Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
BMJ Open ; 14(6): e079767, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834319

RESUMO

INTRODUCTION: Severe osteogenesis imperfecta (OI) is a debilitating disease with no cure or sufficiently effective treatment. Mesenchymal stem cells (MSCs) have good safety profile, show promising effects and can form bone. The Boost Brittle Bones Before Birth (BOOSTB4) trial evaluates administration of allogeneic expanded human first trimester fetal liver MSCs (BOOST cells) for OI type 3 or severe type 4. METHODS AND ANALYSIS: BOOSTB4 is an exploratory, open-label, multiple dose, phase I/II clinical trial evaluating safety and efficacy of postnatal (n=15) or prenatal and postnatal (n=3, originally n=15) administration of BOOST cells for the treatment of severe OI compared with a combination of historical (1-5/subject) and untreated prospective controls (≤30). Infants<18 months of age (originally<12 months) and singleton pregnant women whose fetus has severe OI with confirmed glycine substitution in COL1A1 or COL1A2 can be included in the trial.Each subject receives four intravenous doses of 3×106/kg BOOST cells at 4 month intervals, with 48 (doses 1-2) or 24 (doses 3-4) hours in-patient follow-up, primary follow-up at 6 and 12 months after the last dose and long-term follow-up yearly until 10 years after the first dose. Prenatal subjects receive the first dose via ultrasound-guided injection into the umbilical vein within the fetal liver (16+0 to 35+6 weeks), and three doses postnatally.The primary outcome measures are safety and tolerability of repeated BOOST cell administration. The secondary outcome measures are number of fractures from baseline to primary and long-term follow-up, growth, change in bone mineral density, clinical OI status and biochemical bone turnover. ETHICS AND DISSEMINATION: The trial is approved by Competent Authorities in Sweden, the UK and the Netherlands (postnatal only). Results from the trial will be disseminated via CTIS, ClinicalTrials.gov and in scientific open-access scientific journals. TRIAL REGISTRATION NUMBERS: EudraCT 2015-003699-60, EUCT: 2023-504593-38-00, NCT03706482.


Assuntos
Transplante de Células-Tronco Mesenquimais , Osteogênese Imperfeita , Humanos , Osteogênese Imperfeita/terapia , Feminino , Gravidez , Transplante de Células-Tronco Mesenquimais/métodos , Lactente , Ensaios Clínicos Fase I como Assunto , Estudos Multicêntricos como Assunto , Recém-Nascido , Ensaios Clínicos Fase II como Assunto , Células-Tronco Mesenquimais , Resultado do Tratamento , Masculino , Células-Tronco Fetais/transplante
2.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830768

RESUMO

Hematopoietic stem cells and multipotential progenitors emerge in multiple, overlapping waves of fetal development. Some of these populations seed the bone marrow and sustain adult B- and T-cell development long-term after birth. However, others are present transiently, but whether they are vestigial or generate B and T cells that contribute to the adult immune system is not well understood. We now report that transient fetal progenitors distinguished by expression of low levels of the PU.1 transcription factor generated activated and memory T and B cells that colonized and were maintained in secondary lymphoid tissues. These included the small and large intestines, where they may contribute to the maintenance of gut homeostasis through at least middle age. At least some of the activated/memory cells may have been the progeny of B-1 and marginal zone B cells, as transient PU.1low fetal progenitors efficiently generated those populations. Taken together, our data demonstrate the potential of B- and T-cell progeny of transient PU.1low fetal progenitors to make an early and long-term contribution to the adult immune system.


Assuntos
Linfócitos B , Proteínas Proto-Oncogênicas , Linfócitos T , Transativadores , Transativadores/metabolismo , Transativadores/genética , Animais , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Linfócitos B/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/citologia , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Diferenciação Celular/imunologia , Feminino , Feto/citologia , Células-Tronco Fetais/metabolismo , Células-Tronco Fetais/citologia
3.
Cell Rep ; 43(6): 114270, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38787726

RESUMO

Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Humanos , Animais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Fetais/metabolismo
4.
Cell Transplant ; 33: 9636897241246355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634440

RESUMO

The quest for new and improved therapies for Parkinson's disease (PD) remains of paramount importance, despite previous trial failures. There is a current debate regarding the potential of stem cell research as a therapeutic approach for PD. The studies of dopaminergic fetal stem cells for PD treatment, their design, and the results of the initial surgical placebo-controlled trials were reviewed in this study. Some of the fundamental methodological challenges and possible strategies to resolve them were proposed. In this article, we argue that the most important impact lies in the proof-of-principle demonstrated by clinical trials for cell replacement strategies in reconstructing the human brain. While some researchers argue that the considerable technical challenges associated with cell therapies for PD warrant the discontinuation of further development using stem cells, we believe that the opposing viewpoints are instrumental in identifying a series of methodological misunderstandings. Here, we propose to expose key challenges to ensure the advancement of the field and unlock the potential of stem cell therapies in PD treatment. Overall, this review underscores the need for further research and innovation to overcome the hurdles in realizing the potential of stem cell-based therapies for PD.


Assuntos
Células-Tronco Fetais , Doença de Parkinson , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos , Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Ensaios Clínicos Controlados como Assunto
5.
Mol Neurobiol ; 61(8): 5738-5753, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38227271

RESUMO

Oligodendrocytes (OL) are the myelinating cells of the central nervous system that mediate nerve conduction. Loss of oligodendrocytes results in demyelination, triggering neurological deficits. Developing a better understanding of the cell signaling pathways influencing OL development may aid in the development of therapeutic strategies. The primary focus of this study was to investigate and elucidate the cell signaling pathways implicated in the developmental maturation of oligodendrocytes using human fetal neural stem cells (hFNSCs)-derived primary OL and MO3.13 cell line. Successful differentiation into OL was established by examining morphological changes, increased expression of mature OL markers MBP, MOG and decreased expression of pre-OL markers CSPG4 and O4. Analyzing transcriptional datasets (using RNA sequencing) in pre-OL and mature OL derived from hFNSCs revealed the novel and critical involvement of the JAK-STAT cell signaling pathway in terminal OL maturation. The finding was validated in MO3.13 cell line whose differentiation was accompanied by upregulation of IL-6 and the transcription factor STAT3. Increased phosphorylated STAT3 (pY705) levels were demonstrated by western blotting in hFNSCs-derived primary OL as well as terminal maturation in MO3.13 cells, thus validating the involvement of the JAK-STAT pathway in OL maturation. Pharmacological suppression of STAT3 phosphorylation (confirmed by western blotting) was able to prevent the increase of MBP-positive cells as demonstrated by flow cytometry. These novel findings highlight the involvement of the JAK-STAT pathway in OL maturation and raise the possibility of using this as a therapeutic strategy in demyelinating diseases.


Assuntos
Diferenciação Celular , Janus Quinases , Células-Tronco Neurais , Oligodendroglia , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Transdução de Sinais/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Diferenciação Celular/fisiologia , Janus Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição STAT/metabolismo , Fosforilação , Linhagem Celular , Feto/citologia , Células-Tronco Fetais/metabolismo , Interleucina-6/metabolismo
6.
Cell Biochem Funct ; 42(1): e3924, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269507

RESUMO

Designing biocompatible polymers using plant derivatives can be extremely useful in tissue engineering, nanomedicine, and many other fields of medicine. In this study, it was first looked into how chitosan/alginate scaffolds were made and characterized in the presence of berberine and barberry fruit extract. Second, the process of proliferation and differentiation of ovine fetal BM-MSCs (bone marrow-mesenchymal stem cells) was assessed on these scaffolds after BM-MSCs were extracted and confirmed by developing into osteocyte and adipose cells. To investigate the differentiation, treatment groups include (1) ovine fetal BM-MSCs were plated in Dulbecco's modified eagle medium culture medium with high glucose containing 10% fetal bovine serum and antibiotics (negative control), (2) ovine fetal BM-MSCs were plated in osteogenic differentiation medium (positive control group), (3) positive control group + barberry fruit extract, (4) positive control group + berberine, (5) ovine fetal BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate scaffold (hydrogel group), (6) ovine fetal BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/barberry fruit extract scaffold (hydrogel group containing barberry fruit extract), and (7) ovine fetal BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/berberine scaffold (hydrogel group containing berberine). Alkaline phosphatase (ALP) enzyme concentrations, mineralization rate using a calcium kit, and mineralization measurement by alizarin staining quantification were all found after 21 days of culture. In addition, real-time quantitative reverse transcription polymerase chain reaction was used to assess the expression of the ALP, COL1A2, and Runx2 genes. Days 5 and 7 had the lowest water absorption by the hydrogel scaffold containing barberry extract, which was significant in comparison to other groups (p < .05). Among the hydrogel scaffolds under study, the one containing barberry extract exhibited the lowest tensile strength, and this difference was statistically significant (p < .05). The chitosan/alginate hydrogel has the highest tensile strength of all of them. In comparison to the control and other treatment groups, the inclusion of berberine in the chitosan/alginate hydrogel significantly increased the expression of the ALP, Runx2, and COL1A2 genes (p < .05). The osteocyte differentiation of mesenchymal stem cells in in vitro settings appears to have been enhanced by the inclusion of berberine in the chitosan/alginate scaffold.


Assuntos
Berberina , Berberis , Quitosana , Células-Tronco Fetais , Ovinos , Animais , Quitosana/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core , Berberina/farmacologia , Osteócitos , Osteogênese , Alginatos/farmacologia , Hidrogéis
7.
Stem Cell Res Ther ; 14(1): 157, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287077

RESUMO

Due to the limited accessibility of the in vivo situation, the scarcity of the human tissue, legal constraints, and ethical considerations, the underlying molecular mechanisms of disorders, such as preeclampsia, the pathological consequences of fetomaternal microchimerism, or infertility, are still not fully understood. And although substantial progress has already been made, the therapeutic strategies for reproductive system diseases are still facing limitations. In the recent years, it became more and more evident that stem cells are powerful tools for basic research in human reproduction and stem cell-based approaches moved into the center of endeavors to establish new clinical concepts. Multipotent fetal stem cells derived from the amniotic fluid, amniotic membrane, chorion leave, Wharton´s jelly, or placenta came to the fore because they are easy to acquire, are not associated with ethical concerns or covered by strict legal restrictions, and can be banked for autologous utilization later in life. Compared to adult stem cells, they exhibit a significantly higher differentiation potential and are much easier to propagate in vitro. Compared to pluripotent stem cells, they harbor less mutations, are not tumorigenic, and exhibit low immunogenicity. Studies on multipotent fetal stem cells can be invaluable to gain knowledge on the development of dysfunctional fetal cell types, to characterize the fetal stem cells migrating into the body of a pregnant woman in the context of fetomaternal microchimerism, and to obtain a more comprehensive picture of germ cell development in the course of in vitro differentiation experiments. The in vivo transplantation of fetal stem cells or their paracrine factors can mediate therapeutic effects in preeclampsia and can restore reproductive organ functions. Together with the use of fetal stem cell-derived gametes, such strategies could once help individuals, who do not develop functional gametes, to conceive genetically related children. Although there is still a long way to go, these developments regarding the usage of multipotent fetal stem cells in the clinic should continuously be accompanied by a wide and detailed ethical discussion.


Assuntos
Células-Tronco Fetais , Células-Tronco Pluripotentes , Pré-Eclâmpsia , Gravidez , Feminino , Adulto , Criança , Humanos , Células Germinativas , Diferenciação Celular , Biologia
8.
Curr Stem Cell Res Ther ; 18(1): 7-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34895127

RESUMO

In the last two decades, fetal amniotic fluid stem cells progressively attracted attention in the context of both basic research and the development of innovative therapeutic concepts. They exhibit broadly multipotent plasticity with the ability to differentiate into cells of all three embryonic germ layers and low immunogenicity. They are convenient to maintain, highly proliferative, genomically stable, non-tumorigenic, perfectly amenable to genetic modifications, and do not raise ethical concerns. However, it is important to note that among the various fetal amniotic fluid cells, only c-Kit+ amniotic fluid stem cells represent a distinct entity showing the full spectrum of these features. Since amniotic fluid additionally contains numerous terminally differentiated cells and progenitor cells with more limited differentiation potentials, it is of highest relevance to always precisely describe the isolation procedure and characteristics of the used amniotic fluid-derived cell type. It is of obvious interest for scientists, clinicians, and patients alike to be able to rely on up-todate and concisely separated pictures of the utilities as well as the limitations of terminally differentiated amniotic fluid cells, amniotic fluid-derived progenitor cells, and c-Kit+ amniotic fluid stem cells, to drive these distinct cellular models towards as many individual clinical applications as possible.


Assuntos
Líquido Amniótico , Células-Tronco Fetais , Humanos , Diferenciação Celular , Células-Tronco , Edição de Genes
9.
Stem Cell Rev Rep ; 17(6): 2059-2080, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34424480

RESUMO

As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.


Assuntos
Células-Tronco Fetais , Neoplasias Hematológicas , Animais , Medula Óssea , Pré-Escolar , Feminino , Neoplasias Hematológicas/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Gravidez
10.
J Equine Vet Sci ; 104: 103681, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34416999

RESUMO

Equine adult bone marrow-derived MSCs (BM-MSCs) may be induced into the tenogenic lineage after exposure with bone morphogenetic protein-12 (BMP-12). Despite fetal BM-MSCs have showed a greater differentiation potential compared to adults, the tenogenic differentiation capacity of equine fetal BM-MSC have not been reported. Thus, the aim of the present study was to evaluate the in vitro tenogenic differentiation potential of equine fetal BM-MSCs under the effect of BMP-12. Equine fetal BM-MSCs were exposed to three concentrations of BMP-12 (25, 50 and 100 ng/mL) during a 21-day culture period. Levels of mRNA of tenogenic markers decorin (DCN), tenomodulin (TNMD), scleraxis (SCX), collagen 1α1 (COL1α1) and protein expression of Col1α1 were evaluated. Plastic adherent cells exhibited specific MSC profile including expression of CD73 and lack of expression of CD34. Gene expression levels of DCN, TNMD, SCX and COL1α1 were increased in equine fetal BM-MSC exposed to three different concentrations of BMP-12 during a 21-day culture period. Equine fetal BM-MSCs displayed specific expression profiles suggesting features of MSCs and multipotent capacity. Furthermore, up-regulation of tenogenic markers DCN, TNMD, COL1α1 and SCX after exposure to different concentrations of BMP-12 suggests that equine fetal BM-MSCs have potential to activate selected genes that control tenogenic differentiation.


Assuntos
Células-Tronco Fetais , Células-Tronco Mesenquimais , Animais , Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Colágeno , Cavalos
11.
Cell Prolif ; 54(3): e12995, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33522648

RESUMO

INTRODUCTION: It is important to prepare 'hypoimmunogenic' or 'universal' human pluripotent stem cells (hPSCs) with gene-editing technology by knocking out or in immune-related genes, because only a few hypoimmunogenic or universal hPSC lines would be sufficient to store for their off-the-shelf use. However, these hypoimmunogenic or universal hPSCs prepared previously were all genetically edited, which makes laborious processes to check and evaluate no abnormal gene editing of hPSCs. METHODS: Universal human-induced pluripotent stem cells (hiPSCs) were generated without gene editing, which were reprogrammed from foetal stem cells (human amniotic fluid stem cells) with mixing 2-5 allogenic donors but not with single donor. We evaluated human leucocyte antigen (HLA)-expressing class Ia and class II of our hiPSCs and their differentiated cells into embryoid bodies, cardiomyocytes and mesenchymal stem cells. We further evaluated immunogenic response of transient universal hiPSCs with allogenic mononuclear cells from survival rate and cytokine production, which were generated by the cells due to immunogenic reactions. RESULTS: Our universal hiPSCs during passages 10-25 did not have immunogenic reaction from allogenic mononuclear cells even after differentiation into cardiomyocytes, embryoid bodies and mesenchymal stem cells. Furthermore, the cells including the differentiated cells did not express HLA class Ia and class II. Cardiomyocytes differentiated from transient universal hiPSCs at passage 21-22 survived and continued beating even after treatment with allogenic mononuclear cells.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Fetais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Corpos Embrioides/citologia , Edição de Genes/métodos , Humanos , Miócitos Cardíacos/citologia
12.
Res Vet Sci ; 133: 239-245, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33032111

RESUMO

The liver plays essential roles in human and animal organisms, such as the storage, release, metabolism, and elimination of various endogenous or exogenous substances. Although its vital importance, few treatments are yet available when a hepatic failure occurs, and hence, the use of stem cells has arisen as a possible solution for both human and veterinary medicines. Previous studies have shown the existence of hepatic progenitor cells in human fetuses that were positive for EpCAM and NCAM. There is limited evidence, however, further identification and characterization of these cells in other species. Considering the similarity between dogs and humans regarding physiology, and also the increasing importance of developing new treatments for both veterinary and translational medicine, this study attempted to identify hepatic progenitor cells in canine fetal liver. For that, livers from canine fetuses were collected, cells were isolated by enzymatic digestion and cultured. Cells were characterized regarding morphology and expression of EpCAM, NCAM, Nestin, and Thy-1/CD90 markers. Our results suggest that it is possible to identify hepatic progenitor cells in the canine fetal liver; however, for therapeutic use, further techniques for cellular isolation and culture are necessary to obtain enriched populations of hepatic progenitors from the canine fetal liver.


Assuntos
Cães/embriologia , Células-Tronco Fetais/citologia , Fígado/embriologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Cães/anatomia & histologia , Molécula de Adesão da Célula Epitelial/metabolismo , Células-Tronco Fetais/metabolismo , Feto/citologia , Feto/embriologia , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Antígenos Thy-1/metabolismo
13.
Regen Med ; 15(6): 1719-1733, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32772793

RESUMO

Aim: To investigate direct roles of TGF-ß1 signaling in the differentiation process of fetal hepatic progenitor cells (HPCs). Materials & methods: Exogenous TGF-ß1 and SB431542 were added into fetal HPCs. Then, SB431542 was intraperitoneally injected into pregnant mice for 8 days. Results: Fetal HPCs treated with TGF-ß1 differentiated into cholangiocytes. However, hepatocyte marker was highly expressed after inhibiting TGF-ß1 signaling. In vivo, hematopoietic cells were gradually replaced with liver cells and TGF-ß1 expression was evidently decreased as fetal liver developed. Inhibition of TGF-ß1 signaling caused increase of ALB+ cells, but CK19 expression was more obvious in control mice livers. Conclusion: TGF-ß1 signaling may play decisive roles in fetal HPCs differentiation into functional hepatocytes or cholangiocytes.


Assuntos
Diferenciação Celular , Células-Tronco Fetais/citologia , Hepatócitos/citologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Feminino , Células-Tronco Fetais/metabolismo , Hepatócitos/metabolismo , Camundongos , Transdução de Sinais
14.
Stem Cell Res Ther ; 11(1): 337, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746939

RESUMO

PURPOSE: Selected placental mesenchymal stromal cells isolated from the fetal mesenchymal placental tissues (f-hPSCs) were tested as cell therapy of lethal acute radiation syndrome (ARS) with bone marrow regeneration and induced extramedullary hematopoiesis. METHODS AND MATERIALS: f-hPSCs were isolated from the chorionic plate of human placentae and further expanded in regular culture conditions. 2 × 106 f-hPSCs were injected on days 1 and 4 to 8-Gy total body irradiated (TBI) C3H mice, both intramuscularly and subcutaneously. Pre-splenectomized TBI mice were used to test the involvement of extramedullary spleen hematopoiesis in the f-hPSC-induced hematopoiesis recovery in the TBI mice. Weight and survival of the mice were followed up within the morbid period of up to 23 days following irradiation. The role of hematopoietic progenitors in the recovery of treated mice was evaluated by flow cytometry, blood cell counts, and assay of possibly relevant growth factors. RESULTS AND CONCLUSIONS: The survival rate of all groups of TBI f-hPSC-treated mice at the end of the follow-up was dramatically elevated from < 10% in untreated to ~ 80%, with a parallel regain of body weight, bone marrow (BM) recovery, and elevated circulating progenitors of blood cell lineages. Blood erythropoietin levels were elevated in all f-hPSC-treated mice. Extramedullary splenic hematopoiesis was recorded in the f-hPSC-treated mice, though splenectomized mice still had similar survival rate. Our findings suggest that the indirect f-hPSC life-saving therapy of ARS may also be applied for treating other conditions with a failure of the hematopoietic system and severe pancytopenia.


Assuntos
Transtornos da Insuficiência da Medula Óssea , Células-Tronco Fetais , Hematopoese , Células Estromais , Irradiação Corporal Total , Animais , Transtornos da Insuficiência da Medula Óssea/terapia , Feminino , Células-Tronco Fetais/transplante , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C3H , Placenta , Gravidez
15.
Stem Cell Reports ; 15(3): 749-760, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32822590

RESUMO

Cell transplantation into immunodeficient recipients is a widely used approach to study stem cell and cancer biology; however, studying cell states post transplantation in vivo is inconvenient in mammals. Here, we generated a foxn1/Casper mutant zebrafish that is transparent and exhibits T cell deficiency. By employing the line for hematopoietic stem cell (HSC) transplantation (HSCT), we could achieve nonconditioned transplantation. Meanwhile, we found that fetal HSCs from 3 days post fertilization zebrafish embryos produce a better transplant outcome in foxn1/Casper mutants, compared with adult HSCs. In addition to HSCT, the foxn1/Casper mutant is feasible for allografts of myelodysplastic syndrome-like and muscle cells, as well as xenografts of medaka muscle cells. In summary, foxn1/Casper mutants permit the nonconditioned engraftment of multiple cell types and visualized characterization of transplanted cells in vivo.


Assuntos
Aloenxertos/transplante , Fatores de Transcrição Forkhead/genética , Xenoenxertos/transplante , Mutação/genética , Neoplasias/patologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Células-Tronco Fetais/citologia , Fatores de Transcrição Forkhead/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Resultado do Tratamento , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
16.
Curr Osteoporos Rep ; 18(4): 337-343, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32710427

RESUMO

PURPOSE OF REVIEW: Osteogenesis imperfecta (OI) is a chronic disease with few treatment options available. The purpose of this review is to provide an overview on treating OI with mesenchymal stem cells (MSC). RECENT FINDINGS: Off-the-shelf MSC have a good safety profile and exhibit multilineage differentiation potential and a low immunogenic profile and are easy to manufacture. Their ability to migrate, engraft, and differentiate into bone cells, and also to act via paracrine effects on the recipient's tissues, makes MSC candidates as a clinical therapy for OI. Due to their high osteogenic potency, fetal MSC offer an even higher therapeutic potential in OI compared with MSC derived from adult sources. Preclinical and initial clinical data support the use of MSC in treating OI. The characteristics of MSC make them of great interest in treating OI. MSC may be safely transplanted via intravenous administration and show potential positive clinical effects.


Assuntos
Células-Tronco Fetais/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Osteogênese Imperfeita/terapia , Animais , Transplante de Medula Óssea , Intervenção Médica Precoce , Terapias Fetais , Humanos , Ratos
17.
Stem Cell Reports ; 15(1): 80-94, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32619494

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive and fatal muscle-wasting disease caused by DYSTROPHIN deficiency. Cell therapy using muscle stem cells (MuSCs) is a potential cure. Here, we report a differentiation method to generate fetal MuSCs from human induced pluripotent stem cells (iPSCs) by monitoring MYF5 expression. Gene expression profiling indicated that MYF5-positive cells in the late stage of differentiation have fetal MuSC characteristics, while MYF5-positive cells in the early stage of differentiation have early myogenic progenitor characteristics. Moreover, late-stage MYF5-positive cells demonstrated good muscle regeneration potential and produced DYSTROPHIN in vivo after transplantation into DMD model mice, resulting in muscle function recovery. The engrafted cells also generated PAX7-positive MuSC-like cells under the basal lamina of DYSTROPHIN-positive fibers. These findings suggest that MYF5-positive fetal MuSCs induced in the late stage of iPSC differentiation have cell therapy potential for DMD.


Assuntos
Células-Tronco Fetais/transplante , Distrofia Muscular de Duchenne/terapia , Mioblastos/transplante , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Modelos Animais de Doenças , Distrofina/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Desenvolvimento Muscular , Distrofia Muscular de Duchenne/patologia , Fator Regulador Miogênico 5/metabolismo , Fator de Transcrição PAX3/metabolismo , Recuperação de Função Fisiológica , Regeneração
18.
Sci Rep ; 10(1): 5722, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235934

RESUMO

The aim of this study was to develop a fetal cartilage-derived progenitor cell (FCPC) based cartilage gel through self-assembly for cartilage repair surgery, with clinically useful properties including adhesiveness, plasticity, and continued chondrogenic remodeling after transplantation. Characterization of the gels according to in vitro self-assembly period resulted in increased chondrogenic features over time. Adhesion strength of the cartilage gels were significantly higher compared to alginate gel, with the 2-wk group showing a near 20-fold higher strength (1.8 ± 0.15 kPa vs. 0.09 ± 0.01 kPa, p < 0.001). The in vivo remodeling process analysis of the 2 wk cultured gels showed increased cartilage repair characteristics and stiffness over time, with higher integration-failure stress compared to osteochondral autograft controls at 4 weeks (p < 0.01). In the nonhuman primate investigation, cartilage repair scores were significantly better in the gel group compared to defects alone after 24 weeks (p < 0.001). Cell distribution analysis at 24 weeks showed that human cells remained within the transplanted defects only. A self-assembled, FCPC-based cartilage gel showed chondrogenic repair potential as well as adhesive properties, beneficial for cartilage repair.


Assuntos
Cartilagem Articular/citologia , Cartilagem Articular/transplante , Condrócitos/citologia , Condrogênese/fisiologia , Células-Tronco Fetais/citologia , Engenharia Tecidual/métodos , Alginatos , Animais , Condrócitos/transplante , Células-Tronco Fetais/transplante , Humanos , Macaca fascicularis , Masculino , Camundongos , Transplante de Células-Tronco
19.
Bull Exp Biol Med ; 168(4): 589-596, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32152851
20.
Stem Cell Rev Rep ; 16(3): 524-540, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32020407

RESUMO

Nongonadal tissues express luteinizing hormone-chorionic gonadotropin receptors (LHCG-R) which are essential for their growth during fetal development. Adult mesenchymal stem/stromal cells (MSCs) have been shown to express functional LHCG-R outside pregnancy conditions, making them susceptible to hCG stimulation. In the present study we tested the effect of hCG treatment on bone marrow (BM) derived adherent stem cells in vitro, isolated from a parous women, mother of male sons, in order to evaluate its effect on maternal MSCs and in the same time on fetal microchimeric stem cells (FMSCs), to better understand the outcomes of this safe and affordable treatment on cell proliferation and expression of pluripotency genes. Our study highlights the beneficial effects of hCG exposure on gene regulation in bone marrow adherent stem cells through the upregulation of pluripotency genes and selection of more primitive mesenchymal stem cells with a better differentiation potential. Validation of these effects on MSCs and FMSCs long after parturition in vivo represents a close perspective as it could set the premises of a new mobilization strategy for the stem cell transplantation procedures in the clinical setting.


Assuntos
Células da Medula Óssea/citologia , Quimerismo/efeitos dos fármacos , Gonadotropina Coriônica/farmacologia , Células-Tronco Fetais/citologia , Células-Tronco Fetais/imunologia , Tolerância Imunológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Separação Celular , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Feminino , Células-Tronco Fetais/efeitos dos fármacos , Células-Tronco Fetais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteogênese/efeitos dos fármacos , Osteogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA