underwent gastrectomy or esophagectomy were included. Blood samples were collected from a preoperative time point through 3 months after surgery, and MDSCs were analyzed using flow cytometry. In animal experiments, peritonitis model mice were created by CLP method. We investigated the number of splenic MDSCs in these mice using flow cytometry. Malignant melanoma cells (B16F10) were inoculated on the back of the mice, and tumor growth was monitored. We compared the level of MDSC infiltration around the tumor and the migration ability between CLP and sham-operated mice-derived MDSCs. Finally, we focused on PD-L1+ MDSCs to examine the effectiveness of anti-PD-L1 antibodies on tumor growth in CLP mice. RESULTS: In patients with postoperative infectious complication, MDSC number was found to remain elevated 3 months after surgery, when the inflammatory responses were normalized. CLP mice showed increased numbers of MDSCs, and following inoculation with B16F10 cells, this higher number of MDSCs was associated with significant tumor growth. CLP-mice-derived MDSCs had higher levels of accumulation around the tumor and had more enhanced migration ability. Finally, CLP mice had increased numbers of PD-L1+ MDSCs and showed more effective inhibition of tumor growth by anti-PD-L1 antibodies compared to sham-operated mice. CONCLUSION: Long-lasting enhanced MDSCs associated with infection may contribute to infection-related tumor progression.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Animais , Camundongos , Antígeno B7-H1
20.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474232

RESUMO

Gastrointestinal cancers represent one of the more challenging cancers to treat. Current strategies to cure and control gastrointestinal (GI) cancers like surgery, radiation, chemotherapy, and immunotherapy have met with limited success, and research has turned towards further characterizing the tumor microenvironment to develop novel therapeutics. Myeloid-derived suppressor cells (MDSCs) have emerged as crucial drivers of pathogenesis and progression within the tumor microenvironment in GI malignancies. Many MDSCs clinical targets have been defined in preclinical models, that potentially play an integral role in blocking recruitment and expansion, promoting MDSC differentiation into mature myeloid cells, depleting existing MDSCs, altering MDSC metabolic pathways, and directly inhibiting MDSC function. This review article analyzes the role of MDSCs in GI cancers as viable therapeutic targets for gastrointestinal malignancies and reviews the existing clinical trial landscape of recently completed and ongoing clinical studies testing novel therapeutics in GI cancers.


Assuntos
Neoplasias Gastrointestinais , Células Supressoras Mieloides , Humanos , Células Supressoras Mieloides/metabolismo , Neoplasias Gastrointestinais/metabolismo , Células Mieloides , Imunoterapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA