Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711334

RESUMO

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Miócitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Humanos , Animais , Camundongos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Modelos Animais de Doenças , Neovascularização Fisiológica , Células Cultivadas
2.
Nat Commun ; 15(1): 3745, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702304

RESUMO

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Assuntos
Diferenciação Celular , Variações do Número de Cópias de DNA , Proteína Proto-Oncogênica N-Myc , Crista Neural , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Feminino , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Aberrações Cromossômicas , Células-Tronco Embrionárias Humanas/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
Stem Cell Res Ther ; 15(1): 133, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704588

RESUMO

BACKGROUND: Human hematopoietic organoids have a wide application value for modeling human bone marrow diseases, such as acute hematopoietic radiation injury. However, the manufacturing of human hematopoietic organoids is an unaddressed challenge because of the complexity of hematopoietic tissues. METHODS: To manufacture hematopoietic organoids, we obtained CD34+ hematopoietic stem and progenitor cells (HSPCs) from human embryonic stem cells (hESCs) using stepwise induction and immunomagnetic bead-sorting. We then mixed these CD34+ HSPCs with niche-related cells in Gelatin-methacryloyl (GelMA) to form a three-dimensional (3D) hematopoietic organoid. Additionally, we investigated the effects of radiation damage and response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic organoids. RESULTS: The GelMA hydrogel maintained the undifferentiated state of hESCs-derived HSPCs by reducing intracellular reactive oxygen species (ROS) levels. The established hematopoietic organoids in GelMA with niche-related cells were composed of HSPCs and multilineage blood cells and demonstrated the adherence of hematopoietic cells to niche cells. Notably, these hematopoietic organoids exhibited radiation-induced hematopoietic cell injury effect, including increased intracellular ROS levels, γ-H2AX positive cell percentages, and hematopoietic cell apoptosis percentages. Moreover, G-CSF supplementation in the culture medium significantly improved the survival of HSPCs and enhanced myeloid cell regeneration in these hematopoietic organoids after radiation. CONCLUSIONS: These findings substantiate the successful manufacture of a preliminary 3D hematopoietic organoid from hESCs-derived HSPCs, which was utilized for modeling hematopoietic radiation injury and assessing the radiation-mitigating effects of G-CSF in vitro. Our study provides opportunities to further aid in the standard and scalable production of hematopoietic organoids for disease modeling and drug testing.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Células-Tronco Hematopoéticas , Organoides , Humanos , Organoides/metabolismo , Organoides/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Antígenos CD34/metabolismo
4.
Exp Eye Res ; 242: 109883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561106

RESUMO

Corneal transplantation represents the primary therapeutic approach for managing corneal endothelial dysfunction, but corneal donors remain scarce. Anterior chamber cell injection emerges as a highly promising alternative strategy for corneal transplantation, with pluripotent stem cells (PSC) demonstrating considerable potential as an optimal cell source. Nevertheless, only a few studies have explored the differentiation of functional corneal endothelial-like cells originating from PSC. In this investigation, a chemical-defined protocol was successfully developed for the differentiation of functional corneal endothelial-like cells derived from human embryonic stem cells (hESC). The application of nicotinamide (NAM) exhibited a remarkable capability in suppressing the fibrotic phenotype, leading to the generation of more homogeneous and well-distinctive differentiated cells. Furthermore, NAM effectively suppressed the expression of genes implicated in endothelial cell migration and extracellular matrix synthesis. Notably, NAM also facilitated the upregulation of surface marker genes specific to functional corneal endothelial cells (CEC), including CD26 (-) CD44 (-∼+-) CD105 (-) CD133 (-) CD166 (+) CD200 (-). Moreover, in vitro functional assays were performed, revealing intact barrier properties and Na+/K+-ATP pump functionality in the differentiated cells treated with NAM. Consequently, our findings provide robust evidence supporting the capacity of NAM to enhance the differentiation of functional CEC originating from hESC, offering potential seed cells for therapeutic interventions of corneal endothelial dysfunction.


Assuntos
Diferenciação Celular , Endotélio Corneano , Células-Tronco Embrionárias Humanas , Niacinamida , Humanos , Diferenciação Celular/efeitos dos fármacos , Niacinamida/farmacologia , Endotélio Corneano/metabolismo , Endotélio Corneano/citologia , Endotélio Corneano/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células Cultivadas , Complexo Vitamínico B/farmacologia , Citometria de Fluxo , Movimento Celular/efeitos dos fármacos , Antígenos CD/metabolismo , Antígenos CD/genética
5.
Nucleic Acids Res ; 52(9): 4935-4949, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38421638

RESUMO

TGF-ß signaling family plays an essential role to regulate fate decisions in pluripotency and lineage specification. How the action of TGF-ß family signaling is intrinsically executed remains not fully elucidated. Here, we show that HBO1, a MYST histone acetyltransferase (HAT) is an essential cell intrinsic determinant for TGF-ß signaling in human embryonic stem cells (hESCs). HBO1-/- hESCs fail to response to TGF-ß signaling to maintain pluripotency and spontaneously differentiate into neuroectoderm. Moreover, HBO1 deficient hESCs show complete defect in mesendoderm specification in BMP4-triggered gastruloids or teratomas. Molecularly, HBO1 interacts with SMAD4 and co-binds the open chromatin labeled by H3K14ac and H3K4me3 in undifferentiated hESCs. Upon differentiation, HBO1/SMAD4 co-bind and maintain the mesoderm genes in BMP4-triggered mesoderm cells while lose chromatin occupancy in neural cells induced by dual-SMAD inhibition. Our data reveal an essential role of HBO1, a chromatin factor to determine the action of SMAD in both human pluripotency and mesendoderm specification.


Assuntos
Diferenciação Celular , Mesoderma , Transdução de Sinais , Proteína Smad4 , Humanos , Mesoderma/metabolismo , Mesoderma/citologia , Diferenciação Celular/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Cromatina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Linhagem Celular , Histonas/metabolismo
6.
Nucleic Acids Res ; 52(7): 3589-3606, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38281248

RESUMO

Teratoma formation is key for evaluating differentiation of human pluripotent stem cells into embryonic germ layers and serves as a model for understanding stem cell differentiation and developmental processes. Its potential for insights into epigenome and transcriptome profiling is significant. This study integrates the analysis of the epigenome and transcriptome of hESC-generated teratomas, comparing transcriptomes between hESCs and teratomas. It employs cell type-specific expression patterns from single-cell data to deconvolve RNA-Seq data and identify cell types within teratomas. Our results provide a catalog of activating and repressive histone modifications, while also elucidating distinctive features of chromatin states. Construction of an epigenetic signature matrix enabled the quantification of diverse cell populations in teratomas and enhanced the ability to unravel the epigenetic landscape in heterogeneous tissue contexts. This study also includes a single cell multiome atlas of expression (scRNA-Seq) and chromatin accessibility (scATAC-Seq) of human teratomas, further revealing the complexity of these tissues. A histology-based digital staining tool further complemented the annotation of cell types in teratomas, enhancing our understanding of their cellular composition. This research is a valuable resource for examining teratoma epigenomic and transcriptomic landscapes and serves as a model for epigenetic data comparison.


Assuntos
Cromatina , Teratoma , Humanos , Teratoma/genética , Teratoma/patologia , Teratoma/metabolismo , Cromatina/metabolismo , Cromatina/genética , Epigênese Genética , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Diferenciação Celular/genética , Código das Histonas , Análise de Célula Única/métodos , Epigenoma , Células-Tronco Embrionárias Humanas/metabolismo , RNA-Seq
7.
Nature ; 626(8000): 881-890, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297124

RESUMO

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Neurogênese , Neurônios , Adulto , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo , Transcrição Gênica
8.
Exp Cell Res ; 434(2): 113879, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072304

RESUMO

Stem cell-derived ß cells (SC-ß cells) differentiated from stem cell-derived pancreatic progenitor (PP) cells are promising tools for enabling normal glucose control of islet transplants and have therapeutic potential for type 1 diabetes treatment. Pancreatic specification is essential for SC-ß cell induction in vitro and low-quality PP cells may convert into derivatives of non-pancreatic lineages both in vivo and in vitro, impeding PP-derived ß cell safety and differentiation efficiency. Circular RNA (circRNA) commonly determines the fate of stem cells by acting as competing endogenous RNA (ceRNA). Currently, the relationships between endogenous circRNA and pancreatic specification remain elusive. Herein, we used whole transcriptome sequencing analysis and functional experiments to reveal that deficiency of hsa_circ_0032449 resulted in posterior foregut-derived PP cells with a weakened the progenitor state with decreased expression of PDX1, NKX6.1 and CCND1. As differentiation processed into maturation, silencing of hsa_circ_0032449 suppressed PP cell development into functionally mature and glucose-responsive SC-ß cells. These SC-ß cells exhibited lower serum C-peptide levels compared with those of control groups in nude mice and had difficulties in reversing hyperglycemia in STZ-induced diabetic nude mice. Mechanistically, loss of hsa_circ_0032449 participated in PI3K-AKT signaling transduction by acting as a ceRNA to sponge miR-195-5p and by influencing the expression of the downstream target CCND1 at transcription and translation levels. Overall, our findings identified hsa_circ_0032449 as an essential PP cell-fate specification regulator, indicating a promising potential in clinical applications and basic research.


Assuntos
Células-Tronco Embrionárias Humanas , MicroRNAs , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Ciclina D1/metabolismo
9.
Reprod Sci ; 31(1): 173-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658178

RESUMO

Human embryonic stem cells (hESCs) cultured in media containing bone morphogenic protein 4 (BMP4; B) differentiate into trophoblast-like cells. Supplementing media with inhibitors of activin/nodal signaling (A83-01) and of fibroblast growth factor 2 (PD173074) suppresses mesoderm and endoderm formation and improves specification of trophoblast-like lineages, but with variable effectiveness. We compared differentiation in four BMP4-containing media: mTeSR1-BMP4 only, mTeSR1-BAP, basal medium with BAP (basal-BAP), and a newly defined medium, E7-BAP. These media variably drive early differentiation towards trophoblast-like lineages with upregulation of early trophoblast markers CDX2 and KRT7 and downregulation of pluripotency markers (OCT4 and NANOG). As expected, based on differences between media in FGF2 and its inhibitors, downregulation of mesendoderm marker EOMES was variable between media. By day 7, only hESCs grown in E7-BAP or basal-BAP expressed HLA-G protein, indicating the presence of cells with extravillous trophoblast characteristics. Expression of HLA-G and other differentiation markers (hCG, KRT7, and GCM1) was highest in basal-BAP, suggesting a faster differentiation in this medium, but those cultures were more inhomogeneous and still expressed some endodermal and pluripotency markers. In E7-BAP, HLA-G expression increased later and was lower. There was also a low but maintained expression of some C19MC miRNAs, with more CpG hypomethylation of the ELF5 promoter, suggesting that E7-BAP cultures differentiate slower along the trophoblast lineage. We conclude that while all protocols drive differentiation into trophoblast lineages with varying efficiency, they have advantages and disadvantages that must be considered when selecting a protocol for specific experiments.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Ativinas/farmacologia , Ativinas/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Antígenos HLA-G , Células-Tronco Embrionárias Humanas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Trofoblastos/metabolismo
10.
Reprod Sci ; 31(5): 1363-1372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38151652

RESUMO

Knowledge of action of progesterone (P4) on the human preimplantation embryo is lacking. The objective of this study was to determine expression of a mitochondrial P4 receptor (PR-M) in the trophectoderm (TE) and the inner cell mass (ICM) of the human blastocyst and to determine P4-induced gene expression during growth from the cleavage to the blastocyst stage. Previously cryopreserved cleavage stage embryos were treated with P4 (10-6 M) or vehicle until blastocyst development. Cells from the TE and the ICM of dissected euploid embryos underwent RNA-seq analysis, while other embryos were used for analysis of nuclear PR (nPR) and PR-M expression.PR-M expression was confirmed in the TE, the ICM, and a human embryonic stem cell line (HESC). Conversely, nPR expression was absent in the TE and the ICM with low expression in the HESC line. RNA-seq analysis revealed P4 effects greater in the TE with 183 significant pathway changes compared to 27 in the ICM. The TE response included significant upregulation of genes associated with DNA replication, cell cycle phase transition and others, exemplified by a 7.6-fold increase in the cell proliferation gene, F-Box Associated Domain Containing. The majority of ICM pathways were downregulated including chromosome separation, centromere complex assembly and chromatin remodeling at centromere. This study confirms that human blastocysts express PR-M in both the TE and the ICM, but lack expression of nPR. P4-induced gene regulation differs greatly in the two cell fractions with the predominant effect of cell proliferation in the TE and not the ICM.


Assuntos
Massa Celular Interna do Blastocisto , Blastocisto , Regulação da Expressão Gênica no Desenvolvimento , Progesterona , Humanos , Progesterona/farmacologia , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos , Massa Celular Interna do Blastocisto/metabolismo , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Feminino , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos
11.
J Extracell Vesicles ; 13(1): e12401, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151470

RESUMO

Retinal degeneration (RD), a group of diseases leading to irreversible vision loss, is characterised by retinal pigment epithelium (RPE) or retinal neuron damage and loss. With fewer risks of immune rejection and tumorigenesis, stem cell-secreted extracellular vesicles (EVs) offer a new cell-free therapeutic paradigm for RD, which remains to be investigated. Human retinal organoid-derived retinal progenitor cells (hERO-RPCs) are an easily accessible and advanced cell source for RD treatment. However, hERO-RPCs-derived EVs require further characterisation. Here, we compared the characteristics of EVs from hERO-RPCs (hRPC-EVs) with those of human embryonic stem cell (hESC)-derived EVs (hESC-EVs) as controls. Based on in-depth proteomic analysis, we revealed remarkable differences between hRPC-EVs and hESC-EVs. A comparison between EVs and their respective cells of origin demonstrated that the protein loading of hRPC-EVs was more selective than that of hESC-EVs. In particular, hESC-EVs were enriched with proteins related to angiogenesis and cell cycle, whereas hRPC-EVs were enriched with proteins associated with immune modulation and retinal development. More importantly, compared with that of hESC-EVs, hRPC-EVs exhibited a lower correlation with cell proliferation and a unique capacity to regulate lipid metabolism. It was further confirmed that hRPC-EVs potentially eliminated lipid deposits, inhibited lipotoxicity and oxidative stress, and enhanced phagocytosis and survival of oleic acid-treated ARPE-19 cells. Mechanistically, hRPC-EVs are integrated into the mitochondrial network of oleic acid-treated ARPE-19 cells, and increased the level of mitochondrial fatty acid ß-oxidation-related proteins. Thus, organoid-derived hRPC-EVs represent a promising source of cell-free therapy for RD, especially for blinding diseases related to abnormal lipid metabolism in RPE cells.


Assuntos
Vesículas Extracelulares , Células-Tronco Embrionárias Humanas , Humanos , Epitélio Pigmentado da Retina/metabolismo , Proteômica , Ácido Oleico/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Organoides/metabolismo , Metabolismo dos Lipídeos
12.
Cells ; 12(23)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067166

RESUMO

Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity (MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologically. After grafting, animals showed signs of partially improved motor behavior in some of the HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA. We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution or amphetamine were present in grafted animals after ten months, which has not been previously reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the putamen long-term, without developing tumors, in immunosuppressed animals. Although these results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and imaging findings support the integration and survival of human DANs in this pre-clinical PD model.


Assuntos
Células-Tronco Embrionárias Humanas , Doença de Parkinson , Animais , Humanos , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Haplorrinos/metabolismo , Mesencéfalo/metabolismo , Dopamina/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo
13.
Stem Cell Res ; 73: 103255, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992565

RESUMO

NSD2 is a histone methyltransferase (HMT) and is involved in the epigenetic regulation of hematopoiesis and hematological cancers. To understand and illustrate the precise roles of NSD2 in hematopoietic development, here we constructed a human embryonic stem cell (hESC) line with knockout of NSD2 using CRISPR/Cas9-mediated gene targeting. The cell line maintained typical stem cell morphology and normal karyotype. Furthermore, the pluripotency of the cell line was evidenced by high expression level of pluripotency genes and differentiation potential into three germ layers. The cell line provides a good model for studying roles of NSD2 in embryonic development, especially hematopoiesis.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Sistemas CRISPR-Cas/genética , Epigênese Genética , Células-Tronco Embrionárias/metabolismo , Linhagem Celular
14.
Cell Rep ; 42(10): 113308, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858462

RESUMO

The RNA-binding protein Musashi-1 (MSI1) regulates the proliferation and differentiation of adult stem cells. However, its role in embryonic stem cells (ESCs) and early embryonic development remains poorly understood. Here, we report the presence of short C-terminal MSI1 (MSI1-C) proteins in early mouse embryos and mouse ESCs, but not in human ESCs, under conventional culture conditions. In mouse embryos and mESCs, deletion of MSI1-C together with full-length MSI1 causes early embryonic developmental arrest and pluripotency dissolution. MSI1-C is induced upon naive induction and facilitates hESC naive pluripotency acquisition, elevating the pluripotency of primed hESCs toward a formative-like state. MSI1-C proteins are nuclear localized and bind to RNAs involved in DNA-damage repair (including MLH1, BRCA1, and MSH2), conferring on hESCs better survival in human-mouse interspecies cell competition and prolonged ability to form blastoids. This study identifies MSI1-C as an essential regulator in ESC pluripotency states and early embryonic development.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Humanas , Animais , Humanos , Camundongos , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
15.
Nucleic Acids Res ; 51(21): 11634-11651, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870468

RESUMO

Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation. Notably, supplementation of NODAL, TGF-ß, Activin A or WNT3A rescues the differentiation defects caused by BRD9 loss. Mechanistically, BRD9 forms a complex with BRD4, SMAD2/3, ß-CATENIN and P300, which regulates the expression of pluripotency genes and the activity of TGF-ß/Nodal/Activin and Wnt signaling pathways. This is achieved by regulating the deposition of H3K27ac on associated genes, thus maintaining and directing hESC differentiation. BRD9-mediated regulation of the TGF-ß/Activin/Nodal pathway is also demonstrated in the development of pancreatic and breast cancer cells. In summary, our study highlights the crucial role of BRD9 in the regulation of hESC self-renewal and differentiation, as well as its participation in the progression of pancreatic and breast cancers.


Assuntos
Células-Tronco Embrionárias Humanas , Neoplasias , Humanos , Fator de Crescimento Transformador beta/genética , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Ativinas/metabolismo , Via de Sinalização Wnt , Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
16.
Tissue Eng Regen Med ; 20(7): 1133-1143, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37610706

RESUMO

BACKGROUND: Cryopreservation is a crucial method for long-term storage and stable allocation of human pluripotent stem cells (hPSCs), which are increasingly being used in various applications. However, preserving hPSCs in cryogenic conditions is challenging due to reduced recovery rates. METHODS: To address this issue, the Arginine-Glycine-Aspartate (RGD) motif was incorporated into a recombinant elastin-like peptide (REP). Human embryonic stem cells (hESCs) were treated with REP containing RGD motif (RGD-REP) during suspension and cryopreservation, and the survival rate was analyzed. The underlying mechanisms were also investigated. RESULTS: The addition of RGD-REP to the cryopreservation solution improved cell survival and pluripotency marker expression. The improvement was confirmed to be due to the activation of the FAK-AKT cascade by RGD-REP binding to hESC surface interin protein, and consequent inhibition of FoxO3a. The inactivation of FoxO3a reduced the expression of apoptosis-related genes, such as BIM, leading to increased survival of PSCs in a suspension state. CONCLUSION: RGD-REP, as a ligand for integrin protein, improves the survival and maintenance of hPSCs during cryopreservation by activating survival signals via the RGD motif. These results have potential implications for improving the efficiency of stem cell usage in both research and therapeutic applications.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Elastina/metabolismo , Criopreservação/métodos , Transdução de Sinais , Oligopeptídeos/farmacologia
17.
Stem Cell Res ; 71: 103158, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406498

RESUMO

Myoglobin (MB) is a cytoplasmic hemoprotein that is predominantly expressed in the heart and oxidative myofibers of skeletal muscle. It has been demonstrated that MB binds to oxygen and promotes its diffusion for energy production in the mitochondria. Recently, MB was found to be expressed in different forms of malignant tumors and cancer cell lines. Further studies using gene disruption technology will enhance the understanding of MB's role in human cardiovascular biology and cancers. Here, we describe the generation of a homozygous MB knockout in human embryonic stem cells (hESC-MB-/-) via CRISPR/Cas9 to study MB function in human biology and diseases.


Assuntos
Células-Tronco Embrionárias Humanas , Mioglobina , Humanos , Mioglobina/genética , Mioglobina/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Tecnologia
18.
Stem Cell Res ; 71: 103162, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429070

RESUMO

The FLNA gene encodes the cytoskeletal protein filamin A which plays a key role in the structure and function of the cardiac valves. Truncating FLNA mutations are associated with cardiac valvular dysplasia. To further understand the exact role of FLNA in this disease, we have generated a human FLNA knockout cell line from H9 using CRISPR/Cas9 technology in this study. This cell line WAe009-A-P has a 2 bp deletion in the exon 2 of FLNA gene which resulted in a frameshift in the translation of FLNA and no FLNA protein was detected in this cell line. Moreover, WAe009-A-P also expressed pluripotency markers, had a normal female karyotype (46XX) and maintained the ability to differentiate into the three germ layers in vitro.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Embrionárias Humanas , Humanos , Feminino , Sistemas CRISPR-Cas/genética , Células-Tronco Embrionárias Humanas/metabolismo , Linhagem Celular , Mutação , Valvas Cardíacas
19.
STAR Protoc ; 4(3): 102455, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467109

RESUMO

TET1-mediated active DNA demethylation is required for endogenous retrovirus (ERV) enhancer activation during human ES differentiation into definitive endoderm (DE) cells. Here we present a protocol for siRNA-mediated TET1 knockdown during this process to decipher TET1's role in ERV activation and DE differentiation. We describe steps for inducing ES into DE cells. We then detail steps for knocking down TET1 during differentiation and for examining the effects of TET1 knockdown on LTR6B methylation, cell morphology, and gene expression. For complete details on the use and execution of this protocol, please refer to Wu et al. (2022).1.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Células-Tronco Embrionárias , Endoderma , Diferenciação Celular/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/farmacologia , Proteínas Proto-Oncogênicas/metabolismo
20.
Environ Toxicol ; 38(9): 2084-2099, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37227716

RESUMO

Silicosis is an irreversible chronic pulmonary disease caused by long-term inhalation and deposition of silica particles, which is currently incurable. The exhaustion of airway epithelial stem cells plays a pathogenetic role in silicosis. In present study, we investigated therapeutic effects and potential mechanism of human embryonic stem cell (hESC)-derived MSC-likes immune and matrix regulatory cells (IMRCs) (hESC-MSC-IMRCs), a type of manufacturable MSCs for clinical application in silicosis mice. Our results showed that the transplantation of hESC-MSC-IMRCs led the alleviation of silica-induced silicosis in mice, accompanied by inhibiting epithelia-mesenchymal transition (EMT), activating B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) signaling and airway epithelial cell regeneration. In consistence, the secretome of hESC-MSC-IMRC exhibited abilities to restore the potency and plasticity of primary human bronchial epithelial cells (HBECs) proliferation and differentiation following the SiO2 -induced HBECs injury. Mechanistically, the secretome resolved the SiO2 -induced HBECs injury through the activation of BMI1 signaling and restoration of airway basal cell proliferation and differentiation. Moreover, the activation of BMI1 significantly enhanced the capacity of HBEC proliferation and differentiation to multiple airway epithelial cell types in organoids. Cytokine array revealed that DKK1, VEGF, uPAR, IL-8, Serpin E1, MCP-1 and Tsp-1 were the main factors in the hESC-MSC-IMRC secretome. These results demonstrated a potential therapeutic effect of hESC-MSC-IMRCs and their secretome for silicosis, in part through a mechanism by activating Bmi1 signaling to revert the exhaustion of airway epithelial stem cells, subsequentially enhance the potency and plasticity of lung epithelial stem cells.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Mesenquimais , Silicose , Humanos , Camundongos , Animais , Células-Tronco Embrionárias Humanas/metabolismo , Dióxido de Silício/toxicidade , Secretoma , Células Epiteliais/metabolismo , Silicose/metabolismo , Fatores Imunológicos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Complexo Repressor Polycomb 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA