Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145028

RESUMO

The cerebellum, the site where protein kinase C (PKC) was first discovered, contains the highest amount of PKC in the central nervous system, with PKCγ being the major isoform. Systemic PKCγ-knockout (KO) mice showed impaired motor coordination and deficient pruning of surplus climbing fibers (CFs) from developing cerebellar Purkinje cells (PCs). However, the physiological significance of PKCγ in the mature cerebellum and the cause of motor incoordination remain unknown. Using adeno-associated virus vectors targeting PCs, we showed that impaired motor coordination was restored by re-expression of PKCγ in mature PKCγ-KO mouse PCs in a kinase activity-dependent manner, while normal motor coordination in mature Prkcgfl/fl mice was impaired by the Cre-dependent removal of PKCγ from PCs. Notably, the rescue or removal of PKCγ from mature PKCγ-KO or Prkcgfl/fl mice, respectively, did not affect the CF innervation profile of PCs, suggesting the presence of a mechanism distinct from multiple CF innervation of PCs for the motor defects in PKCγ-deficient mice. We found marked potentiation of Ca2+-activated large-conductance K+ (BK) channel currents in PKCγ-deficient mice, as compared to wild-type mice, which decreased the membrane resistance, resulting in attenuation of the electrical signal during the propagation and significant alterations of the complex spike waveform. These changes in PKCγ-deficient mice were restored by the rescue of PKCγ or pharmacological suppression of BK channels. Our results suggest that PKCγ is a critical regulator that negatively modulates BK currents in PCs, which significantly influences PC output from the cerebellar cortex and, eventually, motor coordination.


Assuntos
Terapia Genética , Atividade Motora/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Proteína Quinase C/metabolismo , Células de Purkinje/enzimologia , Animais , Sinalização do Cálcio , Deleção de Genes , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Canais de Potássio Cálcio-Ativados/genética , Proteína Quinase C/genética , Potenciais Sinápticos
2.
Cell Cycle ; 19(2): 153-159, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31876231

RESUMO

Spinocerebellar ataxias (SCA) are a genetically heterogeneous family of cerebellar neurodegenerative diseases characterized by abnormal firing of Purkinje neurons and degeneration. We recently demonstrated the slowed firing rates seen in several SCAs share a common etiology of hyper-activation of the Src family of non-receptor tyrosine kinases (SFKs). However, the lack of clinically available neuroactive SFK inhibitors lead us to investigate alternative mechanisms to modulate SFK activity. Previous studies demonstrate that SFK activity can be enhanced by the removal of inhibitory phospho-marks by receptor-protein-tyrosine phosphatases (RPTPs). In this Extra View we show that MTSS1 inhibits SFK activity through the binding and inhibition of a subset of the RPTP family members, and lowering RPTP activity in cerebellar slices with peptide inhibitors increases the suppressed Purkinje neuron basal firing rates seen in two different SCA models. Together these results identify RPTPs as novel effectors of Purkinje neuron basal firing, extending the MTSS1/SFK regulatory circuit we previously described and expanding the therapeutic targets for SCA patients.


Assuntos
Potenciais de Ação/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Células de Purkinje/enzimologia , Potenciais de Ação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Células de Purkinje/efeitos dos fármacos , Ataxias Espinocerebelares/enzimologia , Ataxias Espinocerebelares/fisiopatologia
3.
Glia ; 67(8): 1526-1541, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30989755

RESUMO

Mitochondrial dysfunction causes neurodegeneration but whether impairment of mitochondrial homeostasis in astrocytes contributes to this pathological process remains largely unknown. The m-AAA protease exerts quality control and regulatory functions crucial for mitochondrial homeostasis. AFG3L2, which encodes one of the subunits of the m-AAA protease, is mutated in spinocerebellar ataxia SCA28 and in infantile syndromes characterized by spastic-ataxia, epilepsy and premature death. Here, we investigate the role of Afg3l2 and its redundant homologue Afg3l1 in the Bergmann glia (BG), radial astrocytes of the cerebellum that have functional connections with Purkinje cells (PC) and regulate glutamate homeostasis. We show that astrocyte-specific deletion of Afg3l2 in the mouse leads to late-onset motor impairment and to degeneration of BG, which display aberrant morphology, altered expression of the glutamate transporter EAAT2, and a reactive inflammatory signature. The neurological and glial phenotypes are drastically exacerbated when astrocytes lack both Afg31l and Afg3l2, and therefore, are totally depleted of the m-AAA protease. Moreover, mitochondrial stress responses and necroptotic markers are induced in the cerebellum. In both mouse models, targeted BG show a fragmented mitochondrial network and loss of mitochondrial cristae, but no signs of respiratory dysfunction. Importantly, astrocyte-specific deficiency of Afg3l1 and Afg3l2 triggers secondary morphological degeneration and electrophysiological changes in PCs, thus demonstrating a non-cell-autonomous role of glia in neurodegeneration. We propose that astrocyte dysfunction amplifies both neuroinflammation and glutamate excitotoxicity in patients carrying mutations in AFG3L2, leading to a vicious circle that contributes to neuronal death.


Assuntos
Proteases Dependentes de ATP/deficiência , ATPases Associadas a Diversas Atividades Celulares/deficiência , Astrócitos/enzimologia , Cerebelo/enzimologia , Metaloendopeptidases/deficiência , Mitocôndrias/enzimologia , Doenças Neurodegenerativas/enzimologia , Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Astrócitos/patologia , Cerebelo/patologia , Modelos Animais de Doenças , Feminino , Inflamação/enzimologia , Inflamação/patologia , Masculino , Metaloendopeptidases/genética , Camundongos Transgênicos , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Células de Purkinje/enzimologia , Células de Purkinje/patologia
4.
EMBO J ; 37(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420557

RESUMO

A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.


Assuntos
Carboxipeptidases/deficiência , Cerebelo/enzimologia , Neurônios Motores/enzimologia , Nervos Periféricos/enzimologia , Células de Purkinje/enzimologia , Coluna Vertebral/enzimologia , Degenerações Espinocerebelares/enzimologia , Cerebelo/patologia , Feminino , Proteínas de Ligação ao GTP , Humanos , Masculino , Neurônios Motores/patologia , Peptídeos/genética , Peptídeos/metabolismo , Nervos Periféricos/patologia , Processamento de Proteína Pós-Traducional , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Coluna Vertebral/patologia , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia
5.
J Clin Invest ; 128(5): 2076-2088, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494346

RESUMO

Increasing evidence suggests that synapse dysfunctions are a major determinant of several neurodevelopmental and neurodegenerative diseases. Here we identify protein kinase N1 (PKN1) as a novel key player in fine-tuning the balance between axonal outgrowth and presynaptic differentiation in the parallel fiber-forming (PF-forming) cerebellar granule cells (Cgcs). Postnatal Pkn1-/- animals showed a defective PF-Purkinje cell (PF-PC) synapse formation. In vitro, Pkn1-/- Cgcs exhibited deregulated axonal outgrowth, elevated AKT phosphorylation, and higher levels of neuronal differentiation-2 (NeuroD2), a transcription factor preventing presynaptic maturation. Concomitantly, Pkn1-/- Cgcs had a reduced density of presynaptic sites. By inhibiting AKT with MK-2206 and siRNA-mediated knockdown, we found that AKT hyperactivation is responsible for the elongated axons, higher NeuroD2 levels, and reduced density of presynaptic specifications in Pkn1-/- Cgcs. In line with our in vitro data, Pkn1-/- mice showed AKT hyperactivation, elevated NeuroD2 levels, and reduced expression of PF-PC synaptic markers during stages of PF maturation in vivo. The long-term effect of Pkn1 knockout was further seen in cerebellar atrophy and mild ataxia. In summary, our results demonstrate that PKN1 functions as a developmentally active gatekeeper of AKT activity, thereby fine-tuning axonal outgrowth and presynaptic differentiation of Cgcs and subsequently the correct PF-PC synapse formation.


Assuntos
Axônios/enzimologia , Crescimento Neuronal , Proteína Quinase C/metabolismo , Células de Purkinje/enzimologia , Sinapses/metabolismo , Animais , Compostos Heterocíclicos com 3 Anéis/farmacologia , Camundongos , Camundongos Knockout , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Purkinje/citologia , Sinapses/genética
6.
Cell Res ; 28(3): 296-306, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29451229

RESUMO

The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.


Assuntos
Proteínas AAA/metabolismo , Cálcio/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/enzimologia , Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Canais de Cálcio/metabolismo , Humanos , Metaloendopeptidases/genética , Camundongos , Mitocôndrias/genética , Modelos Animais , Células de Purkinje/enzimologia , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética
7.
Cell Tissue Res ; 368(3): 441-458, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28191598

RESUMO

Following activation of Gq protein-coupled receptors, phospholipase C yields a pair of second messengers: diacylglycerol (DG) and inositol 1,4,5-trisphosphate. Diacylglycerol kinase (DGK) phosphorylates DG to produce phosphatidic acid, another second messenger. Of the DGK family, DGKε is the only DGK isoform that exhibits substrate specificity for DG with an arachidonoyl acyl chain at the sn-2 position. Recently, we demonstrated that hydrophobic residues in the N-terminus of DGKε play an important role in targeting the endoplasmic reticulum in transfected cells. However, its cellular expression and subcellular localization in the brain remain elusive. In the present study, we investigate this issue using specific DGKε antibody. DGKε was richly expressed in principal neurons of higher brain regions, including pyramidal cells in the hippocampus and neocortex, medium spiny neurons in the striatum and Purkinje cells in the cerebellum. In Purkinje cells, DGKε was localized to the subsurface cisterns and colocalized with inositol 1,4,5-trisphosphate receptor-1 in dendrites and axons. In dendrites of Purkinje cells, DGKε was also distributed in close apposition to DG lipase-α, which catalyzes arachidonoyl-DG to produce 2-arachidonoyl glycerol, a major endocannabinoid in the brain. Behaviorally, DGKε-knockout mice exhibited hyper-locomotive activities and impaired motor coordination and learning. These findings suggest that DGKε plays an important role in neuronal and brain functions through its distinct neuronal expression and subcellular localization and also through coordinated arrangement with other molecules involving the phosphoinositide signaling pathway.


Assuntos
Cerebelo/enzimologia , Diacilglicerol Quinase/metabolismo , Células de Purkinje/enzimologia , Animais , Encéfalo/enzimologia , Cerebelo/citologia , Cerebelo/ultraestrutura , Diacilglicerol Quinase/genética , Células HeLa , Humanos , Immunoblotting , Imuno-Histoquímica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Aprendizagem , Locomoção , Camundongos , Camundongos Knockout , Células PC12 , Fosfatidilinositóis/metabolismo , Desempenho Psicomotor , Células de Purkinje/ultraestrutura , Ratos , Ratos Wistar , Sistemas do Segundo Mensageiro , Distribuição Tecidual
8.
Mol Brain ; 9: 7, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26772978

RESUMO

BACKGROUND: The cerebellum is responsible for coordinating motor functions and has a unique laminated architecture. Purkinje cells are inhibitory neurons and represent the only output from the cerebellar cortex. Tyrosine hydroxylase (TH) is the key enzyme for the synthesis of catecholamines, including dopamine and noradrenaline, and it is normally not expressed in cerebellar neurons. RESULTS: We report here that the low-density lipoprotein receptors (Lrp) 5 and 6, Wnt co-receptors, are required for the development of the cerebellum and for suppressing ectopic TH expression in Purkinje cells. Simultaneous inactivation of Lrp 5 and 6 by Nestin-Cre results in defective lamination and foliation of the cerebellum during postnatal development. Surprisingly, TH is ectopically expressed by Purkinje cells, although they still keep its other neurochemical characteristics. These phenotypes are also observed in the cerebellum of GFAP-Cre;ß-catenin(flox/flox) mice, and AAV2-Cre-mediated gene deletion leads to ectopic TH expression in Purkinje cells of ß-catenin(flox/flox) mice as well. CONCLUSIONS: Our results revealed a new role of the canonical Lrp5/6-ß-catenin pathway in regulating the morphogenesis of the cerebellum during postnatal development.


Assuntos
Cerebelo/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células de Purkinje/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Catecolaminas/metabolismo , Diferenciação Celular , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Dependovirus/metabolismo , Integrases/metabolismo , Camundongos Knockout , Neurônios/metabolismo
9.
Mol Neurobiol ; 53(8): 5149-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26399641

RESUMO

Purkinje cell dendritic development is severely compromised after chronic activation of protein kinase C (PKC). In a recent transgenic mouse model of spinocerebellar ataxia 14, the ser361-to-gly (S361G) mutation of the protein kinase C gamma (PKCγ) gene was expressed in Purkinje cells. Purkinje cells from these mutant mice in organotypic slice cultures have the same stunted dendritic tree as Purkinje cells after pharmacological activation of PKC. Because the transgene is exclusively present in Purkinje cells, cerebellar tissue from these mice is an attractive starting material for searching genes which might be interacting with PKCγ in Purkinje cells for inducing the stunted dendritic growth. We have performed a microarray analysis and identified several candidate genes with an increased messenger RNA (mRNA) expression in the PKCγ-S361G transgenic Purkinje cells. Out of these candidates, we have further studied carbonic anhydrase 8 (CA8). We show here that CA8 mRNA and protein expression is strongly induced in PKCγ-S361G transgenic Purkinje cells. Overexpression of CA8 in Purkinje cells in dissociated cultures strongly inhibited Purkinje cell dendritic development and produced a dendritic phenotype similar to PKCγ-S361G. There was no evidence for a direct binding of CA8 to either PKCγ or the type 1 IP3 receptor. Knockdown of CA8 with miRNA did not alter Purkinje cell dendritic development and did not protect Purkinje cells in dissociated cultures from the stunted dendritic growth induced by PKCγ-S361G or by PKC activation. Our results indicate that CA8 is a novel important regulator of Purkinje cell dendritic development and that its expression is controlled by PKCγ activity.


Assuntos
Biomarcadores Tumorais/metabolismo , Dendritos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase C/metabolismo , Células de Purkinje/enzimologia , Animais , Forma Celular , Cerebelo/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos Transgênicos , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Regulação para Cima/genética
10.
Cerebellum ; 15(4): 509-17, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26374457

RESUMO

Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase, an enzyme that elongates telomeres at the ends of chromosomes during DNA replication. Recently, it was shown that TERT has additional roles in cell survival, mitochondrial function, DNA repair, and Wnt signaling, all of which are unrelated to telomeres. Here, we demonstrate that TERT is enriched in Purkinje neurons, but not in the granule cells of the adult mouse cerebellum. TERT immunoreactivity in Purkinje neurons is present in the nucleus, mitochondria, and cytoplasm. Furthermore, TERT co-localizes with mitochondrial markers, and immunoblot analysis of protein extracts from isolated mitochondria and synaptosomes confirmed TERT localization in mitochondria. TERT expression in Purkinje neurons increased significantly in response to two stressors: a sub-lethal dose of X-ray radiation and exposure to a high glutamate concentration. While X-ray radiation increased TERT levels in the nucleus, glutamate exposure elevated TERT levels in mitochondria. Our findings suggest that in mature Purkinje neurons, TERT is present both in the nucleus and in mitochondria, where it may participate in adaptive responses of the neurons to excitotoxic and radiation stress.


Assuntos
Citosol/enzimologia , Ácido Glutâmico/toxicidade , Mitocôndrias/enzimologia , Células de Purkinje/enzimologia , Lesões Experimentais por Radiação/enzimologia , Telomerase/metabolismo , Animais , Núcleo Celular/enzimologia , Núcleo Celular/patologia , Núcleo Celular/efeitos da radiação , Citosol/patologia , Citosol/efeitos da radiação , Dano ao DNA/fisiologia , Dano ao DNA/efeitos da radiação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Imunofluorescência , Immunoblotting , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação , Células de Purkinje/patologia , Células de Purkinje/efeitos da radiação , Lesões Experimentais por Radiação/patologia , Estresse Fisiológico/fisiologia , Estresse Fisiológico/efeitos da radiação , Telomerase/genética , Técnicas de Cultura de Tecidos , Raios X/efeitos adversos
11.
Neural Plast ; 2013: 321685, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24288624

RESUMO

Purkinje cells are the principal neurons of the cerebellar cortex and have an extensive and elaborate dendritic tree. Chronic activation of type I metabotropic glutamate receptors inhibits Purkinje cell dendritic growth in organotypic cerebellar slice cultures. This effect is mediated by calcium influx through P/Q-type and T-type Ca(2+) channels. We have now studied the role of the plasma membrane Ca(2+)-ATPase2 (PMCA2), a major calcium extrusion pump, for Purkinje cell dendritic development. We found that PMCA2 is strongly expressed in the plasma membrane and dendritic spines of Purkinje cells in organotypic slice cultures compatible with a role for controlling the local dendritic calcium equilibrium. Inhibition of PMCA2 activity by carboxyeosin resulted in a moderate reduction of Purkinje cell dendritic tree size indicating that the extrusion of calcium by PMCA2 is important for maintaining the dendritic calcium concentration and controlling dendritic growth. When inhibition of PMCA2 was combined with stimulation of type I metabotropic glutamate receptors, it partially rescued dendritic morphology. This protection can be explained by a compensatory inactivation of voltage-gated calcium channels in Purkinje cells after PMCA2 inhibition. Our results demonstrate that PMCA2 activity is an important regulator of the dendritic calcium equilibrium controlling Purkinje cell dendritic growth.


Assuntos
Membrana Celular/enzimologia , Cerebelo/enzimologia , Cerebelo/fisiologia , Dendritos/enzimologia , Dendritos/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/fisiologia , Células de Purkinje/enzimologia , Células de Purkinje/fisiologia , Animais , Cálcio/fisiologia , Células Cultivadas , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos , Técnicas de Cultura de Órgãos , Receptores de Glutamato Metabotrópico/metabolismo
12.
Curr Opin Allergy Clin Immunol ; 13(6): 630-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24113229

RESUMO

PURPOSE OF THE REVIEW: To review the recent advances in the understanding and management of the immune and nonimmune effects of inherited adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies. RECENT FINDINGS: Abnormal thymocyte development and peripheral T-cell activation in ADA-deficient and PNP-deficient patients cause increased susceptibility to infections and immune dysregulation. The impaired purine homeostasis also damages many other cell types and tissues. Animal studies suggest that defects in surfactant metabolism by alveolar macrophages cause the pulmonary alveolar proteinosis commonly seen in ADA-deficient infants, while toxicity of purine metabolites to cerebellar Purkinje cells may lead to the ataxia frequently observed in PNP deficiency. Patients' outcome with current treatments including enzyme replacement and stem cell transplantations are inferior to those achieved in most severe immunodeficiency conditions. New strategies, including intracellular enzyme replacement, gene therapy and innovative protocols for stem cell transplantations hold great promise for improved outcomes in ADA and PNP deficiency. Moreover, newborn screening and early diagnosis will allow prompt application of these novel treatment strategies, further improving survival and reducing morbidity. SUMMARY: Better understanding of the complex immune and nonimmune effects of ADA and PNP deficiency holds great promise for improved patients' outcome.


Assuntos
Adenosina Desaminase/deficiência , Agamaglobulinemia , Terapia de Reposição de Enzimas , Purina-Núcleosídeo Fosforilase/deficiência , Erros Inatos do Metabolismo da Purina-Pirimidina , Imunodeficiência Combinada Severa , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Adenosina Desaminase/uso terapêutico , Agamaglobulinemia/tratamento farmacológico , Agamaglobulinemia/enzimologia , Agamaglobulinemia/genética , Agamaglobulinemia/imunologia , Agamaglobulinemia/mortalidade , Animais , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/imunologia , Doenças da Imunodeficiência Primária , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/imunologia , Purina-Núcleosídeo Fosforilase/uso terapêutico , Erros Inatos do Metabolismo da Purina-Pirimidina/dietoterapia , Erros Inatos do Metabolismo da Purina-Pirimidina/enzimologia , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/imunologia , Erros Inatos do Metabolismo da Purina-Pirimidina/mortalidade , Purinas/imunologia , Purinas/metabolismo , Células de Purkinje/enzimologia , Células de Purkinje/imunologia , Imunodeficiência Combinada Severa/tratamento farmacológico , Imunodeficiência Combinada Severa/enzimologia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/mortalidade , Linfócitos T/enzimologia , Linfócitos T/imunologia
13.
PLoS One ; 8(1): e53635, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326475

RESUMO

DOC-2/DAB-2 interacting protein (Dab2IP) is a GTPase activating protein that binds to Disabled-1, a cytosolic adapter protein involved in Reelin signaling and brain development. Dab2IP regulates PI3K-AKT signaling and is associated with metastatic prostate cancer, abdominal aortic aneurysms and coronary heart disease. To date, the physiological function of Dab2IP in the nervous system, where it is highly expressed, is relatively unknown. In this study, we generated a mouse model with a targeted disruption of Dab2IP using a retrovirus gene trap strategy. Unlike reeler mice, Dab2IP knock-down mice did not exhibit severe ataxia or cerebellar hypoplasia. However, Dab2IP deficiency produced a number of cerebellar abnormalities such as a delay in the development of Purkinje cell (PC) dendrites, a decrease in the parallel fiber synaptic marker VGluT1, and an increase in the climbing fiber synaptic marker VGluT2. These findings demonstrate for the first time that Dab2IP plays an important role in dendrite development and regulates the number of synapses in the cerebellum.


Assuntos
Cerebelo/citologia , Cerebelo/enzimologia , Dendritos/enzimologia , Neurogênese , Sinapses/enzimologia , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/enzimologia , Transporte Proteico , Células de Purkinje/citologia , Células de Purkinje/enzimologia , Proteína Reelina , Reprodutibilidade dos Testes , Proteínas Ativadoras de ras GTPase/deficiência
14.
Hum Mol Genet ; 22(3): 417-32, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23087022

RESUMO

Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.


Assuntos
Ataxia/genética , Anidrases Carbônicas/genética , Cerebelo/anormalidades , Proteínas do Tecido Nervoso/genética , Peixe-Zebra/embriologia , Animais , Ataxia/fisiopatologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Anidrases Carbônicas/metabolismo , Morte Celular/genética , Clonagem Molecular , Biologia Computacional , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Marcação In Situ das Extremidades Cortadas , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Camundongos , Microscopia Eletrônica , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fenótipo , Células de Purkinje/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
15.
J Biol Chem ; 287(9): 6503-17, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22170066

RESUMO

The Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2-3-fold) or knockdown (80-90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥ 5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation. Purified CCP1 produced delta2-tubulin from purified porcine brain α-tubulin or polymerized HEK293T microtubules. In addition, CCP1 removed Glu residues from the polyglutamyl side chains of porcine brain α- and ß-tubulin and also generated a form of α-tubulin with two C-terminal Glu residues removed (delta3-tubulin). Consistent with this, pcd mouse brain showed hyperglutamylation of both α- and ß-tubulin. The hyperglutamylation of α- and ß-tubulin and subsequent death of Purkinje cells in pcd mice was counteracted by the knock-out of the gene encoding tubulin tyrosine ligase-like-1, indicating that this enzyme hyperglutamylates α- and ß-tubulin. Taken together, these results demonstrate a role for CCP1 in the processing of Glu residues from ß- as well as α-tubulin in vitro and in vivo.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Degeneração Neural/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Neoplasias do Colo , Citosol/enzimologia , Feminino , Proteínas de Ligação ao GTP/genética , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Degeneração Neural/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Estrutura Terciária de Proteína , Células de Purkinje/enzimologia , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Suínos , Tubulina (Proteína)/química
16.
PLoS One ; 5(8): e11962, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20694145

RESUMO

BACKGROUND: Long-term potentiation (LTP) at the parallel fibre-Purkinje cell synapse in the cerebellum is a recently described and poorly characterized form of synaptic plasticity. The induction mechanism for LTP at this synapse is considered reciprocal to "classical" LTP at hippocampal CA1 pyramidal neurons: kinases promote increased trafficking of AMPA receptors into the postsynaptic density in the hippocampus, whereas phosphatases decrease internalization of AMPA receptors in the cerebellum. In the hippocampus, LTP occurs in overlapping phases, with the transition from early to late phases requiring the consolidation of initial induction processes by structural re-arrangements at the synapse. Many signalling pathways have been implicated in this process, including PI3 kinases and Rho GTPases. PRINCIPAL FINDINGS: We hypothesized that analogous phases are present in cerebellar LTP, and took as the starting point for investigation our recent discovery that P-Rex--a Rac guanine nucleotide exchange factor which is activated by PtdIns(3,4,5)P(3)--is highly expressed in mouse cerebellar Purkinje neurons and plays a role in motor coordination. We found that LTP evoked at parallel fibre synapses by 1 Hz stimulation or by NO donors was not sustained beyond 30 min when P-Rex was eliminated or Rac inhibited, suggesting that cerebellar LTP exhibits a late phase analogous to hippocampal LTP. In contrast, inhibition of PI3 kinase activity eliminated LTP at the induction stage. CONCLUSIONS: Our data suggest that a PI3K/P-Rex/Rac pathway is required for late phase LTP in the mouse cerebellum, and that other PI3K targets, which remain to be discovered, control LTP induction.


Assuntos
Cerebelo/enzimologia , Cerebelo/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Potenciação de Longa Duração , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Feminino , Fatores de Troca do Nucleotídeo Guanina/deficiência , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Óxido Nítrico/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Purkinje/citologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/enzimologia , Células de Purkinje/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo , Proteínas rac de Ligação ao GTP/metabolismo
17.
Brain Res ; 1343: 46-53, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20462503

RESUMO

The present study examined the spatial organization of tyrosine hydroxylase (TH) immunopositive Purkinje cells in the cerebellum of rolling mouse Nagoya with reference to the distribution pattern of the cerebellar compartmentation antigen, heat shock protein 25 (HSP25). Whole-mount immunostaining revealed a striking pattern of parasagittal stripes of TH staining in the rolling mouse cerebellum but not in the control cerebellum. Although the TH stripes resembled the zebrin II stripes in the rolling cerebellum, these two distributions did not completely overlap. The TH stripes were present in the lobules VI and VII (central zone), the lobule X (nodular zone), and the paraflocculus, where zebrin II immunostaining was uniformly expressed. Double immunostaining revealed that TH stripes were aligned in an alternative fashion with HSP25 stripes within the caudal half of lobule VIb, lobules IXb and X, and paraflocculus. Some, but not all, TH stripes shared boundaries with HSP25 stripes. These results revealed an alternating array of TH immunopositive Purkinje cell subsets with HSP25 immunopositive Purkinje cells in the zebrin II-defined transverse zone of the rolling mouse cerebellum. The constitutive expression of HSP25 may prevent the ectopic expression of TH in zebrin II immunopositive Purkinje cell subsets.


Assuntos
Córtex Cerebelar/anormalidades , Córtex Cerebelar/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Mapeamento Encefálico/métodos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Catecolaminas/biossíntese , Córtex Cerebelar/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Camundongos , Camundongos Mutantes Neurológicos , Chaperonas Moleculares , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Células de Purkinje/citologia , Células de Purkinje/enzimologia , Tirosina 3-Mono-Oxigenase/biossíntese , Tirosina 3-Mono-Oxigenase/genética
18.
PLoS Genet ; 5(12): e1000784, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20041218

RESUMO

The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domains have been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a G<-->A transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N-terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.


Assuntos
Mutação de Sentido Incorreto/genética , Células de Purkinje/enzimologia , Células de Purkinje/patologia , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , Dendritos/enzimologia , Dendritos/ultraestrutura , Regulação da Expressão Gênica , Loci Gênicos/genética , Genótipo , Longevidade , Camundongos , Camundongos Mutantes Neurológicos , Dados de Sequência Molecular , Fenótipo , Células de Purkinje/ultraestrutura , Ubiquitina-Proteína Ligases/química
19.
PLoS One ; 4(12): e8270, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20011524

RESUMO

The weeble mutant mouse has a frame shift mutation in inositol polyphosphate 4-phosphatase type I (Inpp4a). The phenotype is characterized by an early onset cerebellar ataxia and neurodegeneration, especially apparent in the Purkinje cells. Purkinje cell loss is a common pathological finding in many human and mouse ataxic disorders. Here we show that in the Inpp4a(wbl) mutant, Purkinje cells are lost in a specific temporal and spatial pattern. Loss occurs early in postnatal development; however, prior to the appearance of climbing fibers in the developing molecular layer, the mutant has a normal complement of Purkinje cells and they are properly positioned. Degeneration and reactive gliosis are present at postnatal day 5 and progress rapidly in a defined pattern of patches; however, Inpp4a is expressed uniformly across Purkinje cells. In late stage mutants, patches of surviving Purkinje cells appear remarkably normal with the exception that the climbing fibers have been excessively eliminated. Surviving Purkinje cells express Eaat4, a glutamate transporter that is differentially expressed in subsets of Purkinje cells during development and into adult stages. Prior to Purkinje cell loss, reactive gliosis and dendritic atrophy can be seen in Eaat4 negative stripes. Our data suggest that Purkinje cell loss in the Inpp4a(wbl) mutant is due to glutamate excitotoxicity initiated by the climbing fiber, and that Eaat4 may exert a protective effect.


Assuntos
Cerebelo/enzimologia , Cerebelo/patologia , Citoproteção , Transportador 4 de Aminoácido Excitatório/metabolismo , Neurônios/enzimologia , Neurônios/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Camundongos , Camundongos Mutantes Neurológicos , Fenótipo , Células de Purkinje/enzimologia , Células de Purkinje/patologia , Análise de Sobrevida , Fatores de Tempo , Síndrome de Emaciação/enzimologia , Síndrome de Emaciação/patologia , Desmame
20.
J Cell Biol ; 186(6): 805-16, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19752021

RESUMO

The dynamin-related guanosine triphosphatase Drp1 mediates the division of mitochondria and peroxisomes. To understand the in vivo function of Drp1, complete and tissue-specific mouse knockouts of Drp1 were generated. Drp1-null mice die by embryonic day 11.5. This embryonic lethality is not likely caused by gross energy deprivation, as Drp1-null cells showed normal intracellular adenosine triphosphate levels. In support of the role of Drp1 in organelle division, mitochondria formed extensive networks, and peroxisomes were elongated in Drp1-null embryonic fibroblasts. Brain-specific Drp1 ablation caused developmental defects of the cerebellum in which Purkinje cells contained few giant mitochondria instead of the many short tubular mitochondria observed in control cells. In addition, Drp1-null embryos failed to undergo developmentally regulated apoptosis during neural tube formation in vivo. However, Drp1-null embryonic fibroblasts have normal responses to apoptotic stimuli in vitro, suggesting that the apoptotic function of Drp1 depends on physiological cues. These findings clearly demonstrate the physiological importance of Drp1-mediated organelle division in mice.


Assuntos
Apoptose , Cerebelo/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/enzimologia , Peroxissomos/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Cerebelo/embriologia , Cerebelo/ultraestrutura , Dinaminas , Fibroblastos/enzimologia , Fibroblastos/ultraestrutura , GTP Fosfo-Hidrolases/deficiência , GTP Fosfo-Hidrolases/genética , Idade Gestacional , Células Gigantes/enzimologia , Células Gigantes/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/ultraestrutura , Tamanho Mitocondrial , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Forma das Organelas , Organogênese , Peroxissomos/ultraestrutura , Células de Purkinje/diagnóstico por imagem , Células de Purkinje/enzimologia , Trofoblastos/enzimologia , Trofoblastos/ultraestrutura , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA