Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Neurosci ; 43(21): 3933-3948, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37185237

RESUMO

The spinal dorsal horn contains vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons and vesicular GABA transporter (VGAT)-expressing inhibitory neurons, which normally have different roles in nociceptive transmission. Spinal glutamate NMDAR hyperactivity is a crucial mechanism of chronic neuropathic pain. However, it is unclear how NMDARs regulate primary afferent input to spinal excitatory and inhibitory neurons in neuropathic pain. Also, the functional significance of presynaptic NMDARs in neuropathic pain has not been defined explicitly. Here we showed that paclitaxel treatment or spared nerve injury (SNI) similarly increased the NMDAR-mediated mEPSC frequency and dorsal root-evoked EPSCs in VGluT2 dorsal horn neurons in male and female mice. By contrast, neither paclitaxel nor SNI had any effect on mEPSCs or evoked EPSCs in VGAT neurons. In mice with conditional Grin1 (gene encoding GluN1) KO in primary sensory neurons (Grin1-cKO), paclitaxel treatment failed to induce pain hypersensitivity. Unexpectedly, SNI still caused long-lasting pain hypersensitivity in Grin1-cKO mice. SNI increased the amplitude of puff NMDA currents in VGluT2 neurons and caused similar depolarizing shifts in GABA reversal potentials in WT and Grin1-cKO mice. Concordantly, spinal Grin1 knockdown diminished SNI-induced pain hypersensitivity. Thus, presynaptic NMDARs preferentially amplify primary afferent input to spinal excitatory neurons in neuropathic pain. Although presynaptic NMDARs are required for chemotherapy-induced pain hypersensitivity, postsynaptic NMDARs in spinal excitatory neurons play a dominant role in traumatic nerve injury-induced chronic pain. Our findings reveal the divergent synaptic connectivity and functional significance of spinal presynaptic and postsynaptic NMDARs in regulating cell type-specific nociceptive input in neuropathic pain with different etiologies.SIGNIFICANCE STATEMENT Spinal excitatory neurons relay input from nociceptors, whereas inhibitory neurons repress spinal nociceptive transmission. Chronic nerve pain is associated with aberrant NMDAR activity in the spinal dorsal horn. This study demonstrates, for the first time, that chemotherapy and traumatic nerve injury preferentially enhance the NMDAR activity at primary afferent-excitatory neuron synapses but have no effect on primary afferent input to spinal inhibitory neurons. NMDARs in primary sensory neurons are essential for chemotherapy-induced chronic pain, whereas nerve trauma causes pain hypersensitivity predominantly via postsynaptic NMDARs in spinal excitatory neurons. Thus, presynaptic and postsynaptic NMDARs at primary afferent-excitatory neuron synapses are differentially engaged in chemotherapy- and nerve injury-induced chronic pain and could be targeted respectively for treating these painful conditions.


Assuntos
Antineoplásicos , Dor Crônica , Neuralgia , Ratos , Camundongos , Masculino , Feminino , Animais , Receptores de N-Metil-D-Aspartato , Dor Crônica/etiologia , Ratos Sprague-Dawley , Sinapses/fisiologia , Paclitaxel/efeitos adversos , Células do Corno Posterior/fisiologia , Neurônios , Antineoplásicos/efeitos adversos
2.
Cell Rep ; 42(4): 112295, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36947543

RESUMO

Corticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits. We find that excitatory c-Maf (c-MafEX) neurons receive sensory input mainly from myelinated fibers and target deep dorsal horn parabrachial projection neurons and superficial dorsal horn neurons, thereby connecting non-nociceptive input to nociceptive output structures. Silencing c-MafEX neurons has little effect in healthy mice but alleviates mechanical hypersensitivity in neuropathic mice. c-MafEX neurons also receive input from inhibitory c-Maf and parvalbumin neurons, and compromising inhibition by these neurons caused mechanical hypersensitivity and spontaneous aversive behaviors reminiscent of c-MafEX neuron activation. Our study identifies c-MafEX neurons as normally silent second-order nociceptors that become engaged in pathological pain signaling upon loss of inhibitory control.


Assuntos
Neuralgia , Corno Dorsal da Medula Espinal , Animais , Camundongos , Corno Dorsal da Medula Espinal/patologia , Medula Espinal , Células do Corno Posterior/fisiologia , Transmissão Sináptica , Interneurônios/fisiologia , Proteínas Proto-Oncogênicas c-maf
3.
Neuron ; 110(14): 2206-2208, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35863318

RESUMO

How the spinal cord transmits heat signals from the periphery to the brain remains unclear. In this issue of Neuron, Wang et al. (2022) identify a population of spinal cord neurons functioning in this pathway.


Assuntos
Temperatura Alta , Células do Corno Posterior , Humanos , Neurônios , Dor/metabolismo , Células do Corno Posterior/fisiologia , Receptor ErbB-4/metabolismo , Medula Espinal/fisiologia , Corno Dorsal da Medula Espinal
4.
Pharmacol Rep ; 73(4): 1096-1108, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34426901

RESUMO

The role of adenosine A2A receptor (A2AR) and striatal-enriched protein tyrosine phosphatase (STEP) interactions in the striatal-pallidal GABA neurons was recently discussed in relation to A2AR overexpression and cocaine-induced increases of brain adenosine levels. As to phosphorylation, combined activation of A2AR and metabotropic glutamate receptor 5 (mGluR5) in the striatal-pallidal GABA neurons appears necessary for phosphorylation of the GluA1 unit of the AMPA receptor to take place. Robert Yasuda (J Neurochem 152: 270-272, 2020) focused on finding a general mechanism by which STEP activation is enhanced by increased A2AR transmission in striatal-pallidal GABA neurons expressing A2AR and dopamine D2 receptor. In his Editorial, he summarized in a clear way the significant effects of A2AR activation on STEP in the dorsal striatal-pallidal GABA neurons which involves a rise of intracellular levels of calcium causing STEP activation through its dephosphorylation. However, the presence of the A2AR in an A2AR-fibroblast growth factor receptor 1 (FGFR1) heteroreceptor complex can be required in the dorsal striatal-pallidal GABA neurons for the STEP activation. Furthermore, Won et al. (Proc Natl Acad Sci USA 116: 8028-8037, 2019) found in mass spectrometry experiments that the STEP splice variant STEP61 can bind to mGluR5 and inactivate it. In addition, A2AR overexpression can lead to increased formation of A2AR-mGluR5 heterocomplexes in ventral striatal-pallidal GABA neurons. It involves enhanced facilitatory allosteric interactions leading to increased Gq-mediated mGluR5 signaling activating STEP. The involvement of both A2AR and STEP in the actions of cocaine on synaptic downregulation was also demonstrated. The enhancement of mGluR5 protomer activity by the A2AR protomer in A2AR-mGluR5 heterocomplexes in the nucleus accumbens shell appears to have a novel significant role in STEP mechanisms by both enhancing the activation of STEP and being a target for STEP61.


Assuntos
Neurônios GABAérgicos/fisiologia , Fosforilação/genética , Fosforilação/fisiologia , Células do Corno Posterior/fisiologia , Receptor A2A de Adenosina/metabolismo , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/patologia , Neurônios GABAérgicos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Subunidades Proteicas/efeitos dos fármacos , Proteínas Tirosina Fosfatases/genética , Receptor A2A de Adenosina/genética , Receptor de Glutamato Metabotrópico 5/genética
5.
Mol Neurobiol ; 58(11): 5459-5472, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34331656

RESUMO

Corticotropin-releasing factor (CRF) orchestrates our body's response to stressful stimuli. Pain is often stressful and counterbalanced by activation of CRF receptors along the nociceptive pathway, although the involvement of the CRF receptor subtypes 1 and/or 2 (CRF-R1 and CRF-R2, respectively) in CRF-induced analgesia remains controversial. Thus, the aim of the present study was to examine CRF-R1 and CRF-R2 expression within the spinal cord of rats with Freund's complete adjuvant-induced unilateral inflammation of the hind paw using reverse transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis. Moreover, the antinociceptive effects of intrathecal (i.t.) CRF were measured by paw pressure algesiometer and their possible antagonism by selective antagonists for CRF-R1 and/or CRF-R2 as well as for opioid receptors. Our results demonstrated a preference for the expression of CRF-R2 over CRF-R1 mRNA, protein, binding sites and immunoreactivity in the dorsal horn of the rat spinal cord. Consistently, CRF as well as CRF-R2 agonists elicited potent dose-dependent antinociceptive effects which were antagonized by the i.t. CRF-R2 selective antagonist K41498, but not by the CRF-R1 selective antagonist NBI35965. In addition, i.t. applied opioid antagonist naloxone dose-dependently abolished the i.t. CRF- as well as CRF-R2 agonist-elicited inhibition of somatic pain. Importantly, double immunofluorescence confocal microscopy of the spinal dorsal horn showed CRF-R2 on enkephalin (ENK)-containing inhibitory interneurons in close opposition of incoming mu-opioid receptor-immunoreactive nociceptive neurons. CRF-R2 was, however, not seen on pre- or on postsynaptic sensory neurons of the spinal cord. Taken together, these findings suggest that i.t. CRF or CRF-R2 agonists inhibit somatic inflammatory pain predominantly through CRF-R2 receptors located on spinal enkephalinergic inhibitory interneurons which finally results in endogenous opioid-mediated pain inhibition.


Assuntos
Dor/fisiopatologia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Medula Espinal/química , Acenaftenos/farmacologia , Proteínas de Anfíbios/farmacologia , Animais , Artrite Experimental/fisiopatologia , Hormônio Liberador da Corticotropina/farmacologia , Encefalinas/fisiologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Interneurônios/fisiologia , Masculino , Naloxona/farmacologia , Nociceptividade/fisiologia , Hormônios Peptídicos/farmacologia , Células do Corno Posterior/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/biossíntese , Receptores de Hormônio Liberador da Corticotropina/genética , Medula Espinal/fisiopatologia , Urocortinas/farmacologia
6.
J Neurosci ; 41(17): 3900-3916, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33727332

RESUMO

Understanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signaling is currently unknown. Using male and female mice, we show with single-cell RT-PCR that subpopulations of DRG neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of coexpression with Trpv1 (81%-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22, and neuropeptide FF) activated subpopulations of bladder-innervating DRG neurons, showing functional evidence of coexpression between MrgprA3, MrgprC11, and TRPV1. In ex vivo bladder-nerve preparations, chloroquine, BAM8-22, and neuropeptide FF all evoked mechanical hypersensitivity in subpopulations (20%-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterΔ-/- mice. In vitro whole-cell patch-clamp recordings showed that application of an MrgprA3/C11 agonist mixture induced neuronal hyperexcitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist mixture into the bladder of WT mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of WT, but not Mrgpr-clusterΔ-/- mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors triggers hypersensitivity to distension, a critically valuable factor for therapeutic target development.SIGNIFICANCE STATEMENT Determining how bladder afferents become sensitized is the first step in finding effective treatments for common urological disorders such as overactive bladder and interstitial cystitis/bladder pain syndrome. Here we show that two of the key receptors, MrgprA3 and MrgprC11, that mediate itch from the skin are also expressed on afferents innervating the bladder. Activation of these receptors results in sensitization of bladder afferents, resulting in sensory signals being sent into the spinal cord that prematurely indicate bladder fullness. Targeting bladder afferents expressing MrgprA3 or MrgprC11 and preventing their sensitization may provide a novel approach for treating overactive bladder and interstitial cystitis/bladder pain syndrome.


Assuntos
Neurônios Aferentes/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Bexiga Urinária/inervação , Animais , Feminino , Gânglios Espinais/fisiologia , Plexo Lombossacral/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Estimulação Física , Células do Corno Posterior/fisiologia , Canais de Cátion TRPV/fisiologia
7.
J Pain ; 20(3): 301-314, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30296612

RESUMO

Translational correlates to pain with activities after deep tissue injury have been rarely studied. We hypothesized that deep tissue incision causes greater activation of nociception-transmitting neurons evoked by muscle contraction. In vivo neuronal activity was recorded in 203 dorsal horn neurons (DHNs) from 97 rats after sham, skin-only, or skin + deep muscle incision. We evaluated DHN responses to static, isometric muscle contractions induced by direct electrical stimulation of the muscle. The effect of pancuronium on DHN response to contractions was also examined. Approximately 50% of DHNs with receptive fields in the hindpaw were excited during muscle contraction. One-second .5- and 1.0-g muscle contractions produced greater DHN activity after skin + deep muscle incision (median [interquartile range], 32 [5-39] impulses, P = .021; and 36 [26-46] impulses, P = .006, respectively) than after sham (6 [0-21] and 15 [8-32] impulses, respectively). Neuromuscular blockade with pancuronium inhibited the muscle contractions and DHN activation during electrical stimulation, demonstrating contraction-induced activation. The greater response of spinal DHNs to static muscle contraction after skin + deep muscle incision may model and inform mechanisms of dynamic pain after surgery. PERSPECTIVE: Completion of various activities is an important milestone for recovery and hospital discharge after surgery. Skin + deep muscle incision caused greater activation of nociception-transmitting DHNs evoked by muscle contraction compared with skin-only incision. This result suggests an important contribution of deep muscle injury to activity-evoked hyperalgesia after surgery.


Assuntos
Contração Isométrica/fisiologia , Fármacos Neuromusculares não Despolarizantes/farmacologia , Nociceptores/fisiologia , Dor Pós-Operatória/fisiopatologia , Células do Corno Posterior/fisiologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Contração Isométrica/efeitos dos fármacos , Masculino , Nociceptores/efeitos dos fármacos , Pancurônio/farmacologia , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
8.
PLoS One ; 11(9): e0162416, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610622

RESUMO

Dopamine can influence NMDA receptor function and regulate glutamate-triggered long-term changes in synaptic strength in several regions of the CNS. In spinal cord, regulation of the threshold of synaptic plasticity may determine the proneness to undergo sensitization and hyperresponsiveness to noxious input. In the current study, we increased endogenous dopamine levels in the dorsal horn by using re-uptake inhibitor GBR 12935. During the so-induced hyperdopaminergic transmission, conditioning low-frequency (1 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn neurons. The magnitude of LTP was attenuated by blockade of either dopamine D1-like receptors (D1LRs) by with SCH 23390 or NMDA receptor subunit NR2B with antagonist Ro25-6981. Conditioning LFS during GBR 12935 administration increased phosphorylation of dopamine- and cAMP-regulated phosphoprotein of Mr 32kDa (DARPP-32) at threonine 34 residue in synaptosomal (P3) fraction of dorsal horn homogenates, as assessed by Western blot analysis, which was partially prevented by NR2B blockade prior to conditioning stimulation. Conditioning LFS also was followed by higher co-localization of phosphorylated form of NR2B at tyrosine 1472 and pDARPP-32Thr34- with postsynaptic marker PSD-95 in transverse L5 dorsal horn sections. Such increase could be significantly attenuated by D1LR blockade with SCH 23390. The current results support that coincidental endogenous recruitment of D1LRs and NR2B in dorsal horn synapses plays a role in regulating afferent-induced nociceptive plasticity. Parallel increases in DARPP-32 phosphorylation upon LTP induction suggests a role for this phosphoprotein as intracellular detector of convergent D1L- and NMDA receptor activation.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Plasticidade Neuronal , Células do Corno Posterior/fisiologia , Animais , Potenciação de Longa Duração , Masculino , Fosforilação , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica
9.
Pflugers Arch ; 468(10): 1741-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27491796

RESUMO

The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations.


Assuntos
Células do Corno Posterior/metabolismo , Canais de Cátion TRPV/metabolismo , Bexiga Urinária/metabolismo , Adaptação Fisiológica , Vias Aferentes , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade , Células do Corno Posterior/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Canais de Cátion TRPV/genética , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia
10.
J Neurosci ; 35(42): 14132-47, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490855

RESUMO

The periaqueductal gray (PAG) coordinates behaviors essential to survival, including striking changes in movement and posture (e.g., escape behaviors in response to noxious stimuli vs freezing in response to fear-evoking stimuli). However, the neural circuits underlying the expression of these behaviors remain poorly understood. We demonstrate in vivo in rats that activation of the ventrolateral PAG (vlPAG) affects motor systems at multiple levels of the neuraxis through the following: (1) differential control of spinal neurons that forward sensory information to the cerebellum via spino-olivo-cerebellar pathways (nociceptive signals are reduced while proprioceptive signals are enhanced); (2) alterations in cerebellar nuclear output as revealed by changes in expression of Fos-like immunoreactivity; and (3) regulation of spinal reflex circuits, as shown by an increase in α-motoneuron excitability. The capacity to coordinate sensory and motor functions is demonstrated in awake, behaving rats, in which natural activation of the vlPAG in fear-conditioned animals reduced transmission in spino-olivo-cerebellar pathways during periods of freezing that were associated with increased muscle tone and thus motor outflow. The increase in spinal motor reflex excitability and reduction in transmission of ascending sensory signals via spino-olivo-cerebellar pathways occurred simultaneously. We suggest that the interactions revealed in the present study between the vlPAG and sensorimotor circuits could form the neural substrate for survival behaviors associated with vlPAG activation. SIGNIFICANCE STATEMENT: Neural circuits that coordinate survival behaviors remain poorly understood. We demonstrate in rats that the periaqueductal gray (PAG) affects motor systems at the following multiple levels of the neuraxis: (1) through altering transmission in spino-olivary pathways that forward sensory signals to the cerebellum, reducing and enhancing transmission of nociceptive and proprioceptive information, respectively; (2) by alterations in cerebellar output; and (3) through enhancement of spinal motor reflex pathways. The sensory and motor effects occurred at the same time and were present in both anesthetized animals and behavioral experiments in which fear conditioning naturally activated the PAG. The results provide insights into the neural circuits that enable an animal to be ready and able to react to danger, thus assisting in survival.


Assuntos
Vias Aferentes/fisiologia , Vias Eferentes/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Animais , Cerebelo/fisiologia , Condicionamento Psicológico , Estimulação Elétrica , Potenciais Evocados/fisiologia , Potencial Evocado Motor/fisiologia , Medo , Reflexo H , Membro Posterior/fisiologia , Masculino , Proteínas Oncogênicas v-fos/metabolismo , Técnicas de Patch-Clamp , Substância Cinzenta Periaquedutal/citologia , Estimulação Física , Células do Corno Posterior/fisiologia , Ratos , Ratos Wistar , Vigília
11.
J Neurosci ; 35(20): 7950-63, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995479

RESUMO

Accumulating evidence suggests that activation of spinal microglia contributes to the development of inflammatory and neuropathic pain. However, the role of spinal microglia in the maintenance of chronic pain remains controversial. Bone cancer pain shares features of inflammatory and neuropathic pain, but the temporal activation of microglia and astrocytes in this model is not well defined. Here, we report an unconventional role of spinal microglia in the maintenance of advanced-phase bone cancer pain in a female rat model. Bone cancer elicited delayed and persistent microglial activation in the spinal dorsal horn on days 14 and 21, but not on day 7. In contrast, bone cancer induced rapid and persistent astrocytic activation on days 7-21. Spinal inhibition of microglia by minocycline at 14 d effectively reduced bone cancer-induced allodynia and hyperalgesia. However, pretreatment of minocycline in the first week did not affect the development of cancer pain. Bone cancer increased ATP levels in CSF, and upregulated P2X7 receptor, phosphorylated p38, and IL-18 in spinal microglia. Spinal inhibition of P2X7/p-38/IL-18 pathway reduced advanced-phase bone cancer pain and suppressed hyperactivity of spinal wide dynamic range (WDR) neurons. IL-18 induced allodynia and hyperalgesia after intrathecal injection, elicited mechanical hyperactivity of WDR neurons in vivo, and increased the frequency of mEPSCs in spinal lamina IIo nociceptive synapses in spinal cord slices. Together, our findings demonstrate a novel role of microglia in maintaining advanced phase cancer pain in females via producing the proinflammatory cytokine IL-18 to enhance synaptic transmission of spinal cord nociceptive neurons.


Assuntos
Interleucina-18/metabolismo , Microglia/metabolismo , Neuralgia/fisiopatologia , Células do Corno Posterior/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/líquido cefalorraquidiano , Animais , Neoplasias Ósseas/complicações , Potenciais Pós-Sinápticos Excitadores , Feminino , Interleucina-18/genética , Microglia/fisiologia , Potenciais Pós-Sinápticos em Miniatura , Minociclina/farmacologia , Minociclina/uso terapêutico , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Células do Corno Posterior/fisiologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2X7/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
J Neurosci ; 35(16): 6307-17, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904784

RESUMO

The mechanisms that lead to the maintenance of chronic pain states are poorly understood, but their elucidation could lead to new insights into how pain becomes chronic and how it can potentially be reversed. We investigated the role of spinal dorsal horn neurons and descending circuitry in plasticity mediating a transition to pathological pain plasticity suggesting the presence of a chronic pain state using hyperalgesic priming. We found that when dorsal horn neurokinin 1 receptor-positive neurons or descending serotonergic neurons were ablated before hyperalgesic priming, IL-6- and carrageenan-induced mechanical hypersensitivity was impaired, and subsequent prostaglandin E2 (PGE2) response was blunted. However, when these neurons were lesioned after the induction of priming, they had no effect on the PGE2 response, reflecting differential mechanisms driving plasticity in a primed state. In stark contrast, animals with a spinally applied dopaminergic lesion showed intact IL-6- and carrageenan-induced mechanical hypersensitivity, but the subsequent PGE2 injection failed to cause mechanical hypersensitivity. Moreover, ablating spinally projecting dopaminergic neurons after the resolution of the IL-6- or carrageenan-induced response also reversed the maintenance of priming as assessed through mechanical hypersensitivity and the mouse grimace scale. Pharmacological antagonism of spinal dopamine D1/D5 receptors reversed priming, whereas D1/D5 agonists induced mechanical hypersensitivity exclusively in primed mice. Strikingly, engagement of D1/D5 coupled with anisomycin in primed animals reversed a chronic pain state, consistent with reconsolidation-like effects in the spinal dorsal horn. These findings demonstrate a novel role for descending dopaminergic neurons in the maintenance of pathological pain plasticity.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Células do Corno Posterior/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D5/fisiologia , Receptores da Neurocinina-1/fisiologia , Animais , Benzazepinas/farmacologia , Carragenina/farmacologia , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Interleucina-6/farmacologia , Masculino , Camundongos , Células do Corno Posterior/efeitos dos fármacos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/antagonistas & inibidores , Neurônios Serotoninérgicos/fisiologia , Sulpirida/farmacologia
13.
Neuroscience ; 291: 93-105, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25686524

RESUMO

Pain is a common and debilitating complication for cancer patients significantly compromising their quality of life. Cancer-induced bone pain involves a complex interplay of molecular events, including mechanisms observed in inflammatory and neuropathic pain states, but also changes unique for cancer-induced bone pain. The P2X7 receptor (P2X7R) is involved in a variety of cellular functions and has been linked to both inflammatory and neuropathic pain. Here we study the analgesic potential of P2X7R antagonism in a rat model of cancer-induced bone pain. In cancer-bearing animals, the P2X7R antagonist A839977 attenuated dorsal horn neuronal responses in a modality and intensity-specific way. Spinal application of 0.4-mg/kg and 1.2-mg/kg A839977 significantly reduced the evoked responses to high-intensity mechanical and thermal stimulation, whereas no effect was seen in response to low-intensity or electrical stimulation. In contrast, A839977 had no effect on the tested parameters in naïve or sham animals. In awake animals, 40-mg/kg A839977 (i.p.) significantly reduced both early- and late-stage pain behavior. In contrast, no effect was observed in sham or vehicle-treated animals. The results suggest that the P2X7R is involved in the mechanisms of cancer-induced bone pain, and that P2X7R antagonism might be a useful analgesic target. No effect was observed in sham or naïve animals, indicating that the P2X7R-mediated effect is state-dependent, and might therefore be an advantageous target compared to traditional analgesics.


Assuntos
Analgésicos não Narcóticos/farmacologia , Neoplasias Ósseas/fisiopatologia , Dor/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Tetrazóis/farmacologia , Analgésicos não Narcóticos/síntese química , Animais , Neoplasias Ósseas/complicações , Carcinoma Ductal de Mama/fisiopatologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Neoplasias Mamárias Animais/fisiopatologia , Atividade Motora/efeitos dos fármacos , Transplante de Neoplasias , Dor/etiologia , Dor/fisiopatologia , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/fisiologia , Antagonistas do Receptor Purinérgico P2X/síntese química , Piridinas/síntese química , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/metabolismo , Tetrazóis/síntese química
14.
Brain Res ; 1599: 158-67, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25555372

RESUMO

Accumulating evidence suggests that chemokine monocyte chemoattractant protein-1 (MCP-1) is significantly involved in the activation of spinal microglia associated with pathological pain, at the same time that the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) pathway localized in spinal microglia is involved in both neuropathic and inflammatory pain. However, whether there is a connection between MCP-1 and the PI3K/Akt pathway and in their underlying mechanisms in bone cancer pain (BCP) has not yet been elucidated. In the current study, we investigated the expression changes of p-Akt in microglia and OX-42 (microglia marker) after being stimulated with MCP-1 in vitro, as well as in a BCP model that was established by an intramedullary injection of mammary gland carcinoma cells(Walker 256 cells) into the tibia of rats. We observed a significant increase in expression levels of p-Akt and OX-42 in microglia as well as in spinal dorsal horns of BCP rats. Furthermore, the intrathecal administration of an anti-MCP-1 neutralizing antibody or PI3K inhibitor LY294002 reduced the expression of p-Akt or OX-42, and LY294002 attenuated the mechanical allodynia of BCP rats. These results suggest that MCP-1 may stimulate spinal microglia via the PI3K/Akt pathway in BCP.


Assuntos
Neoplasias Ósseas/fisiopatologia , Quimiocina CCL2/metabolismo , Microglia/fisiologia , Dor/fisiopatologia , Células do Corno Posterior/fisiologia , Animais , Neoplasias Ósseas/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/fisiopatologia , Linhagem Celular Tumoral , Quimiocina CCL2/antagonistas & inibidores , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Microglia/efeitos dos fármacos , Microglia/patologia , Morfolinas/farmacologia , Transplante de Neoplasias , Dor/tratamento farmacológico , Dor/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Células do Corno Posterior/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tíbia
15.
Anesth Analg ; 119(3): 693-701, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25137003

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV)-associated sensory neuropathy is a common neurological complication of HIV infection affecting up to 30% of HIV-positive individuals. However, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments for HIV-related neuropathic pain (NP). In this study, we tested the hypothesis that inhibition of proinflammatory factors with overexpression of interleukin (IL)-10 reduces HIV-related NP in a rat model. METHODS: NP was induced by the application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve. The hindpaws of rats were inoculated with nonreplicating herpes simplex virus (HSV) vectors expressing anti-inflammatory cytokine IL-10 or control vector. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The mechanical threshold response was assessed over time using the area under curves. The expression of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 in both the lumbar spinal cord and the L4/5 dorsal root ganglia (DRG), was examined at 14 and 28 days after vector inoculation using Western blots. RESULTS: We found that in the gp120-induced NP model, IL-10 overexpression mediated by the HSV vector resulted in a significant elevation of the mechanical threshold that was apparent on day 3 after vector inoculation compared with the control vector (P < 0.001). The antiallodynic effect of the single HSV vector inoculation expressing IL-10 lasted >28 days. The area under curve in the HSV vector expressing IL-10 was increased compared with that in the control vector (P < 0.0001). HSV vectors expressing IL-10 reversed the upregulation of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 expression at 14 and/or 28 days in the DRG and/or the spinal dorsal horn. CONCLUSIONS: Our studies demonstrate that blocking the signaling of these proinflammatory molecules in the DRG and/or the spinal cord using the HSV vector expressing IL-10 is able to reduce HIV-related NP. These results provide new insights on the potential mechanisms of HIV-associated NP and a proof of concept for treating painful HIV sensory neuropathy with this type of gene therapy.


Assuntos
Terapia Genética/métodos , Proteína gp120 do Envelope de HIV , Interleucina-10/genética , Interleucina-10/fisiologia , Neuralgia/induzido quimicamente , Neuralgia/prevenção & controle , Simplexvirus/genética , Animais , Western Blotting , Gânglios Espinais/fisiologia , Vetores Genéticos , Humanos , Hiperalgesia/prevenção & controle , Masculino , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Células do Corno Posterior/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/biossíntese , Receptores CXCR4/genética , Nervo Isquiático/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Reumatismo ; 66(1): 4-13, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24938190

RESUMO

Pain is the main manifestation of many rheumatic diseases (be they overtly inflammatory such as rheumatoid arthritis or dysfunctional such as fibromyalgia) but, at least initially, the mechanisms involved in the genesis, amplification and chronicisation of the persistent pain characterising the various conditions can be very different. The main peripheral mechanism underlying acute nociceptive pain is a change in the activity of the nociceptors located in the affected anatomical structures (joints, tendons and ligaments), which makes them more sensitive to normally painful stimuli (hyperalgesia) or normally non-painful stimuli (allodynia). This physiopathological mechanism of peripheral sensitisation plays a primary role in rheumatic diseases characterised by acute inflammation, such as the arthritides due to microcrystals. In the case of chronic rheumatic diseases that do not regress spontaneously, functional and structural central nervous system changes cause a generalised reduction in the pain threshold that is not limited to the anatomical structures involved, thus leading to the appearance of hyperalgesia and allodynia in many, if not all body districts. This is the physiopathological basis of chronic, widespread musculoskeletal pain.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Dor Crônica/fisiopatologia , Nociceptores/fisiologia , Doenças Reumáticas/fisiopatologia , Adaptação Psicológica , Sistema Nervoso Autônomo/fisiopatologia , Dor Crônica/imunologia , Dor Crônica/psicologia , Depressão/complicações , Depressão/fisiopatologia , Humanos , Hiperalgesia/fisiopatologia , Dor Musculoesquelética/imunologia , Dor Musculoesquelética/fisiopatologia , Dor Musculoesquelética/psicologia , Dor Musculoesquelética/terapia , Fatores de Crescimento Neural/fisiologia , Neuroimunomodulação/fisiologia , Neurotransmissores/fisiologia , Manejo da Dor , Percepção da Dor/fisiologia , Sistema Nervoso Periférico/fisiopatologia , Células do Corno Posterior/fisiologia , Doenças Reumáticas/imunologia , Doenças Reumáticas/psicologia
17.
J Neurosci ; 34(15): 5322-34, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719110

RESUMO

This study aims to identify the inhibitory role of the spinal glucagon like peptide-1 receptor (GLP-1R) signaling in pain hypersensitivity and its mechanism of action in rats and mice. First, GLP-1Rs were identified to be specifically expressed on microglial cells in the spinal dorsal horn, and profoundly upregulated after peripheral nerve injury. In addition, intrathecal GLP-1R agonists GLP-1(7-36) and exenatide potently alleviated formalin-, peripheral nerve injury-, bone cancer-, and diabetes-induced hypersensitivity states by 60-90%, without affecting acute nociceptive responses. The antihypersensitive effects of exenatide and GLP-1 were completely prevented by GLP-1R antagonism and GLP-1R gene knockdown. Furthermore, exenatide evoked ß-endorphin release from both the spinal cord and cultured microglia. Exenatide antiallodynia was completely prevented by the microglial inhibitor minocycline, ß-endorphin antiserum, and opioid receptor antagonist naloxone. Our results illustrate a novel spinal dorsal horn microglial GLP-1R/ß-endorphin inhibitory pathway in a variety of pain hypersensitivity states.


Assuntos
Hiperalgesia/metabolismo , Neuralgia/metabolismo , Células do Corno Posterior/metabolismo , Receptores de Glucagon/agonistas , Animais , Células Cultivadas , Exenatida , Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células HEK293 , Humanos , Hiperalgesia/fisiopatologia , Microglia/metabolismo , Neuralgia/fisiopatologia , Nociceptividade , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Células do Corno Posterior/fisiologia , Ratos , Ratos Wistar , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Peçonhas/farmacologia , beta-Endorfina/metabolismo
18.
PLoS One ; 8(8): e71184, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951107

RESUMO

Hyperpolarization-activated currents (Ih) mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels modulate excitability of myelinated A- and Ah-type visceral ganglion neurons (VGN). Whether alterations in Ih underlie the previously reported reduction of excitability of myelinated Ah-type VGNs following ovariectomy (OVX) has remained unclear. Here we used the intact nodose ganglion preparation in conjunction with electrophysiological approaches to examine the role of Ih remodeling in altering Ah-type neuron excitability following ovariectomy in adult rats. Ah-type neurons were identified based on their afferent conduction velocity. Ah-type neurons in nodose ganglia from non-OVX rats exhibited a voltage 'sag' as well as 'rebound' action potentials immediately following hyperpolarizing current injections, which both were suppressed by the Ih blocker ZD7288. Repetitive spike activity induced afterhyperpolarizations lasting several hundreds of milliseconds (termed post-excitatory membrane hyperpolarizations, PEMHs), which were significantly reduced by ZD7288, suggesting that they resulted from transient deactivation of Ih during the preceding spike trains. Ovariectomy reduced whole-cell Ih density, caused a hyperpolarizing shift of the voltage-dependence of Ih activation, and slowed Ih activation. OVX-induced Ih remodeling was accompanied by a flattening of the stimulus frequency/response curve and loss of PEMHs. Also, HCN1 mRNA levels were reduced by ∼30% in nodose ganglia from OVX rats compared with their non-OVX counterparts. Acute exposure of nodose ganglia to 17beta-estradiol partly restored Ih density and accelerated Ih activation in Ah-type cells. In conclusion, Ih plays a significant role in modulating the excitability of myelinated Ah-type VGNs in adult female rats.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Potenciais da Membrana/fisiologia , Gânglio Nodoso/fisiologia , Ovariectomia , Células do Corno Posterior/fisiologia , Animais , Estradiol/farmacologia , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Feminino , Potenciais da Membrana/efeitos dos fármacos , Bainha de Mielina/metabolismo , Gânglio Nodoso/efeitos dos fármacos , Técnicas de Patch-Clamp , Células do Corno Posterior/efeitos dos fármacos , Ratos , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
19.
Neuroscience ; 248: 552-61, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23830906

RESUMO

Recently it has been suggested that the neurohormone prolactin (PRL) could act on the afferent nociceptive neurons. Indeed, PRL sensitizes transient receptor potential vanilloid 1 (TRPV1) channels present in nociceptive C-fibers and consequently reduces the pain threshold in a model of inflammatory pain. Accordingly, high plasma PRL levels in non-lactating females have been associated with several painful conditions (e.g. migraine). Paradoxically, an increase of PRL secretion during lactation induced a reduction in pain sensitivity. This difference could be attributed to the fact that PRL secreted from the adenopituitary (AP) is transformed into several molecular variants by the suckling stimulation. In order to test this hypothesis, the present study set out to investigate whether PRL from AP of suckled (S) or non-suckled (NS) lactating rats affects the activity of the male Wistar wide dynamic range (WDR) neurons. The WDR neurons are located in the dorsal horn of the spinal cord and receive input from the first-order neurons (Ab-, Ad- and C-fibers). Spinal administration of prolactin variant from NS rats (NS-PRL) or prolactin variant from S rats (S-PRL) had no effect on the neuronal activity of non-nociceptive Ab-fibers. However, the activities of nociceptive Ad-fibers and C-fibers were: (i) increased by NS-PRL and (ii) diminished by S-PRL. Either NS-PRL or S-PRL enhanced the post-discharge activity. Taken together, these results suggest that PRL from S or NS lactating rats could either facilitate or depress the nociceptive responses of spinal dorsal horn cells, depending on the physiological state of the rats.


Assuntos
Lactação/fisiologia , Fibras Nervosas/efeitos dos fármacos , Nociceptores/fisiologia , Células do Corno Posterior/fisiologia , Prolactina/farmacologia , Medula Espinal/citologia , Animais , Feminino , Lactação/sangue , Masculino , Fibras Nervosas/fisiologia , Nociceptores/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Células do Corno Posterior/efeitos dos fármacos , Prolactina/sangue , Ratos , Ratos Wistar
20.
Pain ; 154(9): 1743-1748, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23711477

RESUMO

Sciatica after disc herniation may be associated with compression of spinal nerves, but also inflammatory substances released from the nucleus pulposus (NP) leaking into the spinal canal. Here, in an animal model mimicking clinical intervertebral disc herniation, we investigate the effect of NP on neuronal activity. In anaesthetized Lewis rats, extracellular single-unit recordings of spinal dorsal horn neurons were performed, and the C-fibre responses were examined. Moreover, quantitative polymerase chain reaction was used to explore the gene expression of proinflammatory cytokines in the NP tissue exposed to the spinal dorsal nerve roots L3-L5. In accordance with earlier studies, we showed a significant increase in the C-fibre response and an upregulation of the gene expression of interleukin 1ß and tumour necrosis factor 180 minutes after application of NP onto the nerve roots. Moreover, based on a polymerase chain reaction array of 84 common inflammatory cytokines at the same time point, we demonstrated a highly significant upregulation of colony-stimulating factor 1 also termed macrophage colony-stimulating factor and Fas ligand. The pronounced upregulation of Csf1 and Fas ligand 180 minutes after application of NP onto the nerve roots suggests that macrophage activation and apoptosis may be involved in pain hypersensitivity and other sensory abnormalities after disc herniation.


Assuntos
Proteína Ligante Fas/metabolismo , Regulação da Expressão Gênica/fisiologia , Deslocamento do Disco Intervertebral/complicações , Fator Estimulador de Colônias de Macrófagos/metabolismo , Dor/etiologia , Dor/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Potenciais de Ação , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Células do Corno Posterior/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Lew , Nervo Isquiático/fisiologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA