Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 37(10): 110095, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879277

RESUMO

Changes in DNA methylation are associated with normal cardiogenesis, whereas altered methylation patterns can occur in congenital heart disease. Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA demethylation. Here, we characterize stage-specific methylation dynamics and the function of TETs during human cardiomyocyte differentiation. Human embryonic stem cells (hESCs) in which all three TET genes are inactivated fail to generate cardiomyocytes (CMs), with altered mesoderm patterning and defective cardiac progenitor specification. Genome-wide methylation analysis shows TET knockout causes promoter hypermethylation of genes encoding WNT inhibitors, leading to hyperactivated WNT signaling and defects in cardiac mesoderm patterning. TET activity is also needed to maintain hypomethylated status and expression of NKX2-5 for subsequent cardiac progenitor specification. Finally, loss of TETs causes a set of cardiac structural genes to fail to be demethylated at the cardiac progenitor stage. Our data demonstrate key roles for TET proteins in controlling methylation dynamics at sequential steps during human cardiac development.


Assuntos
Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Epigênese Genética , Células-Tronco Embrionárias Humanas/enzimologia , Oxigenases de Função Mista/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxigenases de Função Mista/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Troponina I/genética , Troponina I/metabolismo , Via de Sinalização Wnt/genética
2.
Cardiovasc Res ; 117(1): 188-200, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995179

RESUMO

AIMS: Heart failure is a major complication in cancer treatment due to the cardiotoxic effects of anticancer drugs, especially from the anthracyclines such as doxorubicin (DXR). DXR enhances oxidative stress and stimulates matrix metalloproteinase-2 (MMP-2) in cardiomyocytes. We investigated whether MMP inhibitors protect against DXR cardiotoxicity given the role of MMP-2 in proteolyzing sarcomeric proteins in the heart and remodelling the extracellular matrix. METHODS AND RESULTS: Eight-week-old male C57BL/6J mice were treated with DXR weekly with or without MMP inhibitors doxycycline or ONO-4817 by daily oral gavage for 4 weeks. Echocardiography was used to determine cardiac function and left ventricular remodelling before and after treatment. MMP inhibitors ameliorated DXR-induced systolic and diastolic dysfunction by reducing the loss in left ventricular ejection fraction, fractional shortening, and E'/A'. MMP inhibitors attenuated adverse left ventricular remodelling, reduced cardiomyocyte dropout, and prevented myocardial fibrosis. DXR increased myocardial MMP-2 activity in part also by upregulating N-terminal truncated MMP-2. Immunogold transmission electron microscopy showed that DXR elevated MMP-2 levels within the sarcomere and mitochondria which were associated with myofilament lysis, mitochondrial degeneration, and T-tubule distention. DXR-induced myofilament lysis was associated with increased titin proteolysis in the heart which was prevented by ONO-4817. DXR also increased the level and activity of MMP-2 in human embryonic stem cell-derived cardiomyocytes, which was reduced by ONO-4817. CONCLUSIONS: MMP-2 activation is an early event in DXR cardiotoxicity and contributes to myofilament lysis by proteolyzing cardiac titin. Two orally available MMP inhibitors ameliorated DXR cardiotoxicity by attenuating intracellular and extracellular matrix remodelling, suggesting their use may be a potential prophylactic strategy to prevent heart injury during chemotherapy.


Assuntos
Doxiciclina/farmacologia , Matriz Extracelular/efeitos dos fármacos , Cardiopatias/prevenção & controle , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiotoxicidade , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Matriz Extracelular/enzimologia , Matriz Extracelular/patologia , Fibrose , Cardiopatias/induzido quimicamente , Cardiopatias/enzimologia , Cardiopatias/fisiopatologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/enzimologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Proteínas Quinases/metabolismo , Proteólise
3.
Basic Clin Pharmacol Toxicol ; 128(2): 241-255, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32955161

RESUMO

Baicalin has been reported to protect mice against Salmonella typhimurium (S. typhimurium) infection, while its molecular mechanisms are unclear. In this study, multiplicity of infection (MOI) and observation time were measured. Cell viability and LDH levels were examined in RAW264.7 cells and H9 cells. RAW264.7 cells were stimulated with S typhimurium in the presence or absence of Baicalin, and the levels of pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The changes in reactive oxygen species (ROS) production were determined by fluorescence microscopy and ELISA. The autophagy and TLR4/MAPK/NF-κB signalling pathway were examined by immunofluorescence microscopy, quantitative reverse transcription-polymerase chain reaction and Western blotting. The results indicated that MOI of 30 and duration of autophagy evident at 5 h were applicable to this study. Baicalin prevented death of macrophages, promoted bactericidal activity, decreased the levels of pro-inflammatory cytokines and ROS and reduced the changes of key biomarkers in autophagy and TLR4/MAPK/NF-κB signalling pathway infected by S typhimurium. TLR4-overexpressed cells, autophagy and TLR4/MAPK/NF-κB signalling pathway were activated by S typhimurium, which was suppressed by Baicalin. Our findings indicated that Baicalin exerts anti-inflammatory and cell-protective effects, and it mediates autophagy by down-regulating the activity of TLR4 infected by S typhimurium.


Assuntos
Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Flavonoides/farmacologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/patogenicidade , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Células-Tronco Embrionárias Humanas/enzimologia , Células-Tronco Embrionárias Humanas/microbiologia , Células-Tronco Embrionárias Humanas/patologia , Humanos , Inflamação/enzimologia , Inflamação/microbiologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , NF-kappa B/genética , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/enzimologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Transdução de Sinais , Receptor 4 Toll-Like/genética
4.
Sci Rep ; 10(1): 19374, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168920

RESUMO

Small-molecule inhibitors of non-canonical IκB kinases TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε) have shown to stimulate ß-cell regeneration in multiple species. Here we demonstrate that TBK1 is predominantly expressed in ß-cells in mammalian islets. Proteomic and transcriptome analyses revealed that genetic silencing of TBK1 increased expression of proteins and genes essential for cell proliferation in INS-1 832/13 rat ß-cells. Conversely, TBK1 overexpression decreased sensitivity of ß-cells to the elevation of cyclic AMP (cAMP) levels and reduced proliferation of ß-cells in a manner dependent on the activity of cAMP-hydrolyzing phosphodiesterase 3 (PDE3). While the mitogenic effect of (E)3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA) is derived from inhibition of TBK1, PIAA augmented glucose-stimulated insulin secretion (GSIS) and expression of ß-cell differentiation and proliferation markers in human embryonic stem cell (hESC)-derived ß-cells and human islets. TBK1 expression was increased in ß-cells upon diabetogenic insults, including in human type 2 diabetic islets. PIAA enhanced expression of cell cycle control molecules and ß-cell differentiation markers upon diabetogenic challenges, and accelerated restoration of functional ß-cells in streptozotocin (STZ)-induced diabetic mice. Altogether, these data suggest the critical function of TBK1 as a ß-cell autonomous replication barrier and present PIAA as a valid therapeutic strategy augmenting functional ß-cells.


Assuntos
Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Células Secretoras de Insulina/enzimologia , Proteínas Serina-Treonina Quinases/biossíntese , Regeneração , Animais , Linhagem Celular Tumoral , Inativação Gênica , Células-Tronco Embrionárias Humanas/enzimologia , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Proteínas Serina-Treonina Quinases/genética , Ratos
5.
FASEB J ; 33(12): 14307-14324, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31661640

RESUMO

High-mobility group box (HMGB)1 and HMGB2 proteins are the subject of intensive research because of their involvement in DNA replication, repair, transcription, differentiation, proliferation, cell signaling, inflammation, and tumor migration. Using inducible, stably transfected human embryonic stem cells (hESCs) capable of the short hairpin RNA-mediated knockdown (KD) of HMGB1 and HMGB2, we provide evidence that deregulation of HMGB1 or HMGB2 expression in hESCs and their differentiated derivatives (neuroectodermal cells) results in distinct modulation of telomere homeostasis. Whereas HMGB1 enhances telomerase activity, HMGB2 acts as a negative regulator of telomerase activity in the cell. Stimulation of telomerase activity in the HMGB2-deficient cells may be related to activation of the PI3K/protein kinase B/ glycogen synthase kinase-3ß/ß-catenin signaling pathways by HMGB1, augmented TERT/telomerase RNA subunit transcription, and possibly also because of changes in telomeric repeat-containing RNA (TERRA) and TERRA-polyA+ transcription. The impact of HMGB1/2 KD on telomerase transcriptional regulation observed in neuroectodermal cells is partially masked in hESCs by their pluripotent state. Our findings on differential roles of HMGB1 and HMGB2 proteins in regulation of telomerase activity may suggest another possible outcome of HMGB1 targeting in cells, which is currently a promising approach aiming at increasing the anticancer activity of cytotoxic agents.-Kucírek, M., Bagherpoor, A. J., Jaros, J., Hampl, A., Stros, M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells.


Assuntos
Proteína HMGB2/fisiologia , Células-Tronco Embrionárias Humanas/enzimologia , Células-Tronco/enzimologia , Telomerase/metabolismo , Diferenciação Celular , Proteína HMGB1/genética , Proteína HMGB2/genética , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco/citologia , Transcrição Gênica , Transfecção
6.
Stem Cells ; 37(8): 1030-1041, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021484

RESUMO

Insulin is present in most maintenance media for human embryonic stem cells (hESCs), but little is known about its essential role in the cell survival of individualized cells during passage. In this article, we show that insulin suppresses caspase cleavage and apoptosis after dissociation. Insulin activates insulin-like growth factor (IGF) receptor and PI3K/AKT cascade to promote cell survival and its function is independent of rho-associated protein kinase regulation. During niche reformation after passaging, insulin activates integrin that is essential for cell survival. IGF receptor colocalizes with focal adhesion complex and stimulates protein phosphorylation involved in focal adhesion formation. Insulin promotes cell spreading on matrigel-coated surfaces and suppresses myosin light chain phosphorylation. Further study showed that insulin is also required for the cell survival on E-cadherin coated surface and in suspension, indicating its essential role in cell-cell adhesion. This work highlights insulin's complex roles in signal transduction and niche re-establishment in hESCs. Stem Cells 2019;37:1030-1041.


Assuntos
Adesão Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/enzimologia , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos
7.
Clin Sci (Lond) ; 133(2): 225-238, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30610007

RESUMO

Tetralogy of Fallot (TOF) is the most common cyanotic form of congenital heart defects (CHDs). The right ventricular hypertrophy is associated with the survival rate of patients with repaired TOF. However, very little is known concerning its genetic etiology. Based on mouse model studies, a disintergrin and metalloprotease 10/17 (ADAM10 and ADAM17) are the key enzymes for the NOTCH and ErbB pathways, which are critical pathways for heart development. Mutations in these two genes have not been previously reported in human TOF patients. In this study, we sequenced ADAM10 and ADAM17 in a Han Chinese CHD cohort comprised of 80 TOF patients, 286 other CHD patients, and 480 matched healthy controls. Three missense variants of ADAM17 were only identified in 80 TOF patients, two of which (Y42D and L659P) are novel and not found in the Exome Aggregation Consortium (ExAC) database. Point mutation knock-in (KI) and ADAM17 knock-out (KO) human embryonic stem cells (hESCs) were generated by CRISPR/Cas9 and programmed to differentiate into cardiomyocytes (CMs). Y42D or L659P KI cells or complete KO cells all developed hypertrophy with disorganized sarcomeres. RNA-seq results showed that phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt), which is downstream of epidermal growth factor receptor (EGFR) signaling, was affected in both ADAM17 KO and KI hESC-CMs. In vitro experiments showed that these two mutations are loss-of-function mutations in shedding heparin-binding EGF-like growth factor (HB-EGF) but not NOTCH signaling. Our results revealed that CM hypertrophy in TOF could be the result of mutations in ADAM17 which affects HB-EGF/ErbB signaling.


Assuntos
Proteína ADAM17/genética , Cardiomegalia/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Células-Tronco Embrionárias Humanas/enzimologia , Mutação com Perda de Função , Mutação de Sentido Incorreto , Miócitos Cardíacos/enzimologia , Tetralogia de Fallot/genética , Proteína ADAM17/metabolismo , Animais , Células COS , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Estudos de Casos e Controles , Diferenciação Celular , Criança , Pré-Escolar , Chlorocebus aethiops , Feminino , Predisposição Genética para Doença , Células HEK293 , Células-Tronco Embrionárias Humanas/patologia , Humanos , Lactente , Masculino , Miócitos Cardíacos/patologia , Fenótipo , Transdução de Sinais , Tetralogia de Fallot/diagnóstico , Tetralogia de Fallot/enzimologia
8.
Free Radic Biol Med ; 113: 439-451, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29054545

RESUMO

Glutathione (GSH), the major non-enzymatic antioxidant, plays a critical role in cellular reactive oxygen species (ROS) neutralization. Moreover, GSH is required for the self-renewal maintenance of human embryonic stem cells (hESCs), and is highly accumulated in undifferentiated cells. Among 8 GSH biosynthesis-related enzymes, we found CHAC2 is highly enriched in undifferentiated hESCs. CHAC2 downregulation in hESCs efficiently decreased the levels of GSH and blocked self-renewal. The self-renewal of sh-CHAC2 cells can be rescued by GSH supplement. CHAC2 downregulation promoted mesoderm differentiation and hampered both teratoma formation and the expression of Nrf2 and glutamate-cysteine ligase (GCL). Notably, CHAC1 knockdown restored the self-renewability of CHAC2-downregulated cells. Although both CHAC1 and CHAC2 purified protein alone showed the catalytic activities to GSH, our data extraordinarily revealed that CHAC2 prevented CHAC1-mediated GSH degradation, which suggests that CHAC2 competes with CHAC1 to maintain GSH homeostasis. This is the first report to demonstrate that CHAC2 is critical for GSH maintenance and the novel roles of the CHAC family in hESC renewal.


Assuntos
Glutamato-Cisteína Ligase/genética , Glutationa/biossíntese , Células-Tronco Embrionárias Humanas/enzimologia , Fator 2 Relacionado a NF-E2/genética , gama-Glutamilciclotransferase/genética , Animais , Bioensaio , Linhagem Celular , Proliferação de Células , Células Alimentadoras/citologia , Fibroblastos/citologia , Regulação da Expressão Gênica , Glutamato-Cisteína Ligase/metabolismo , Glutationa/genética , Células-Tronco Embrionárias Humanas/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Teratoma/enzimologia , Teratoma/genética , Teratoma/patologia , gama-Glutamilciclotransferase/antagonistas & inibidores , gama-Glutamilciclotransferase/metabolismo
9.
Stem Cell Reports ; 7(2): 167-76, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27509133

RESUMO

Human embryonic stem cells (hESCs) can be maintained in a fully defined niche on extracellular matrix substrates, to which they attach through integrin receptors. However, the underlying integrin signaling mechanisms, and their contribution to hESC behavior, are largely unknown. Here, we show that focal adhesion kinase (FAK) transduces integrin activation and supports hESC survival, substrate adhesion, and maintenance of the undifferentiated state. After inhibiting FAK kinase activity we show that hESCs undergo cell detachment-dependent apoptosis or differentiation. We also report deactivation of FAK downstream targets, AKT and MDM2, and upregulation of p53, all key players in hESC regulatory networks. Loss of integrin activity or FAK also induces cell aggregation, revealing a role in the cell-cell interactions of hESCs. This study provides insight into the integrin signaling cascade activated in hESCs and reveals in FAK a key player in the maintenance of hESC survival and undifferentiated state.


Assuntos
Apoptose , Diferenciação Celular , Citoproteção , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/enzimologia , Integrina beta1/metabolismo , Anoikis , Caspases/metabolismo , Adesão Celular , Agregação Celular , Núcleo Celular/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA