Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Molecules ; 26(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071102

RESUMO

Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3'-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 µM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.


Assuntos
Vírus da Dengue/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Dengue/tratamento farmacológico , Vírus da Dengue/metabolismo , Desoxiadenosinas/metabolismo , Simulação de Acoplamento Molecular , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Células Vero/virologia , Proteínas não Estruturais Virais/metabolismo
2.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980675

RESUMO

Human coronavirus (HCoV)-OC43 rarely shows a cytopathic effect (CPE) after infection of various cell lines, and the indirect immunoperoxidase assay (IPA), a relatively complex procedure, has long been used as an alternative assay. Because HCoV-OC43 uses cell-surface transmembrane protease serine 2 (TMPRSS2) for cell entry, VeroE6 cells expressing TMPRSS2 may show a clear CPE after HCoV-OC43 infection. The aim of this study was to construct a 50% tissue culture infectious dose (TCID50) assay for HCoV-OC43 based on CPE evaluation using VeroE6/TMPRSS2 cells. VeroE6/TMPRSS2 cells showed clear CPEs 3 to 4 days after low-titer HCoV-OC43 infection. Evaluation of viral kinetics indicated that the viral titer in the culture supernatant of VeroE6/TMPRSS2 cells in the early stages of infection was higher than that of other cells. In comparison, between the CPE-based and the IPA-based (i.e., the reference titer) methods, the titer measured with CPE evaluation 4 to 5 days after infection using VeroE6/TMPRSS2 cells showed a much smaller difference from the reference titer than that measured using other cells. Thus, the TCID50 assay using CPE evaluation with VeroE6/TMPRSS2 cells provides the correct titer value and will greatly contribute to future research on HCoV-OC43.IMPORTANCE HCoV-OC43 rarely shows a cytopathic effect (CPE) in infected cell lines, and thus the plaque and TCID50 assays by CPE observation are not applicable for titration; the indirect immunoperoxidase assay (IPA) is used instead. However, the IPA is relatively complex, time-consuming, costly, and not suitable for simultaneous titration of many samples. We developed a TCID50 assay using CPE evaluation with TMPRSS2-expressing VeroE6/TMPRSS2 cells that provides the same accuracy as the conventional IPA-based viral titration and does not require any staining procedures using antibodies or substrates. This titration method will greatly contribute to future research on HCoV-OC43 by allowing simple, low-cost, and accurate titration of this virus.


Assuntos
Coronavirus Humano OC43/fisiologia , Efeito Citopatogênico Viral , Receptores Virais/metabolismo , Serina Endopeptidases/metabolismo , Carga Viral/métodos , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Coronavirus Humano OC43/isolamento & purificação , Humanos , Técnicas Imunoenzimáticas , Receptores Virais/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Células Vero/virologia , Cultura de Vírus , Internalização do Vírus , Replicação Viral
3.
Mem. Inst. Oswaldo Cruz ; 116: e200443, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1154874

RESUMO

BACKGROUND The coronaviruses (CoVs) called the attention of the world for causing outbreaks of severe acute respiratory syndrome (SARS-CoV), in Asia in 2002-03, and respiratory disease in the Middle East (MERS-CoV), in 2012. In December 2019, yet again a new coronavirus (SARS-CoV-2) first identified in Wuhan, China, was associated with a severe respiratory infection, known today as COVID-19. This new virus quickly spread throughout China and 30 additional countries. As result, the World Health Organization (WHO) elevated the status of the COVID-19 outbreak from emergency of international concern to pandemic on March 11, 2020. The impact of COVID-19 on public health and economy fueled a worldwide race to approve therapeutic and prophylactic agents, but so far, there are no specific antiviral drugs or vaccines available. In current scenario, the development of in vitro systems for viral mass production and for testing antiviral and vaccine candidates proves to be an urgent matter. OBJECTIVE The objective of this paper is study the biology of SARS-CoV-2 in Vero-E6 cells at the ultrastructural level. METHODS In this study, we documented, by transmission electron microscopy and real-time reverse transcription polymerase chain reaction (RT-PCR), the infection of Vero-E6 cells with SARS-CoV-2 samples isolated from Brazilian patients. FINDINGS The infected cells presented cytopathic effects and SARS-CoV-2 particles were observed attached to the cell surface and inside cytoplasmic vesicles. The entry of the virus into cells occurred through the endocytic pathway or by fusion of the viral envelope with the cell membrane. Assembled nucleocapsids were verified inside rough endoplasmic reticulum cisterns (RER). Viral maturation seemed to occur by budding of viral particles from the RER into smooth membrane vesicles. MAIN CONCLUSIONS Therefore, the susceptibility of Vero-E6 cells to SARS-CoV-2 infection and the viral pathway inside the cells were demonstrated by ultrastructural analysis.


Assuntos
Humanos , Animais , Células Vero/virologia , Vesículas Citoplasmáticas/virologia , Efeito Citopatogênico Viral , SARS-CoV-2/fisiologia , Chlorocebus aethiops , Nucleocapsídeo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microscopia Eletrônica de Transmissão , Endocitose , Retículo Endoplasmático/virologia , Internalização do Vírus , Reação em Cadeia da Polimerase em Tempo Real
4.
EMBO J ; 39(23): e106267, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051876

RESUMO

Severe cases of COVID-19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS-CoV-2-infected cells express the Spike protein (S) at their surface and fuse with ACE2-positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon-induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S-mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell-free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS-CoV-2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.


Assuntos
COVID-19/patologia , Células Gigantes/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Células Gigantes/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero/virologia
5.
PLoS Pathog ; 16(10): e1008900, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33052961

RESUMO

Multiple cell surface molecules including TAM receptors (TYRO3, AXL, and MERTK), a family of tyrosine kinase receptors, can serve as attachment receptors for Ebola virus (EBOV) entry into cells. The interaction of these receptors with EBOV particles is believed to trigger the initial internalization events that lead to macropinocytosis. However, the details of how these interactions lead to EBOV internalization have yet to be elucidated. Here, we screened receptor tyrosine kinase (RTK) inhibitors for anti-EBOV activity by using our previously established biologically contained Ebola virus that lacks the VP30 gene (EBOVΔVP30) and identified several RTKs, including human epidermal growth factor receptor 2 (HER2), as potential targets of anti-EBOV inhibitors and as novel host factors that have a role in EBOV infection. Of these identified RTKs, it was only HER2 whose knockdown by siRNAs impaired EBOVΔVP30-induced AKT1 phosphorylation, an event that is required for AKT1 activation and subsequent macropinocytosis. Stable expression of HER2 resulted in constitutive activation of AKT1, resulting in the enhancement of EBOVΔVP30 growth, EBOV GP-mediated entry, and macropinocytosis. Moreover, we found that HER2 interacts with the TAM receptors, and in particular forms a complex with TYRO3 and EBOVΔVP30 particles on the cell surface. Interestingly, HER2 was required for EBOVΔVP30-induced TYRO3 and AKT1 activation, but the other TAM receptors (TYRO3 and MERTK) were not essential for EBOVΔVP30-induced HER2 and AKT1 activation. Our findings demonstrate that HER2 plays an important role in EBOV entry and provide novel insights for the development of therapeutics against the virus.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Receptor ErbB-2/metabolismo , Internalização do Vírus , Animais , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Células Vero/virologia , Internalização do Vírus/efeitos dos fármacos
6.
Cells ; 9(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560274

RESUMO

The Zika virus (ZIKV) has received much attention due to an alarming increase in cases of neurological disorders including congenital Zika syndrome associated with infection. To date, there is no effective treatment available. An immediate response by the innate immune system is crucial for effective control of the virus. Using CRISPR/Cas9-mediated knockouts in A549 cells, we investigated the individual contributions of the RIG-I-like receptors MDA5 and RIG-I to ZIKV sensing and control of this virus by using a Brazilian ZIKV strain. We show that RIG-I is the main sensor for ZIKV in A549 cells. Surprisingly, we observed that loss of RIG-I and consecutive type I interferon (IFN) production led to virus-induced apoptosis. ZIKV non-structural protein NS5 was reported to interfere with type I IFN receptor signaling. Additionally, we show that ZIKV NS5 inhibits type I IFN induction. Overall, our study highlights the importance of RIG-I-dependent ZIKV sensing for the prevention of virus-induced cell death and shows that NS5 inhibits the production of type I IFN.


Assuntos
Morte Celular/fisiologia , Proteína DEAD-box 58/metabolismo , Receptores Imunológicos/metabolismo , Infecção por Zika virus/virologia , Animais , Chlorocebus aethiops/virologia , Humanos , Imunidade Inata/imunologia , Transdução de Sinais/imunologia , Células Vero/virologia , Proteínas não Estruturais Virais/metabolismo , Zika virus/imunologia , Zika virus/metabolismo , Infecção por Zika virus/imunologia
7.
Nutrients ; 11(10)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623329

RESUMO

Due to their antimicrobial and antiviral activity potential in vitro, polyphenols are gaining a lot of attention from the pharmaceutical and healthcare industries. A novel antiviral and antimicrobial approach could be based on the use of polyphenols obtained from natural sources. Here, we tested the antibacterial and antiviral effect of a mix of polyphenols present in natural almond skin (NS MIX). The antimicrobial potential was evaluated against the standard American Type Culture Collection (ATCC) and clinical strains of Staphylococcus aureus, including methicillin-resistant (MRSA) strains, by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Herpes simplex virus type I was used for the antiviral assessment of NS MIX by plaque assay. Furthermore, we evaluated the expression of viral cascade antigens. NS MIX exhibited antimicrobial (MIC values of 0.31-1.25 mg/ml) and antiviral activity (decrease in the viral titer ** p < 0.01, and viral DNA accumulation * p < 0.05) against Staphylococcus aureus and HSV-1, respectively. Amongst the isolated compounds, the aglycones epicatechin and catechin showed the greatest activity against S. aureus ATCC 6538P (MIC values of 0.078-0.15 and 0.15 mg/ml, respectively), but were not active against all the other strains. These results could be used to develop novel products for topical use.


Assuntos
Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Polifenóis/farmacologia , Prunus dulcis/química , Sementes/química , Animais , Chlorocebus aethiops , DNA Viral/análise , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Polifenóis/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Células Vero/virologia
8.
Indian J Med Res ; 149(6): 771-777, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31496530

RESUMO

Background & objectives: Chikungunya virus (CHIKV), a mosquito-borne arthritogenic virus causes infections ranging from febrile illness to debilitating polyarthralgia in humans. Re-emergence of the virus has affected millions of people in Africa and Asia since 2004. During the outbreak, a new lineage of the virus has evolved as an adaptation for enhanced replication and transmission by Aedes albopictus mosquito. A study was designed to compare the susceptibility of four vertebrate cell lines, namely Vero E6 (African green monkey kidney), BHK-21 (Baby hamster kidney), RD (human rhabdomyosarcoma), A-549 (human alveolar basal epithelial cell) and C6/36 (Ae. albopictus) to Asian genotype and two lineages of East, Central and South African (E1:A226 and E1:A226V) of CHIKV. Methods: One-step growth kinetics of different CHIKV strains was carried out in the above five cell lines to determine the growth kinetics and virus yield. Virus titre was determined by 50 per cent tissue culture infectious dose assay and titres were calculated by the Reed and Muench formula. Growth and virus yield of the three strains in Ae. aegypti mosquitoes was studied by intrathoracic inoculation and virus titration in Vero E6 cell line. Results: Virus titration showed Vero E6, C6/36 and BHK-21 cell lines are high virus yielding with all the three lineages while RD and A-549 yielded low virus titres. C6/36 cell line was the most sensitive and yielded the maximum titre. Ae. aegypti mosquitoes, when inoculated with high titre virus, yielded an almost equal growth with the three strains while rapid growth of E1:A226V and Asian strain was observed with 1 log virus. Interpretation & conclusions: C6/36 cell line was found to be the most sensitive and high yielding for CHIKV irrespective of lineages while Vero E6 and BHK-21 cell lines yielded high titres and may find application for vaccine/diagnostic development. Infection of Ae. aegypti mosquitoes with the three CHIKV strains gave almost identical pattern of growth.


Assuntos
Aedes/virologia , Febre de Chikungunya/virologia , Vírus Chikungunya/crescimento & desenvolvimento , Culicidae/virologia , Células A549/virologia , África/epidemiologia , Animais , Ásia/epidemiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/genética , Vírus Chikungunya/genética , Vírus Chikungunya/patogenicidade , Chlorocebus aethiops , Surtos de Doenças , Genótipo , Humanos , Mosquitos Vetores/genética , Mosquitos Vetores/crescimento & desenvolvimento , Saliva/virologia , Células Vero/virologia
9.
Vaccine ; 37(47): 6996-7002, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288997

RESUMO

Vero cells are considered as the most widely accepted continuous cell line by the regulatory authorities (such as WHO) for the manufacture of viral vaccines for human use. The growth of Vero cells is anchorage-dependent. Scale-up and manufacturing in adherent cultures are labor intensive and complicated. Adaptation of Vero cells to grow in suspension will simplify subcultivation and process scale-up significantly, and therefore reduce the production cost. Here we report on a successful adaptation of adherent Vero cells to grow in suspension in a serum-free and animal component-free medium (IHM03) developed in-house. The suspension adapted Vero cell cultures in IHM03 grew to similar or better maximum cell density as what was observed for the adherent Vero cells grown in commercial serum-free media and with a cell doubling time of 40-44 h. Much higher cell density (8 × 106 cells/mL) was achieved in a batch culture when three volume of the culture medium was replaced during the batch culture process. Both adherent and suspension Vero cells from various stages were tested for their authenticity using short tandem repeat analysis. Testing result indicates that all Vero cell samples had 100% concordance with the Vero DNA control sample, indicating the suspension cells maintained their genetic stability. Furthermore, suspension Vero cells at a passage number of 163 were assayed for tumorigenicity, and were not found to be tumorigenic. The viral productivity of suspension Vero cells was evaluated by using vesicular stomatitis virus (VSV) as a model. The suspension cell culture showed a better productivity of VSV than the adherent Vero cell culture. In addition, the suspension culture could be infected at higher cell densities, thus improving the volumetric virus productivity. More than one log of increase in the VSV productivity was achieved in a 3L bioreactor perfusion culture infected at a cell density of 6.8 × 106 cells/mL.


Assuntos
Células Vero/virologia , Vacinas Virais/imunologia , Cultura de Vírus/métodos , Animais , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/virologia , Contagem de Células/métodos , Linhagem Celular , Chlorocebus aethiops , Meios de Cultura/metabolismo , Meios de Cultura Livres de Soro/metabolismo , Vírus da Estomatite Vesicular Indiana/imunologia , Vesiculovirus/imunologia
10.
Biomed Res Int ; 2019: 4518163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31008105

RESUMO

Inactivation of rabies virus is essential for rabies vaccine preparation where the inactivating compound that is currently recommended for rabies vaccine preparation is ß-propiolactone (ß-PL). This compound is considered better than phenol and formalin but it is expensive and potentially carcinogenic. Data revealed that Ascorbic acid (AA) with cupric ions could yield complete and irreversible inactivation of rabies virus without adversely affecting its antigenicity. Additionally, the results of testing the vaccine potency with the selected inactivating compounds were comparable (P<0.05), and ED50 was higher than the recommended World Health Organization (WHO) limits. The use of HemaGel (plasma substitute) for testing vaccine stabilization was compared with the currently used vaccine stabilizers (human albumin and lactose). HemaGel yielded better stability than the other tested stabilizers. Monitoring of cellular and humoral immune responses indicated that both the total IgG level against rabies vaccine and the IFN and IL5 levels obtained with the HemaGel-stabilized vaccines were higher than those obtained with human albumin- and lactose-stabilized vaccine candidates.


Assuntos
Imunogenicidade da Vacina/efeitos dos fármacos , Propiolactona/farmacologia , Vacina Antirrábica/farmacologia , Raiva/prevenção & controle , Albuminas/farmacologia , Animais , Anticorpos Antivirais/efeitos dos fármacos , Anticorpos Antivirais/imunologia , Ácido Ascórbico/farmacologia , Chlorocebus aethiops , Humanos , Imunoglobulina G/imunologia , Interferons/imunologia , Interleucina-5 , Lactose/química , Propiolactona/química , Raiva/imunologia , Raiva/virologia , Vacina Antirrábica/química , Vacina Antirrábica/genética , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , Potência de Vacina , Células Vero/virologia
11.
Nat Prod Res ; 32(24): 2916-2921, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29117727

RESUMO

The phytochemical study of Laelia marginata (Lindl.) L. O. Williams (Orchidaceae) led to the isolation of a new natural product named crispoic acid (1), together with six other known compounds (2-7). The new natural product was identified as a dimer of eucomic acid and was structurally characterised based upon 1D and 2D NMR and HRMS data. Biological assays with plant crude extract, fractions and isolated compounds were performed against two human cancer cell lines (Hela and Siha), and the tropical parasites Trypanosoma cruzi and Leishmania (Leishmania) amazonensis. The phenantrenoid 9,10-dihydro-4-methoxyphenanthren-2,7-diol 2 was active against Hela and Siha cells (CC50 5.86 ± 0.19 and 20.78 ± 2.72 µg/mL, respectively). Sub-lethal concentrations of the flavone rhamnazin 4 were not able to rescue the viability of the Vero cells infected by Zika virus.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antiparasitários/isolamento & purificação , Chlorocebus aethiops , Orchidaceae/química , Parasitos/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Antiparasitários/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Leishmania/efeitos dos fármacos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Células Vero/virologia
12.
Methods Mol Biol ; 1442: 13-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27464684

RESUMO

Defective interfering viral particles have been reported as important determinants of the course of viral infection, and they can markedly temper the virulence of the infection. Here, we describe a simple method, based on limiting dilution, for the removal of defective interfering particles from RSV. This method results in a high-titer viral preparation from both HEp-2 and Vero cell lines. We evaluated two concentrations of sucrose to stabilize the virus preparation, and demonstrate that RSV is stable when prepared and stored in 25 % sucrose at -152 °C. In addition, this chapter describes some commonly used methods of RSV titration, detection using microtitration and quantitative real-time RT-PCR, and the use of immunostaining for antigenic characterization.


Assuntos
Vírus Defeituosos/crescimento & desenvolvimento , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Cultura de Vírus/métodos , Animais , Linhagem Celular Tumoral/virologia , Chlorocebus aethiops , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Vírus Sincicial Respiratório Humano/genética , Sensibilidade e Especificidade , Células Vero/virologia , Carga Viral
13.
Methods Mol Biol ; 1442: 33-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27464685

RESUMO

One of the most commonly used approaches for determining the quantity of infectious RSV particles in a given sample is the plaque assay. RSV infectious particles can be quantified by various direct and indirect methods. Here, we explain two simple methods for RSV titration: plaque assay and immunostaining assay.


Assuntos
Anticorpos Antivirais/metabolismo , Vírus Sinciciais Respiratórios/crescimento & desenvolvimento , Ensaio de Placa Viral/métodos , Animais , Linhagem Celular Tumoral/virologia , Chlorocebus aethiops , Humanos , Imunoensaio , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/patogenicidade , Células Vero/virologia , Replicação Viral
14.
Sci Rep ; 5: 14794, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26440769

RESUMO

Unlike other viral protease, Avibirnavirus infectious bursal disease virus (IBDV)-encoded viral protease VP4 forms unusual intracellular tubule-like structures during viral infection. However, the formation mechanism and potential biological functions of intracellular VP4 tubules remain largely elusive. Here, we show that VP4 can assemble into tubules in diverse IBDV-infected cells. Dynamic analysis show that VP4 initiates the assembly at early stage of IBDV infection, and gradually assembles into larger size of fibrils within the cytoplasm and nucleus. Intracellular assembly of VP4 doesn't involve the host cytoskeleton, other IBDV-encoded viral proteins or vital subcellular organelles. Interestingly, the last C-terminal hydrophobic and amyloidogenic stretch (238)YHLAMA(243) with two "aggregation-prone" alanine residues was found to be essential for its intracellular self-assembly. The assembled VP4 fibrils show significantly low solubility, subsequently, the deposition of highly assembled VP4 structures ultimately deformed the host cytoskeleton and nucleus, which was potentially associated with IBDV lytic infection. Importantly, the assembly of VP4 significantly reduced the cytotoxicity of protease activity in host cells which potentially prevent the premature cell death and facilitate viral replication. This study provides novel insights into the formation mechanism and biological functions of the Avibirnavirus protease-related fibrils.


Assuntos
Avibirnavirus/metabolismo , Interações Hospedeiro-Patógeno , Serina Endopeptidases/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Animais , Avibirnavirus/patogenicidade , Embrião de Galinha , Chlorocebus aethiops , Citoesqueleto/metabolismo , Células HEK293/virologia , Humanos , Vírus da Doença Infecciosa da Bursa/metabolismo , Vírus da Doença Infecciosa da Bursa/patogenicidade , Peptídeos/química , Peptídeos/metabolismo , Serina Endopeptidases/química , Solubilidade , Células Vero/virologia , Proteínas Virais/química , Proteínas Estruturais Virais/química
15.
Transfusion ; 55(4): 824-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25370822

RESUMO

BACKGROUND: Arboviruses are an emerging threat to transfusion safety and rates of infection are likely to increase with the increased rainfall associated with climate change. Arboviral infections are common in Australia, where Ross River virus (RRV), Barmah Forest virus (BFV), and Murray Valley encephalitis virus (MVEV), among others, have the potential to cause disease in humans. The use of pathogen reduction technology (PRT) may be an alternative approach for blood services to manage the risk of arboviral transfusion transmission. In this study, the effectiveness of the Mirasol PRT (Terumo BCT) system at inactivating RRV, BFV, and MVEV in buffy coat (BC)-derived platelets (PLTs) was investigated. STUDY DESIGN AND METHODS: BC-derived PLT concentrates in additive solution (SSP+) were spiked with RRV, BFV, or MVEV and then treated with the Mirasol PRT system. The level of infectious virus was determined before and after treatment, and the reduction in viral infectivity was calculated. RESULTS: Treatment with PRT (Mirasol) reduced the amount of infectious virus of all three arboviruses. The greatest level of inactivation was observed for RRV (2.33 log; 99.25%), followed by BFV (1.97 log; 98.68%) and then MVEV (1.83 log; 98.42%). CONCLUSION: Our study demonstrates that treatment of PLT concentrates with PRT (Mirasol) reduces the infectious levels of RRV, BFV, and MVEV. The relevance of the level of reduction required to prevent disease transmission by transfusion has not been fully defined and requires further investigation. In the face of a changing climate, with its associated threat to blood safety, PRT represents a proactive approach for maintaining blood safety.


Assuntos
Arbovírus/efeitos dos fármacos , Arbovírus/efeitos da radiação , Plaquetas/virologia , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/farmacologia , Raios Ultravioleta , Adulto , Animais , Infecções por Arbovirus/prevenção & controle , Infecções por Arbovirus/transmissão , Arbovírus/fisiologia , Austrália , Buffy Coat/citologia , Patógenos Transmitidos pelo Sangue/efeitos dos fármacos , Patógenos Transmitidos pelo Sangue/efeitos da radiação , Chlorocebus aethiops , Efeito Citopatogênico Viral , Humanos , Células Vero/virologia , Inativação de Vírus , Replicação Viral/efeitos dos fármacos , Replicação Viral/efeitos da radiação
16.
Microbes Infect ; 17(3): 228-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25479555

RESUMO

Immunization programs have implemented live attenuated mumps vaccines which reduced mumps incidence ≥97%. Some of the vaccine strains were abandoned due to unwanted side effects and the genetic marker of attenuation has not been identified so far. Our hypothesis was that non-infectious viral particles, in particular defective interfering particles (DIPs), contribute to neuroattenuation. We showed that non-infectious particles of the mumps vaccine L-Zagreb attenuated neurovirulence of wild type mumps virus 9218/Zg98. Then, we attenuated recent wild type mumps virus MuVi/Zagreb.HRV/28.12 in Vero cells through 16 passages but already the fifth passage (p5) showed accumulation of DIPs and attenuated neurovirulence in a newborn rat model when compared to the second passage (p2). Sequence analysis of the p2 and p5 revealed a single mutation in the 5' untranslated region of the HN gene. Analysis of the expression level of the HN protein showed that this mutation does not affect the expression of the protein. We conclude that the passages of MuVi/Zagreb.HRV/28.12 in Vero cells for only three passages accumulated DIPs which attenuate neurovirulence. These findings reveal DIPs as a very promising and general neuroattenuating factor which should be considered in the rational design of the new mumps vaccine.


Assuntos
Vírus Defeituosos/imunologia , Vírus da Caxumba/imunologia , Vírion , Animais , Sequência de Bases , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Vírus da Caxumba/genética , Ratos , Vacinas Atenuadas/genética , Células Vero/imunologia , Células Vero/virologia , Virulência/genética
17.
Antimicrob Agents Chemother ; 59(1): 527-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385102

RESUMO

Despite years of research dedicated to preventing the sexual transmission of herpes simplex virus 2 (HSV-2), there is still no protective vaccine or microbicide against one of the most common sexually transmitted infections in the world. Using a phage display library constructed from a llama immunized with recombinant HSV-2 glycoprotein D, we identified a single-domain antibody VHH, R33, which binds to the viral surface glycoprotein D. Although R33 does not demonstrate any HSV-2 neutralization activity in vitro, when expressed with the cytotoxic domain of exotoxin A, the resulting immunotoxin (R33ExoA) specifically and potently kills HSV-2-infected cells, with a 50% neutralizing dilution (IC50) of 6.7 nM. We propose that R33ExoA could be used clinically to prevent transmission of HSV-2 through killing of virus-producing epithelial cells during virus reactivation. R33 could also potentially be used to deliver other cytotoxic effectors to HSV-2-infected cells.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 2/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Proteínas do Envelope Viral/metabolismo , ADP Ribose Transferases/genética , ADP Ribose Transferases/imunologia , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Camelídeos Americanos , Chlorocebus aethiops , Exotoxinas/genética , Exotoxinas/imunologia , Imunotoxinas/genética , Imunotoxinas/imunologia , Imunotoxinas/farmacologia , Testes de Neutralização , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Testes de Toxicidade/métodos , Células Vero/efeitos dos fármacos , Células Vero/virologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
18.
J Virol ; 88(16): 9182-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899195

RESUMO

UNLABELLED: Neonatal immune responses to infection and vaccination are biased toward TH2 at the cost of proinflammatory TH1 responses needed to combat intracellular pathogens. However, upon appropriate stimulation, the neonatal immune system can induce adult-like TH1 responses. Here we report that a new class of vaccine adjuvant is especially well suited to enhance early life immunity. The GVI3000 adjuvant is a safe, nonpropagating, truncated derivative of Venezuelan equine encephalitis virus that targets dendritic cells (DCs) in the draining lymph node (DLN) and produces intracellular viral RNA without propagating to other cells. RNA synthesis strongly activates the innate immune response so that in adult animals, codelivery of soluble protein antigens induces robust humoral, cellular, and mucosal responses. The adjuvant properties of GVI3000 were tested in a neonatal BALB/c mouse model using inactivated influenza virus (iFlu). After a single immunization, mice immunized with iFlu with the GVI3000 adjuvant (GVI3000-adjuvanted iFlu) had significantly higher and sustained influenza virus-specific IgG antibodies, mainly IgG2a (TH1), compared to the mice immunized with antigen only. GVI3000 significantly increased antigen-specific CD4(+) and CD8(+) T cells, primed mucosal immune responses, and enhanced protection from lethal challenge. As seen in adult mice, the GVI3000 adjuvant increased the DC population in the DLNs, caused activation and maturation of DCs, and induced proinflammatory cytokines and chemokines in the DLNs soon after immunization, including gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), and interleukin 6 (IL-6). In summary, the GVI3000 adjuvant induced an adult-like adjuvant effect with an influenza vaccine and has the potential to improve the immunogenicity and protective efficacy of new and existing neonatal vaccines. IMPORTANCE: The suboptimal immune responses in early life constitute a significant challenge for vaccine design. Here we report that a new class of adjuvant is safe and effective for early life immunization and demonstrate its ability to significantly improve the protective efficacy of an inactivated influenza virus vaccine in a neonatal mouse model. The GVI3000 adjuvant delivers a truncated, self-replicating viral RNA into dendritic cells in the draining lymph node. Intracellular RNA replication activates a strong innate immune response that significantly enhances adaptive antibody and cellular immune responses to codelivered antigens. A significant increase in protection results from a single immunization. Importantly, this adjuvant also primed a mucosal IgA response, which is likely to be critical for protection during many early life infections.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Alphavirus/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Imunidade nas Mucosas/imunologia , Vírus da Influenza A/imunologia , Linfócitos T/imunologia , Animais , Animais Recém-Nascidos/imunologia , Animais Recém-Nascidos/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Chlorocebus aethiops/imunologia , Chlorocebus aethiops/virologia , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Imunidade Humoral/imunologia , Imunoglobulina G/imunologia , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Linfócitos T/virologia , Vacinação/métodos , Vacinas de Produtos Inativados/imunologia , Células Vero/imunologia , Células Vero/virologia
19.
Biomacromolecules ; 15(4): 1534-42, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628489

RESUMO

We present two facile approaches for introducing multivalent displays of tyrosine sulfate mimetic ligands on the surface of cellulose nanocrystals (CNCs) for application as viral inhibitors. We tested the efficacy of cellulose nanocrystals, prepared either from cotton fibers or Whatman filter paper, to inhibit alphavirus infectivity in Vero (B) cells. Cellulose nanocrystals were produced by sulfuric acid hydrolysis leading to nanocrystal surfaces decorated with anionic sulfate groups. When the fluorescent marker expressing Semliki Forest virus vector, VA7-EGFP, was incubated with CNCs, strong inhibition of virus infectivity was achieved, up to 100 and 88% for cotton and Whatman CNCs, respectively. When surface sulfate groups of CNCs were exchanged for tyrosine sulfate mimetic groups (i.e. phenyl sulfonates), improved viral inhibition was attained. Our observations suggest that the conjugation of target-specific functionalities to CNC surfaces provides a means to control their antiviral activity. Multivalent CNCs did not cause observable in vitro cytotoxicity to Vero (B) cells or human corneal epithelial (HCE-T) cells, even within the 100% virus-inhibitory concentrations. Based on the similar chemistry of known polyanionic inhibitors, our results suggest the potential application of CNCs as inhibitors of other viruses, such as human immunodeficiency virus (HIV) and herpes simplex viruses.


Assuntos
Infecções por Alphavirus/tratamento farmacológico , Antivirais/química , Antivirais/farmacologia , Celulose/síntese química , Nanopartículas/química , Nanotecnologia/métodos , Vírus da Floresta de Semliki/efeitos dos fármacos , Tirosina/análogos & derivados , Animais , Biomimética , Celulose/química , Chlorocebus aethiops , Epitélio Corneano/citologia , Epitélio Corneano/efeitos dos fármacos , Genes erbB-1 , Ligantes , Nanopartículas/toxicidade , Vírus da Floresta de Semliki/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Tirosina/química , Células Vero/efeitos dos fármacos , Células Vero/virologia
20.
Methods Mol Biol ; 1104: 313-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24297424

RESUMO

Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Química Analítica/métodos , Espectroscopia Dielétrica/métodos , Insetos/citologia , Mamíferos , Animais , Técnicas de Cultura de Células/instrumentação , Linhagem Celular/virologia , Chlorocebus aethiops , Drosophila/citologia , Humanos , Vírus do Sarampo/patogenicidade , Células-Tronco Mesenquimais/citologia , Sistemas On-Line , Telomerase/genética , Células Vero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA