Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
J Ovarian Res ; 15(1): 34, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300716

RESUMO

BACKGROUND: The mammalian follicle is the basic functional unit of the ovary, and its normal development is required to obtaining oocytes capable of fertilization. As women get older or decline in ovarian function due to certain pathological factors, the growth and development of follicles becomes abnormal, which ultimately leads to infertility and other related female diseases. Kuntai capsules are currently used in clinical practice to improve ovarian function, and they contain the natural compound Baicalin, which is a natural compound with important biological activities. At present, the role and mechanism of Baicalin in the development of ovarian follicles is unclear. METHODS: Human primary granulosa cells collected from follicular fluid, and then cultured and treated with Baicalin or its normal control, assessed for viability, subjected to RT-PCR, western blotting, flow cytometry, and hormone analyses. The estrus cycle and oocytes of CD-1 mice were studied after Baicalin administration and compared with controls. Ovaries were collected from the mice and subjected to hematoxylin-eosin staining and immunohistochemistry analysis. RESULTS: We showed that Baicalin had a dose-dependent effect on granulosa cells cultured in vitro. A low concentration of Baicalin (for example, 10 µM) helped to maintain the viability of granulosa cells; however, at a concentration exceeding 50 µM, it exerted a toxic effect. A low concentration significantly improved the viability of granulosa cells and inhibited cell apoptosis, which may be related to the resultant upregulation of Bcl-2 expression and downregulation of Bax and Caspase 3. By constructing a hydrogen peroxide-induced cell oxidative stress damage model, we found that Baicalin reversed the cell damage caused by hydrogen peroxide. In addition, Baicalin increased the secretion of estradiol and progesterone by upregulating P450arom and stAR. The results of the in vivo experiment showed that the intragastric administration of Baicalin to aged mice improved the estrous cycle and oocyte quality. Furthermore, we observed that Baicalin enhanced the viability of granulosa cells through the mTOR pathway, which in turn improve ovarian function. CONCLUSION: These results indicate that Baicalin could improve the viability of ovarian granulosa cells and the secretion of steroid hormones and thus could help to improve degenerating ovarian function and delay ovarian aging.


Assuntos
Flavonoides , Células da Granulosa , Ovário , Serina-Treonina Quinases TOR , Animais , Feminino , Flavonoides/farmacologia , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/enzimologia , Humanos , Camundongos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
Gene ; 814: 146128, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34971752

RESUMO

Melatonin, an important regulator of mammalian reproduction, is mainly produced in the pineal gland, and granulosa cells (GCs), the main mammalian ovarian secretory cells, synthesize melatonin and express melatonin receptors (MRs) MT1 and MT2. However, studies on melatonin regulation in GCs are lacking in sheep. In this study, we explored the effects of ß-estradiol (E2) on melatonin production and MR expression in GCs. We cultured sheep GCs to analyze the expression of the melatonin rate-limiting enzymes AANAT and HIOMT and the effects of E2 on AANAT, HIOMT, and MR expression and melatonin synthesis. To determine whether estrogen receptors (ERs) mediated E2 action on melatonin secretion and MR expression, we assessed ERA and ERB expression in GCs and observed whether ER antagonists counterbalanced the effects of E2. GCs expressed AANAT and HIOMT mRNA, indicating that they transformed exogenous serotonin into melatonin. E2 inhibited melatonin production by downregulating AANAT, HIOMT, and MRs. GCs expressed ERA and ERB; ERA/ERB inhibitors abolished E2-mediated inhibition of melatonin secretion and MR expression. PHTPP upregulated melatonin secretion and MT1 expression in E2-treated GCs, but did not significantly affect AANAT and MT2 expression. In conclusion, melatonin secretion in GCs was inhibited by E2 through an ERA- and ERB-mediated process.


Assuntos
Estradiol/fisiologia , Células da Granulosa/metabolismo , Melatonina/biossíntese , Receptor MT1 de Melatonina/biossíntese , Receptor MT2 de Melatonina/biossíntese , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Células Cultivadas , Feminino , Células da Granulosa/enzimologia , Ovinos
3.
Biomed Pharmacother ; 144: 112288, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653763

RESUMO

The main features of polycystic ovary syndrome (PCOS) are abnormal follicular development and ovulation dysfunction, which are caused by the excessive autophagy of ovarian granulosa cells. Acupuncture has been shown to improve ovulation dysfunction and abnormal follicular development in PCOS patients, but its mechanism is unclear. This study hypothesized that the beneficial effects of acupuncture are the result of LncMEG3-mediated effects on the PI3K/AKT/mTOR pathway. Acupuncture (CV-4, RN-3, CV-6, SP-6 and EX-CA 1) was used to treat a rat model of polycystic ovary syndrome. Hematoxylin-eosin staining was used to observe ovarian morphology and enzyme-linked immunosorbent assay, western blotting, immunohistochemistry and real-time PCR were used to detect LH, E2, FSH, T, AMH, LncMEG3, PI3K, AKT, mTOR, P62 and LC3II/I expression. The ovarian morphology of 90% of the rats in the acupuncture treatment group was significantly improved after 11 consecutive days of therapy. Acupuncture also resulted in a significant decrease in serum LH, FSH, T and AMH levels and a significant increase in E2 level (P<0.01). LncMEG3, PI3K, AKT, mTOR, P62 and LC3II/I expression was decreased in ovarian granulosa cells after acupuncture compared with PCOS and lentiviral Intervention Group (P<0.05), while the expression of follicle stimulating hormone receptor was increased (P<0.05). These results indicate that acupuncture can down-regulate the expression of LncMEG3 and thereby inhibit the PI3K/AKT/mTOR pathway, reducing granulosa cell autophagy and normalizing their proliferation. These factors ultimately remedy abnormal follicular development. These findings suggest that acupuncture has clinical potential as a safe treatment for PCOS ovulatory dysfunction.


Assuntos
Terapia por Acupuntura , Autofagia , Células da Granulosa/enzimologia , Ovulação , Fosfatidilinositol 3-Quinase/metabolismo , Síndrome do Ovário Policístico/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hormônios Esteroides Gonadais/metabolismo , Gonadotropinas Hipofisárias/metabolismo , Células da Granulosa/patologia , Síndrome do Ovário Policístico/enzimologia , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/fisiopatologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
4.
Toxins (Basel) ; 13(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802158

RESUMO

Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin found in several food commodities worldwide. ZEA causes reproductive disorders, genotoxicity, and testicular toxicity in animals. However, little is known about the functions of apoptosis and autophagy after exposure to ZEA in granulosa cells. This study investigated the effects of ZEA on chicken granulosa cells. The results show that ZEA at different doses significantly inhibited the growth of chicken granulosa cells by inducing apoptosis. ZEA treatment up-regulated Bax and downregulated Bcl-2 expression, promoted cytochrome c release into the cytosol, and triggered mitochondria-mediated apoptosis. Consequently, caspase-9 and downstream effector caspase-3 were activated, resulting in chicken granulosa cells apoptosis. ZEA treatment also upregulated LC3-II and Beclin-1 expression, suggesting that ZEA induced a high level of autophagy. Pretreatment with chloroquine (an autophagy inhibitor) and rapamycin (an autophagy inducer) increased and decreased the rate of apoptosis, respectively, in contrast with other ZEA-treated groups. Autophagy delayed apoptosis in the ZEA-treated cells. Therefore, autophagy may prevent cells from undergoing apoptosis by reducing ZEA-induced cytotoxicity. In addition, our results further show that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in chicken granulosa cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Zearalenona/toxicidade , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Células Cultivadas , Galinhas , Feminino , Células da Granulosa/enzimologia , Células da Granulosa/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transdução de Sinais
5.
Int J Mol Med ; 47(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33693952

RESUMO

Ovarian granulosa cells (GCs) are the most important source of estrogen. Therefore, aromatase (estrogen synthase), which is the key enzyme in estrogen synthesis, is not only an important factor of ovarian development, but also the key to estrogen secretion by GCs. Disorders of the ovarian estrogen secretion are more likely to induce female estrogen­dependent diseases and fertility issues, such as ovarian cancer and polycystic ovary syndrome. Hence, aromatase is an important drug target; treatment with its inhibitors in estrogen­dependent diseases has attracted increasing attention. The present review article focuses on the regulation and mechanism of the aromatase activity in the GCs, as well as the specific regulation of aromatase promoters. In GCs, follicle­stimulating hormone (FSH) is dependent on the cyclic adenosine monophosphate (cAMP) pathway to regulate the aromatase activity, and the regulation of this enzyme is related to the activation of signaling pathways, such as phosphatidylinositol 3­kinase (PI3K) and extracellular signal­regulated kinase (ERK). In addition, endocrine­disrupting substance and other related factors affect the expression of aromatase, which eventually create an imbalance in the estrogen secretion by the target tissues. The present review highlights these useful factors as potential inhibitors for target therapy.


Assuntos
Aromatase/metabolismo , Estrogênios/metabolismo , Células da Granulosa/enzimologia , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/enzimologia , Síndrome do Ovário Policístico/enzimologia , Aromatase/genética , Estrogênios/genética , Feminino , Células da Granulosa/patologia , Humanos , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia
6.
Reprod Biol ; 20(4): 555-567, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33191142

RESUMO

Expression levels of genes involved in the development of germ cells vary throughout the process from bipotential gonadal period to adult gonadal formation. In mice, developments of female and male reproductive system are regulated by germ cell-specific factors and hormones, and determinative days in this regulation are very important. c-Abl is a non-receptor tyrosine kinase with cellular functions including cell proliferation, growth and development. mTERT is involved in maintaining telomerase activity and proliferation of surviving cells. We suggested that c-Abl and mTERT might be important for the healthy development of prenatal and postnatal mouse ovary and testis. We aim to demonstrate localization and expressions of c-Abl and mTERT in crucial days of ovary and testis development in prenatal and postnatal period in mouse by immunofluorescence staining and qRT-PCR, respectively. The importance of c-Abl and mTERT expressions during the healthy gonadal development is indicated in the prenatal and postnatal gonadal development. Also, protein expression levels were detected by Western Blot in only postnatal ovary and testis. Determining the functions of the c-Abl and mTERT throughout the process will be important in terms of understanding the infertility cases in the female and male with future studies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ovário/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-abl/genética , Telomerase/genética , Testículo/crescimento & desenvolvimento , Animais , Feminino , Células da Granulosa/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovário/embriologia , Gravidez , Proteínas Proto-Oncogênicas c-abl/análise , RNA Mensageiro/análise , Telomerase/análise , Telomerase/química , Testículo/embriologia
7.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992734

RESUMO

In a healthy female reproductive system, a subtle hormonal and metabolic dance leads to repetitive cyclic changes in the ovaries and uterus, which make an effective ovulation and potential implantation of an embryo possible. However, that is not so in the case of polycystic ovary syndrome (PCOS), in which case the central mechanism responsible for entraining hormonal and metabolic rhythms during the menstrual cycle is notably disrupted. In this review we provide a detailed description of the possible scenario of PCOS pathogenesis. We begin from the analysis of how a set of genetic disorders related to PCOS leads to particular malfunctions at a molecular level (e.g., increased enzyme activities of cytochrome P450 (CYP) type 17A1 (17α-hydroxylase), 3ß-HSD type II and CYP type 11A1 (side-chain cleavage enzyme) in theca cells, or changes in the expression of aquaporins in granulosa cells) and discuss further cellular- and tissue-level consequences (e.g., anovulation, elevated levels of the advanced glycation end products in ovaries), which in turn lead to the observed subsequent systemic symptoms. Since gene-editing therapy is currently out of reach, herein special emphasis is placed on discussing what kinds of drug targets and which potentially active substances seem promising for an effective medication, acting on the primary causes of PCOS on a molecular level.


Assuntos
Hormônios/metabolismo , Síndrome do Ovário Policístico , 3-Hidroxiesteroide Desidrogenases/metabolismo , Aquaporinas/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Feminino , Células da Granulosa/enzimologia , Células da Granulosa/patologia , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/enzimologia , Síndrome do Ovário Policístico/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Células Tecais/enzimologia , Células Tecais/patologia
8.
Endocrinology ; 161(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32343771

RESUMO

Follicle development is the most crucial step toward female fertility and is controlled mainly by follicle-stimulating hormone (FSH). In ovarian granulosa cells (GCs), FSH activates protein kinase A by increasing 3',5'-cyclic adenosine 5'-monophosphate (cAMP). Since cAMP signaling is impinged in part by salt-inducible kinases (SIKs), we examined the role of SIKs on the regulation of FSH actions. Here, we report that SIKs are essential for normal ovarian function and female fertility. All SIK isoforms are expressed in human and rodent GCs at different levels (SIK3>SIK2>SIK1). Pharmacological inhibition of SIK activity potentiated the stimulatory effect of FSH on markers of GC differentiation in mouse, rat, and human GCs and estradiol production in rat GCs. In humans, SIK inhibition strongly enhanced FSH actions in GCs of patients with normal or abnormal ovarian function. The knockdown of SIK2, but not SIK1 or SIK3, synergized with FSH on the induction of markers of GC differentiation. SIK inhibition boosted gonadotropin-induced GC differentiation in vivo, while the genomic knockout of SIK2 led to a significant increase in the number of ovulated oocytes. Conversely, SIK3 knockout females were infertile, FSH insensitive, and had abnormal folliculogenesis. These findings reveal novel roles for SIKs in the regulation of GC differentiation and female fertility, and contribute to our understanding of the mechanisms regulated by FSH. Furthermore, these data suggest that specific pharmacological modulation of SIK2 activity could be of benefit to treat ovulatory defects in humans and to increase the propagation of endangered species and farm mammals.


Assuntos
Fertilidade , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/enzimologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Humanos , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Ovulação , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Ratos
9.
Sci Rep ; 9(1): 12493, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462694

RESUMO

Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that plays a central role in endocrine tissue function, particularly in the synthesis of steroid hormones. The intracellular concentration of cAMP is regulated through its synthesis by cyclases and its degradation by cyclic nucleotide phosphodiesterases (PDEs). Although the expression and activity of PDEs impact the specificity and the amplitude of the cAMP response, it is becoming increasingly clear that the sub-cellular localization of PDE emphasizes the spatial regulation of the cell signalling processes that are essential for normal cellular function. We first examined the expression of PDE8A in porcine ovarian cells. PDE8A is expressed in granulosa cells, cumulus cells and oocytes. Second, we assessed the mitochondrial sub-cellular localization of PDE8A. Using western blotting with isolated mitochondrial fractions from granulosa cells and cumulus-oocyte complexes revealed immuno-reactive bands. PDE assay of isolated mitochondrial fractions from granulosa cells measured specific PDE8 cAMP-PDE activity as PF-04957325-sensitive. The immune-reactive PDE8A signal and MitoTracker labelling co-localized supporting mitochondrial sub-cellular localization of PDE8A, which was confirmed using immuno-electron microscopy. Finally, the effect of PDE8 on progesterone production was assessed during the in-vitro maturation of cumulus-oocyte complexes. Using PF-04957325, we observed a significant increase (P < 0.05) in progesterone secretion with follicle-stimulating hormone (FSH). Active mitochondria stained with MitoTracker orange CMTMRos were also increased by the specific PDE8 inhibitor supporting its functional regulation. In conclusion, we propose the occurrence of mitochondrial sub-cellular localization of PDE8A in porcine granulosa cells and cumulus cells. This suggests that there is potential for new strategies for ovarian stimulation and artificial reproductive technologies, as well as the possibility for using new media to improve the quality of oocytes.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/biossíntese , Regulação Enzimológica da Expressão Gênica , Células da Granulosa/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/biossíntese , Sistemas do Segundo Mensageiro , Animais , AMP Cíclico/metabolismo , Feminino , Células da Granulosa/ultraestrutura , Mitocôndrias/ultraestrutura , Suínos
10.
Reprod Domest Anim ; 54(9): 1236-1243, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31319005

RESUMO

Granulosa cells play important roles in the regulation of ovarian functions. Phospholipase C is crucial in several signalling pathways and could participate in the molecular mechanisms of cell proliferation, differentiation and ageing. The objective of this study was to identify the effects of phospholipase C on the steroidogenesis of oestradiol and progesterone in porcine granulosa cells cultured in vitro. Inhibitor U73122 or activator m-3M3FBS of phospholipase C was added to the in vitro medium of porcine granulosa cells, respectively. The secretion of oestradiol decreased after 2 hr, 8 hr, 12 hr, 24 hr and 48 hr of treatment with 500 nM U73122 (p < .05) and decreased after 2 hr of treatment in the 500 nM m-3M3FBS addition group (p < .05). The secretion of progesterone increased after 4 hr of treatment with 500 nM U73122 (p < .05) and increased after 2 hr and 8 hr of treatment in the 500 nM m-3M3FBS addition group (p < .05). The ratio of oestradiol to progesterone decreased at each time point, except 8 hr after the addition of 500 nM U73122 (p < .05). The ratio of oestradiol to progesterone decreased after 2 hr (p < .05) of treatment with 500 nM m-3M3FBS. In genes that regulate the synthesis of oestradiol or progesterone, the mRNA expression of CYP11A1 was markedly increased (p < .05), and the mRNA expression of other genes did not change significantly in the U73122 treatment group, while the addition of m-3M3FBS did not change those genes significantly despite the contrary trend. Our results demonstrated that phospholipase C can be a potential target to stimulate the secretion of oestradiol and suppress progesterone secretion in porcine granulosa cells cultured in vitro, which shed light on a novel biological function of phospholipase C in porcine granulosa cells.


Assuntos
Estradiol/metabolismo , Células da Granulosa/efeitos dos fármacos , Progesterona/metabolismo , Fosfolipases Tipo C/efeitos dos fármacos , Animais , Células Cultivadas , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Estrenos/farmacologia , Feminino , Expressão Gênica , Células da Granulosa/enzimologia , Células da Granulosa/metabolismo , Inibidores de Fosfodiesterase , Pirrolidinonas/farmacologia , Sulfonamidas/farmacologia , Sus scrofa
11.
Hum Fertil (Camb) ; 22(1): 33-38, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28738699

RESUMO

Granulosa cells control oocyte maturation through paracrine signalling and changes to the microenvironment around the oocyte. Apoptosis occurs as a physiological mechanism of granulosa cell renewal, but how it relates with the ovarian response to induced ovulation is still unclear. Therefore, this study evaluated apoptosis-related gene expression levels in granulosa cells of patients undergoing controlled ovarian stimulation. We enrolled prospectively 59 consecutive IVF patients referred to a tertiary academic hospital for couple infertility treatment. Luteinized granulosa cells were isolated from follicular fluid and the RNA was extracted, reverse-transcribed and the gene expression of apoptosis inducers (caspase-3, caspase-8 and bax) and inhibitor (Bcl-2) was quantified by real-time polymerase chain reaction. Caspase-3 gene expression correlated negatively with the number of pre-ovulatory follicles (Spearman's r = -0.308), the number of collected oocytes (r = -0.451), the number of mature oocytes (r = -0.526), the number of fertilized oocytes (r = -0.439) and the number of viable embryos (r = -0.443, all statistically significant at p < 0.02 level). No such associations were found with caspase-8, bax or bcl-2. These preliminary findings suggest that increased caspase-3 gene expression in granulosa cells is associated with a worse ovulatory response in humans.


Assuntos
Caspase 3/metabolismo , Hormônio Liberador de Gonadotropina/análogos & derivados , Células da Granulosa/enzimologia , Nafarelina/farmacologia , Oócitos/fisiologia , Indução da Ovulação/métodos , Caspase 3/genética , Gonadotropina Coriônica/farmacologia , Estudos de Coortes , Feminino , Fármacos para a Fertilidade Feminina/farmacologia , Hormônio Foliculoestimulante/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Oócitos/metabolismo
12.
J Cell Physiol ; 234(4): 3961-3972, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30191981

RESUMO

Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer.


Assuntos
Apoptose , Células da Granulosa/enzimologia , Resposta ao Choque Térmico , Heme Oxigenase-1/metabolismo , Temperatura Alta/efeitos adversos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Monóxido de Carbono/metabolismo , Bovinos , Células Cultivadas , Feminino , Heme Oxigenase-1/genética , Transdução de Sinais
13.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906251

RESUMO

Sirtuins are a family of deacetylases that modify structural proteins, metabolic enzymes, and histones to change cellular protein localization and function. In mammals, there are seven sirtuins involved in processes like oxidative stress or metabolic homeostasis associated with aging, degeneration or cancer. We studied gene expression of sirtuins by qRT-PCR in human mural granulosa-lutein cells (hGL) from IVF patients in different infertility diagnostic groups and in oocyte donors (OD; control group). Study 1: sirtuins genes' expression levels and correlations with age and IVF parameters in women with no ovarian factor. We found significantly higher expression levels of SIRT1, SIRT2 and SIRT5 in patients ≥40 years old than in OD and in women between 27 and 39 years old with tubal or male factor, and no ovarian factor (NOF). Only SIRT2, SIRT5 and SIRT7 expression correlated with age. Study 2: sirtuin genes' expression in women poor responders (PR), endometriosis (EM) and polycystic ovarian syndrome. Compared to NOF controls, we found higher SIRT2 gene expression in all diagnostic groups while SIRT3, SIRT5, SIRT6 and SIRT7 expression were higher only in PR. Related to clinical parameters SIRT1, SIRT6 and SIRT7 correlate positively with FSH and LH doses administered in EM patients. The number of mature oocytes retrieved in PR is positively correlated with the expression levels of SIRT3, SIRT4 and SIRT5. These data suggest that cellular physiopathology in PR's follicle may be associated with cumulative DNA damage, indicating that further studies are necessary.


Assuntos
Regulação Enzimológica da Expressão Gênica , Células da Granulosa/enzimologia , Infertilidade Feminina/enzimologia , Células Lúteas/enzimologia , Sirtuínas/biossíntese , Adolescente , Adulto , Endometriose/enzimologia , Endometriose/patologia , Feminino , Células da Granulosa/patologia , Humanos , Infertilidade Feminina/patologia , Células Lúteas/patologia , Síndrome do Ovário Policístico/enzimologia , Síndrome do Ovário Policístico/patologia
14.
Reproduction ; 156(5): 439-449, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30328340

RESUMO

Polycystic ovary syndrome (PCOS) is a major cause of infertility in women of reproductive age. However, its exact etiology remains unknown. In this study, we sequenced miRNAs in human follicular fluid and identified 16 downregulated and 3 upregulated miRNAs in PCOS group compared with non-PCOS group. Among the differential expressed miRNAs, miR-335-5p was verified lower abundance in PCOS than non-PCOS group using quantitative real-time PCR. Besides, miR-335-5p negatively correlated with antral follicle count, anti-Müllerian hormone and total testosterone. Bioinformatics analysis identified serum/glucocorticoid-regulated kinase family member 3 (SGK3) as a potential target gene of miR-335-5p. SGK3 is involved in protein kinase B-mammalian target of rapamycin kinase (AKT-mTOR) signaling pathway and cell proliferation. Western blotting and cell counting kit-8 assays demonstrated that miR-335-5p mimic reduced, while miR-335-5p inhibitor increased, SGK3 abundance, AKT-mTOR pathway and cell proliferation in human granulosa-like tumor KGN cells. Dual-luciferase reporter assays showed that miR-335-5p binds to the 3' untranslated region of SGK3 mRNA. Furthermore, miR-335-5p was decreased and SGK3 was elevated in human granulosa cells obtained from PCOS patients as compared with non-PCOS controls. These findings suggested that miR-335-5p is involved in granulosa cells proliferation by reducing SGK3 expression, which might provide a molecular target to improve dysfunctional granulosa cells in patients with PCOS.


Assuntos
Proliferação de Células , Células da Granulosa/enzimologia , MicroRNAs/metabolismo , Síndrome do Ovário Policístico/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Adulto , Estudos de Casos e Controles , Linhagem Celular , Feminino , Regulação Enzimológica da Expressão Gênica , Células da Granulosa/patologia , Humanos , MicroRNAs/genética , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
15.
Growth Factors ; 36(1-2): 41-47, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29842809

RESUMO

In mammals, preovulatory oocytes are encircled by several layers of granulosa cells (GCs) in follicular microenvironment. These follicular oocytes are arrested at diplotene arrest due to high level of cyclic nucleotides from encircling GCs. Pituitary gonadotropin acts at the level of encircling GCs and increases adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) and activates mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. The MAPK3/1 disrupts the gap junctions between encircling GCs and oocyte. The disruption of gap junctions interrupts the transfer of cyclic nucleotides to the oocyte that results a drop in intraoocyte cAMP level. A transient decrease in oocyte cAMP level triggers maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggers meiotic resumption from diplotene arrest in follicular oocyte. Thus, MAPK3/1 from GCs origin plays important role in gonadotropin-mediated meiotic resumption from diplotene arrest in follicular oocyte of mammals.


Assuntos
Células da Granulosa/enzimologia , Meiose/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oócitos/fisiologia , Animais , Feminino , Gonadotropinas Hipofisárias/fisiologia , Nucleotídeos Cíclicos/metabolismo
16.
Cell Biochem Funct ; 36(4): 183-193, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29676471

RESUMO

Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in reproductive-aged women. Hormonal abnormality caused by steroidogenesis disturbances appears to be the main culprit of the clinical picture in PCOS. Vitamin D3 could regulate steroidogenesis in granulosa cells, but the mechanism of action of vitamin D3 on steroidogenesis remains unknown. AMP-activated protein kinase (AMPK) has a modulating role in steroid hormone production. We investigated the effect of vitamin D3 on steroidogenesis in cultured granulosa cells of dehydroepiandrosterone-induced PCOS mice and studied the involvement of AMPK signalling pathway in the current process. Immunoblotting assay showed that vitamin D3 could increase phosphorylation of AMPK alpha and acetyl-CoA carboxylase, main substrate of AMPK. Vitamin D3 and 5-aminoimidazole-4-carboxamide-1-ß-D-riboside or Aicar (AMPK activator) not only reduced gene expression of steroidogenic enzymes (P450scc or Cyp11a1, StAR, Cyp19a1 and 3B-HSD), but also reduced production of progesterone and 17B-estradiol assessed by radioimmunoassay. Pretreatment with compound C (AMPK inhibitor) decreased APMK phosphorylation and eliminated the effects of vitamin D3 and Aicar on steroidogenic enzymes expression and estradiol and progesterone production. This study showed that vitamin D3 has the main role in regulating of steroidogenesis in granulosa cells of mouse polycystic ovary through activation of the AMPK signalling pathway. SIGNIFICANCE OF THE STUDY: Polycystic ovarian syndrome (PCOS) is an endocrine disorder of women in reproductive age. This disorder is partly related to disruption in steroidogenesis pathway and dysregulation of estradiol and progesterone production in granulosa cells of polycystic ovaries. Previously, we have shown that vitamin D3 could modulate steroidogenesis pathway in PCOS granulosa cells. In this study, we investigate the molecular mechanism of vitamin D3 in regulation of steroidogenesis pathway. We have shown that vitamin D3 has a modulating role in steroidogenesis pathway of granulosa cells by regulation of AMP-activated protein kinase (AMPK) as an underlying molecular mechanism in mouse polycystic ovary.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Colecalciferol/farmacologia , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/enzimologia , Síndrome do Ovário Policístico/tratamento farmacológico , Esteroides/biossíntese , Animais , Células Cultivadas , Desidroepiandrosterona , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Camundongos , Camundongos Endogâmicos BALB C , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Relação Estrutura-Atividade
17.
J Appl Toxicol ; 38(6): 879-887, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29435998

RESUMO

Humans are exposed not only to single endocrine disruptors, but also to chemical mixtures that can adversely affect their reproductive health. Steroidogenesis in reproductive tissues is emerging as the key target of endocrine disruptor action. Here, we analyzed the effect of environmental chemical mixtures with estrogenic activity on steroidogenic processes in immature rat granulosa cells and whether the observed steroidogenic effects were mediated through estrogen receptors. Extracts from untreated wastewater were prepared by solid-phase extraction and silica gel fractionation. ER-CALUX assay showed that the polar fractions of wastewater exerted different levels of estrogenic activity. Exposure of immature granulosa cells to the polar fraction exerting 9 ng of 17ß-estradiol equivalents per liter of water of estrogenic activity increased mRNA expression of the key enzymes of progesterone biosynthetic pathway Star and Hsd3b1, but did not alter the level of Cyp19a1 and Lhr. Addition of estrogen receptor inhibitor ICI 182 780 prevented the estrogenic mixture-induced increase in Hsd3b1, but not Star mRNA level in immature granulosa cells. These results indicate that the environmental chemical mixtures with estrogenic activity exert endocrine disrupting effects by augmenting the progesterone biosynthetic pathway in immature rat granulosa cells, which is an effect achieved in part through activation of the estrogen receptors.


Assuntos
Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Estrogênios/toxicidade , Células da Granulosa/efeitos dos fármacos , Complexos Multienzimáticos/metabolismo , Progesterona Redutase/metabolismo , Progesterona/biossíntese , Esteroide Isomerases/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Animais , Células Cultivadas , Disruptores Endócrinos/isolamento & purificação , Poluentes Ambientais/isolamento & purificação , Indução Enzimática , Estrogênios/isolamento & purificação , Feminino , Células da Granulosa/enzimologia , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos Wistar , Receptores de Estrogênio/metabolismo , Poluentes Químicos da Água/isolamento & purificação
18.
Electron. j. biotechnol ; 31: 17-23, Jan. 2018. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1022036

RESUMO

Background: CDC25 is a dual-specificity phosphatase that was first identified in the yeast Schizosaccharomyces pombe as a cell cycle-defective mutant. Although CDC25 is involved in the cell cycle of ovarian granulosa cells, the CDC25 signaling pathway has not been clarified fully. To explore the role of CDC25C in the cell cycle of goat ovarian granulosa cells, a CDC25C-overexpressing vector, pCMV-HA-CDC25C, was constructed and transfected into granulosa cells from adult and young white goats from Jiangsu Nantong. RT-PCR was used to measure CDC25C, CDK1, and WEE1 gene expression levels, and flow cytometry was used to distinguish ovarian granulosa cells in different phases of the cell cycle. Progesterone and estradiol levels in transfected ovarian granulosa cells were also measured. Results: In adult goat follicular granulosa cells transfected with pCMV-HA-CDC25C, CDC25C expression increased significantly, which greatly increased the relative gene expression levels of both CDK1 and WEE1. Additionally, progesterone and estradiol levels were increased in goat follicular granulosa cells overexpressing CDC25C. And the cell cycle results showed that transfection of pCMV-HA-CDC25C leads to a higher proportion of cells in S phase compared to the no vector-transfected groups. Conclusions: The results of this study indicated that the overexpression of CDC25C may increase the gene expression levels of both WEE1 and CDK1 in S phase and accelerate the transition of cells from G1 phase to S phase.


Assuntos
Animais , Feminino , Cabras , Ciclo Celular/fisiologia , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Células da Granulosa/enzimologia , Progesterona/análise , Proteínas Tirosina Quinases/genética , Transfecção , Ciclo Celular/genética , Reação em Cadeia da Polimerase/métodos , Apoptose , Quinases Ciclina-Dependentes/genética , Estradiol/análise , Fertilização , Citometria de Fluxo , Fluorescência , Células da Granulosa/metabolismo
19.
J Cell Physiol ; 233(1): 226-237, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28218391

RESUMO

The majority of ovarian primordial follicles are preserved in a dormant state to maintain the female reproductive lifespan, and only a few primordial follicles are activated to enter the growing follicle pool in each wave. Recent studies have shown that primordial follicular activation depends on mammalian target of rapamycin complex 1 (mTORC1)-KIT ligand (KITL) signaling in pre-granulosa cells and its receptor (KIT)-phosphoinositol 3 kinase (PI3K) signaling in oocytes. However, the upstream regulator of mTORC1 signaling is unclear. The results of the present study showed that the phosphorylated mitogen-activated protein kinase3/1 (MAPK3/1) protein is expressed in some primordial follicles and all growing follicles. Culture of 3 days post-parturition (dpp) ovaries with the MAPK3/1 signaling inhibitor U0126 significantly reduced the number of activated follicles and was accompanied by dramatically reduced granulosa cell proliferation and increased oocyte apoptosis. Western blot and immunofluorescence analyses showed that U0126 significantly decreased the phosphorylation levels of Tsc2, S6K1, and rpS6 and the expression of KITL, indicating that U0126 inhibits mTORC1-KITL signaling. Furthermore, U0126 decreased the phosphorylation levels of Akt, resulting in a decreased number of oocytes with Foxo3 nuclear export. To further investigate MAPK3/1 signaling in primordial follicle activation, we used phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor bpV(HOpic) to promote primordial follicle activation. In this model, U0126 also inhibited the activation of primordial follicles and mTORC1 signaling. Thus, these results suggest that MAPK3/1 participates in primordial follicle activation through mTORC1-KITL signaling.


Assuntos
Células da Granulosa/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Oócitos/enzimologia , Transdução de Sinais , Fator de Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Proliferação de Células , Ativação Enzimática , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos ICR , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Oócitos/efeitos dos fármacos , Oócitos/patologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Técnicas de Cultura de Tecidos
20.
Mol Cell Endocrinol ; 461: 55-63, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-28859904

RESUMO

Bisphenol A (BPA) is an endocrine disruptor used in a variety of consumer products. Exposure to BPA leads to alterations in steroidogenesis of ovarian granulosa cells. Here, we analyzed the mechanism by which BPA alters progesterone biosynthesis in immature rat granulosa cells. BPA increased expression of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme and 3ß-hydroxysteroid dehydrogenase in granulosa cells; however, BPA prevented the basal and the FSH-induced progesterone production. BPA caused sequestration of cholesterol to the perinuclear area, as evident by the Filipin staining. BPA decreased mRNA expression of ATP binding cassette transporter-A1 (Abca1) and increased level of sterol regulatory element binding protein 1. Addition of exogenous cell-permeable cholesterol restored the effect of BPA on Abca1 and Star mRNA expression and partially reversed BPA's effect on progesterone production. These results indicate that exposure to BPA disrupts cholesterol homeostasis leading to decreased progesterone production in immature rat granulosa cells.


Assuntos
Compostos Benzidrílicos/toxicidade , Colesterol/metabolismo , Células da Granulosa/metabolismo , Homeostase , Fenóis/toxicidade , Progesterona/biossíntese , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Feminino , Células da Granulosa/citologia , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/enzimologia , Homeostase/efeitos dos fármacos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA