Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.630
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Adv ; 10(19): eadi6770, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718114

RESUMO

Tracking stem cell fate transition is crucial for understanding their development and optimizing biomanufacturing. Destructive single-cell methods provide a pseudotemporal landscape of stem cell differentiation but cannot monitor stem cell fate in real time. We established a metabolic optical metric using label-free fluorescence lifetime imaging microscopy (FLIM), feature extraction and machine learning-assisted analysis, for real-time cell fate tracking. From a library of 205 metabolic optical biomarker (MOB) features, we identified 56 associated with hematopoietic stem cell (HSC) differentiation. These features collectively describe HSC fate transition and detect its bifurcate lineage choice. We further derived a MOB score measuring the "metabolic stemness" of single cells and distinguishing their division patterns. This score reveals a distinct role of asymmetric division in rescuing stem cells with compromised metabolic stemness and a unique mechanism of PI3K inhibition in promoting ex vivo HSC maintenance. MOB profiling is a powerful tool for tracking stem cell fate transition and improving their biomanufacturing from a single-cell perspective.


Assuntos
Biomarcadores , Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas , Biomarcadores/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Rastreamento de Células/métodos , Análise de Célula Única/métodos , Microscopia de Fluorescência/métodos , Humanos
3.
Stem Cell Res Ther ; 15(1): 133, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704588

RESUMO

BACKGROUND: Human hematopoietic organoids have a wide application value for modeling human bone marrow diseases, such as acute hematopoietic radiation injury. However, the manufacturing of human hematopoietic organoids is an unaddressed challenge because of the complexity of hematopoietic tissues. METHODS: To manufacture hematopoietic organoids, we obtained CD34+ hematopoietic stem and progenitor cells (HSPCs) from human embryonic stem cells (hESCs) using stepwise induction and immunomagnetic bead-sorting. We then mixed these CD34+ HSPCs with niche-related cells in Gelatin-methacryloyl (GelMA) to form a three-dimensional (3D) hematopoietic organoid. Additionally, we investigated the effects of radiation damage and response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic organoids. RESULTS: The GelMA hydrogel maintained the undifferentiated state of hESCs-derived HSPCs by reducing intracellular reactive oxygen species (ROS) levels. The established hematopoietic organoids in GelMA with niche-related cells were composed of HSPCs and multilineage blood cells and demonstrated the adherence of hematopoietic cells to niche cells. Notably, these hematopoietic organoids exhibited radiation-induced hematopoietic cell injury effect, including increased intracellular ROS levels, γ-H2AX positive cell percentages, and hematopoietic cell apoptosis percentages. Moreover, G-CSF supplementation in the culture medium significantly improved the survival of HSPCs and enhanced myeloid cell regeneration in these hematopoietic organoids after radiation. CONCLUSIONS: These findings substantiate the successful manufacture of a preliminary 3D hematopoietic organoid from hESCs-derived HSPCs, which was utilized for modeling hematopoietic radiation injury and assessing the radiation-mitigating effects of G-CSF in vitro. Our study provides opportunities to further aid in the standard and scalable production of hematopoietic organoids for disease modeling and drug testing.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Células-Tronco Hematopoéticas , Organoides , Humanos , Organoides/metabolismo , Organoides/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Antígenos CD34/metabolismo
4.
Dev Cell ; 59(9): 1093-1095, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714156

RESUMO

In this issue of Developmental Cell, Fowler et al. applied genetic lineage-tracing mouse models to support the notion that artery endothelial cells are the predominant source of hematopoietic stem cells. They leveraged this and developed a method capable of efficiently differentiating human pluripotent stem cells into HLF+HOXA+ hematopoietic progenitors.


Assuntos
Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Camundongos , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo
5.
J Clin Apher ; 39(3): e22114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708583

RESUMO

BACKGROUND: Stem cell apheresis in the context of autologous stem cell transplantation requires an accurate cluster of differentiantion 34 (CD34+) count determined by flow cytometry as the current gold standard. Since flow cytometry is a personnel and time-intensive diagnostic tool, automated stem cell enumeration may provide a promising alternative. Hence, this study aimed to compare automated hematopoietic progenitor enumeration carried out on a Sysmex XN-20 module compared with conventional flow cytometric measurements. METHODS: One hundred forty-three blood samples from 41 patients were included in this study. Correlation between the two methods was calculated over all samples, depending on leukocyte count and diagnosis. RESULTS: Overall, we found a high degree of correlation (r = 0.884). Furthermore, correlation was not impaired by elevated leukocyte counts (>10 000/µL, r = 0.860 vs <10 000/µL, r = 0.849; >20 000/µL, r = 0.843 vs <20 000/µL, r = 0.875). However, correlation was significantly impaired in patients with multiple myeloma (multiple myeloma r = 0.840 vs nonmyeloma r = 0.934). SUMMARY: Stem cell measurement carried out on the Sysmex XN-20 module provides a significant correlation with flow cytometry and might be implemented in clinical practice. In clinical decision-making, there was discrepancy of under 15% of cases. In multiple myeloma patients, XN-20 should be used with caution.


Assuntos
Antígenos CD34 , Citometria de Fluxo , Células-Tronco Hematopoéticas , Humanos , Citometria de Fluxo/métodos , Antígenos CD34/análise , Antígenos CD34/sangue , Células-Tronco Hematopoéticas/citologia , Mieloma Múltiplo/sangue , Mieloma Múltiplo/diagnóstico , Masculino , Feminino , Contagem de Células Sanguíneas/métodos , Contagem de Células Sanguíneas/instrumentação , Pessoa de Meia-Idade , Contagem de Leucócitos , Adulto
6.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727270

RESUMO

Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.


Assuntos
Dano ao DNA , Reparo do DNA , Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Animais , Instabilidade Genômica , Metabolismo Energético , Fosforilação Oxidativa
7.
Nat Commun ; 15(1): 4325, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773071

RESUMO

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Epigênese Genética , Células-Tronco Hematopoéticas , Mutação , Proteínas Proto-Oncogênicas , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Humanos , Hematopoese/genética , Camundongos , Diferenciação Celular/genética
8.
Hematology ; 29(1): 2347673, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712914

RESUMO

The ability to perform hematopoietic cell transplant across major histocompatibility complex barriers can dramatically increase the availability of donors and allow more patients across the world to pursue curative transplant procedures for underlying hematologic disorders. Early attempts at haploidentical transplantation using broadly reactive T-cell depletion approaches were compromised by graft rejection, graft-versus-host disease and prolonged immune deficiency. The evolution of haploidentical transplantation focused on expanding transplanted hematopoietic progenitors as well as using less broadly reactive T-cell depletion. Significant outcome improvements were identified with technology advances allowing selective depletion of donor allospecific T cells, initially ex-vivo with evolution to its current in-vivo approach with the infusion of the highly immunosuppressive chemotherapy agent, cyclophosphamide after transplantation procedure. Current approaches are facile and portable, allowing expansion of allogeneic hematopoietic cell transplantation for patients across the world, including previously underserved populations.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante Haploidêntico , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante Haploidêntico/métodos , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/etiologia , Células-Tronco Hematopoéticas/citologia
9.
Stem Cell Res Ther ; 15(1): 145, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764093

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS: In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS: Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION: In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.


Assuntos
Células-Tronco Hematopoéticas , Indenos , Células-Tronco Mesenquimais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Indenos/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Furanos/farmacologia , Sulfonas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Fumar Cigarros/efeitos adversos , Humanos , Inflamassomos/metabolismo
10.
Stem Cell Res Ther ; 15(1): 142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750578

RESUMO

Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.


Assuntos
Eritrócitos , Eritropoese , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo
11.
Stem Cell Reports ; 19(5): 639-653, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38608679

RESUMO

Sepsis survivors exhibit immune dysfunction, hematological changes, and increased risk of infection. The long-term impacts of sepsis on hematopoiesis were analyzed using a surgical model of murine sepsis, resulting in 50% survival. During acute disease, phenotypic hematopoietic stem and progenitor cells (HSPCs) were reduced in the bone marrow (BM), concomitant with increased myeloid colony-forming units and extramedullary hematopoiesis. Upon recovery, BM HSPCs were increased and exhibited normal function in the context of transplantation. To evaluate hematopoietic responses in sepsis survivors, we treated recovered sham and cecal ligation and puncture mice with a mobilizing regimen of granulocyte colony-stimulating factor (G-CSF) at day 20 post-surgery. Sepsis survivors failed to undergo emergency myelopoiesis and HSPC mobilization in response to G-CSF administration. G-CSF is produced in response to acute infection and injury to expedite the production of innate immune cells; therefore, our findings contribute to a new understanding of how sepsis predisposes to subsequent infection.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Mielopoese , Sepse , Animais , Sepse/complicações , Fator Estimulador de Colônias de Granulócitos/farmacologia , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Masculino , Sobreviventes
13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 577-582, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660869

RESUMO

OBJECTIVE: To explore the optimal storage condition and time of umbilical cord blood from collection to preparation. METHODS: Collect cord blood samples from 30 healthy newborns, with each new born's umbilical cord blood was divided into two parts on average. One part was stored in cold storage (4 ℃) and the other was stored at room temperature (20-24 ℃). Samples were taken at 24, 36, 48, 60 and 72 h, respectively, total nucleated cells (TNC) count and TNC viability was analyzed. Flow cytometry was used to detect the ratio of viable CD34+ cells to viable CD45+ cells and viability of CD34+ cells, and colony-forming unit-granulocyte-macrophage (CFU-GM) count was performed by hematopoietic progenitor cell colony culture. The change trend of each index over time was observed, and the differences in each index was compared between cold storage and room temperature storage under the same storage time. RESULTS: The TNC count (r 4 ℃=-0.9588, r 20-24 ℃=-0.9790), TNC viability (r 4 ℃=-0.9941, r 20-24 ℃=-0.9970), CD34+ cells viability (r 4 ℃=-0.9932, r 20-24 ℃=-0.9828) of cord blood stored in cold storage (4 ℃) and room temperature storage (20-24 ℃) showed a consistent downward trend with the prolongation of storage time. The percentage of viable CD34+ cells (r 4 ℃=0.9169, r 20-24 ℃=0.7470) and CFU-GM count (r 4 ℃=-0.2537, r 20-24 ℃=-0.8098) did not show consistent trends. When the storage time was the same, the TNC count, TNC viability, CD34+ cells viability and CFU-GM count of cord blood stored in cold storage were higher than those stored at room temperature. Under the same storage time (24, 36, 48, 60 or 72 h), TNC viability in room temperature storage was significantly lower than that in cold storage (P <0.001), but TNC count, percentage of viable CD34+ cells and CFU-GM count were not significantly different between room temperature storage and cold storage. When stored at room temperature for 24 h and 36 h, the viability of CD34+ cells was significantly lower than that in cold storage (P <0.001, P <0.01), when the storage time for 48, 60 and 72 h, there was no significant difference in the CD34+ cells viability between room temperature storage and cold storage. CONCLUSION: It is recommended that cord blood be stored in cold storage (4 ℃) from collection to preparation, and processed as soon as possible.


Assuntos
Antígenos CD34 , Preservação de Sangue , Sangue Fetal , Humanos , Sangue Fetal/citologia , Recém-Nascido , Fatores de Tempo , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Sobrevivência Celular , Temperatura , Coleta de Amostras Sanguíneas
14.
In Vivo ; 38(3): 1271-1277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688614

RESUMO

BACKGROUND/AIM: The COVID-19 pandemic has had a significant impact on the current management of allotransplanted patients in whom fresh hematopoietic stem cells (HSCs) were replaced by cryopreserved ones. The aim of the study was to determine the efficacy and safety of cryopreserved HSCs when compared with the fresh ones. PATIENTS AND METHODS: A retrospective analysis of 254 allogeneic stem cell transplantations (HSCT) procedures performed between 2020-2021 included the following donors: matched related (MRD; n=68), matched unrelated (MUD; n=148) and haploidentical (HID; n=38). 50% of patients (non-cryo group) received fresh grafts, whereas the remaining patients (cryo group) were transplanted with cryopreserved cells. RESULTS: No differences in terms of median days to neutrophil [MRD/MUD/HID cryo- and non-cryo groups: 17 vs. 16 (p=0.27), 19 vs. 18 (p=0.83), 22 vs. 22 (p=0.83) days, respectively] and platelet [MRD/MUD/HID cryo- and non-cryo groups: 14 vs. 14 (p=0.25), 17 vs. 17 (p=0.33), 21 vs. 19 (p=0.36) days, respectively] engraftments were demonstrated. Among MUD graft recipients, platelet engraftment rates were 81% in the cryo- and 96% in the non-cryo group (p=0.01). OS rates were comparable at 1 year after HSCT between MRD/MUD/HID cryo- and non-cryo groups: 53% vs. 60% (p=0.54), 60% vs. 66% (p=0.5), 50% vs. 41% (p=0.56), respectively. CONCLUSION: During the COVID-19 pandemic, cryopreserved HSCs did not have a negative impact on median engraftment time and OS when compared to fresh HSCs. In the MUD group, platelet engraftment rate was lower in cryopreserved HSC recipients.


Assuntos
COVID-19 , Criopreservação , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , SARS-CoV-2 , Humanos , Criopreservação/métodos , COVID-19/epidemiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Células-Tronco Hematopoéticas/citologia , Estudos Retrospectivos , Sobrevivência de Enxerto , Transplante Homólogo , Resultado do Tratamento , Idoso , Pandemias , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/epidemiologia , Adulto Jovem , Adolescente
15.
Blood Cancer Discov ; 5(3): 139-141, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651690

RESUMO

SUMMARY: The spatial distribution of cells carrying clonal hematopoiesis mutations in the bone marrow and the potential role of interactions with the microenvironment are largely unknown. This study takes clonal evolution to the spatial level by describing a novel technique examining the spatial location of mutated clones in the bone marrow and the first evidence that mutated hematopoietic clones are spatially constrained and have heterogenous locations within millimeters of distance. See related article by Young et al., p. 153 (10).


Assuntos
Evolução Clonal , Hematopoiese Clonal , Mutação , Evolução Clonal/genética , Humanos , Hematopoiese Clonal/genética , Medula Óssea , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia
16.
EMBO J ; 43(9): 1722-1739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580775

RESUMO

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Megacariócitos , Animais , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Hematopoese/fisiologia , Mesonefro/embriologia , Mesonefro/metabolismo , Mesonefro/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Técnicas de Cocultura
17.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667319

RESUMO

Platelets are the terminal progeny of megakaryocytes, primarily produced in the bone marrow, and play critical roles in blood homeostasis, clotting, and wound healing. Traditionally, megakaryocytes and platelets are thought to arise from multipotent hematopoietic stem cells (HSCs) via multiple discrete progenitor populations with successive, lineage-restricting differentiation steps. However, this view has recently been challenged by studies suggesting that (1) some HSC clones are biased and/or restricted to the platelet lineage, (2) not all platelet generation follows the "canonical" megakaryocytic differentiation path of hematopoiesis, and (3) platelet output is the default program of steady-state hematopoiesis. Here, we specifically investigate the evidence that in vivo lineage tracing studies provide for the route(s) of platelet generation and investigate the involvement of various intermediate progenitor cell populations. We further identify the challenges that need to be overcome that are required to determine the presence, role, and kinetics of these possible alternate pathways.


Assuntos
Plaquetas , Células-Tronco Hematopoéticas , Animais , Camundongos , Plaquetas/citologia , Plaquetas/metabolismo , Diferenciação Celular , Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Humanos
18.
Dev Cell ; 59(10): 1284-1301.e8, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569551

RESUMO

Macrophages constitute the first defense line against the non-self, but their ability to remodel their environment in organ development/homeostasis is starting to be appreciated. Early-wave macrophages (EMs), produced from hematopoietic stem cell (HSC)-independent progenitors, seed the mammalian fetal liver niche wherein HSCs expand and differentiate. The involvement of niche defects in myeloid malignancies led us to identify the cues controlling HSCs. In Drosophila, HSC-independent EMs also colonize the larva when late hematopoiesis occurs. The evolutionarily conserved immune system allowed us to investigate whether/how EMs modulate late hematopoiesis in two models. We show that loss of EMs in Drosophila and mice accelerates late hematopoiesis, which does not correlate with inflammation and does not rely on macrophage phagocytic ability. Rather, EM-derived extracellular matrix components underlie late hematopoiesis acceleration. This demonstrates a developmental role for EMs.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Macrófagos , Animais , Hematopoese/fisiologia , Macrófagos/metabolismo , Camundongos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fagocitose/fisiologia , Drosophila melanogaster , Matriz Extracelular/metabolismo , Drosophila , Diferenciação Celular
19.
Dev Cell ; 59(9): 1110-1131.e22, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38569552

RESUMO

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas , Proteínas de Homeodomínio , Células-Tronco Pluripotentes , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Hematopoese
20.
Transfusion ; 64(5): 866-870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606842

RESUMO

BACKGROUND: Standard flow cytometry protocols for CD34+ cell enumeration designed for fresh samples are not appropriate for cryopreserved products. Special protocols have been developed to remove the cryoprotectant by quickly washing a freshly thawed sample. Exposing cells to a large volume of hypotonic solution and subsequent washing process was hypothesized to cause lab-induced cell death. Moreover, standard gating strategies must be altered to avoid reporting falsely high viabilities. STUDY DESIGN AND METHODS: We developed a novel method whereby thawed samples were diluted step-wise to 1:2 by 3 additions of 1/3 sample volume using 1% Human Albumin in Dextran 40 (10% Low Molecular Weight Dextran in 0.9% NaCl) separated by 5 min between each addition. An additional 1:10 dilution was required to obtain a desired cell concentration for flow cytometry testing resulting in a 1:20 dilution. RESULTS: Twenty samples were tested simultaneously in a method comparison; the new method demonstrated significant increases in mean cell viabilities for white blood cells, hematopoietic progenitor cells, and T cells as well as reduced standard deviations for each parameter. DISCUSSION: Slow, step-wise dilutions of freshly thawed samples of cryopreserved apheresis products to 1:20 yielded higher and more precise viability measurements compared to quickly washing samples to remove DMSO.


Assuntos
Remoção de Componentes Sanguíneos , Sobrevivência Celular , Criopreservação , Citometria de Fluxo , Humanos , Criopreservação/métodos , Citometria de Fluxo/métodos , Remoção de Componentes Sanguíneos/métodos , Células-Tronco Hematopoéticas/citologia , Preservação de Sangue/métodos , Crioprotetores/farmacologia , Antígenos CD34/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA