Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Environ Toxicol ; 39(3): 1163-1174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37860879

RESUMO

Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.


Assuntos
Lesões Encefálicas , Cérebro , Selênio , Humanos , Selênio/farmacologia , Cádmio/toxicidade , Conexina 43/metabolismo , Conexinas/metabolismo , Fosforilação , Cérebro/metabolismo
2.
J Sci Food Agric ; 103(12): 5883-5892, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37115015

RESUMO

BACKGROUND: Cadmium (Cd), known as a vital contaminant in the environment, penetrates the blood-brain barrier and accumulates in the cerebrum. Acute toxicosis of Cd, which leads to lethal cerebral edema, intracellular accumulation and cellular dysfunction, remains to be illuminated with regard to the exact molecular mechanism of cerebral toxicity. Resveratrol (RES), present in the edible portions of numerous plants, is a simply acquirable and correspondingly less toxic natural compound with neuroprotective potential, which provides some theoretical bases for antagonizing Cd-induced cerebral toxicity. RESULTS: This work was executed to research the protective effects of RES against Cd-induced toxicity in chicken cerebrum. Markedly, these lesions were increased in the Cd group, which also exhibited a thinner cortex, reduced granule cells, vacuolar degeneration, and an enlarged medullary space in the cerebrum. Furthermore, Cd induced CYP450 enzyme metabolism disorders by disrupting the nuclear xenobiotic receptor response (NXRs), enabling the cerebrum to reduce the ability to metabolize exogenous substances, eventually leading to Cd accumulation. Meanwhile, accumulated Cd promoted oxidative damage and synergistically promoted the damage to neurons and glial cells. CONCLUSION: RES initiated NXRs (especially for aromatic receptor and pregnancy alkane X receptor), decreasing the expression of CYP450 genes, changing the content of CYP450, maintaining CYP450 enzyme normal activities, and exerting antagonistic action against the Cd-induced abnormal response of nuclear receptors. These results suggest that the cerebrum toxicity caused by Cd was reduced by pretreatment with RES. © 2023 Society of Chemical Industry.


Assuntos
Cádmio , Cérebro , Resveratrol/farmacologia , Resveratrol/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Cérebro/metabolismo , Estresse Oxidativo , Microssomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36361987

RESUMO

In rodent models, leukemia inhibitory factor (LIF) is involved in cerebral development via the placenta, and maternal immune activation is linked to psychiatric disorders in the child. However, whether LIF acts directly on neural progenitor cells (NPCs) remains unclear. This study performed DNA microarray analysis and quantitative RT-PCR on the fetal cerebrum after maternal intraperitoneal or fetal intracerebral ventricular injection of LIF at day 14.5 (E14.5) and determined that the expression of insulin-like growth factors (IGF)-1 and -2 was induced by LIF. Physiological IGF-1 and IGF-2 levels in fetal cerebrospinal fluid (CSF) increased from E15.5 to E17.5, following the physiological surge of LIF levels in CSF at E15.5. Immunostaining showed that IGF-1 was expressed in the cerebrum at E15.5 to E19.5 and IGF-2 at E15.5 to E17.5 and that IGF-1 receptor and insulin receptor were co-expressed in NPCs. Further, LIF treatment enhanced cultured NPC proliferation, which was reduced by picropodophyllin, an IGF-1 receptor inhibitor, even under LIF supplementation. Our findings suggest that IGF expression and release from the NPCs of the fetal cerebrum in fetal CSF is induced by LIF, thus supporting the involvement of the LIF-IGF axis in cerebral cortical development in an autocrine/paracrine manner.


Assuntos
Cérebro , Fator Inibidor de Leucemia , Células-Tronco Neurais , Somatomedinas , Animais , Feminino , Gravidez , Ratos , Proliferação de Células , Cérebro/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator Inibidor de Leucemia/metabolismo , Células-Tronco Neurais/metabolismo , Receptor IGF Tipo 1/metabolismo
4.
Zhonghua Bing Li Xue Za Zhi ; 51(11): 1129-1134, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36323542

RESUMO

Objective: To investigate clinicopathological features of multinodular and vacuolar neurodegenerative tumor (MVNT) of the cerebrum, and to investigate its immunophenotype, molecular characteristics and prognosis. Methods: Four cases were collected at the General Hospital of Southern Theater Command, Guangzhou, China and one case was collected at the First People's Hospital of Huizhou, China from 2013 to 2021. Clinical, histological, immunohistochemical and molecular characteristics of these five cases were analyzed. Follow-up was carried out to evaluate their prognoses. Results: There were four females and one male, with an average age of 42 years (range, 17 to 51 years). Four patients presented with seizures, while one presented with discomfort on the head. Pre-operative imaging demonstrated non-enhancing, T2-hyperintense multinodular lesions in the deep cortex and superficial white matter of the frontal (n=1) or temporal lobes (n=4). Microscopically, the tumor cells were mostly arranged in discrete and coalescent nodules primarily within the deep cortical ribbon and superficial subcortical white matter. The tumors were composed of large cells with ganglionic morphology, vesicular nuclei, prominent nucleoli and amphophilic or lightly basophilic cytoplasm. They exhibited varying degrees of matrix vacuolization. Vacuolated tumor cells did not show overt cellular atypia or any mitotic activities. Immunohistochemically, tumor cells exhibited widespread nuclear staining for the HuC/HuD neuronal antigens, SOX10 and Olig2. Expression of other neuronal markers, including synaptophysin, neurofilament and MAP2, was patchy to absent. The tumor cells were negative for NeuN, GFAP, p53, H3K27M, IDH1 R132H, ATRX, BRG1, INI1 and BRAF V600E. No aberrant molecular changes were identified in case 3 and case 5 using next-generation sequencing (including 131 genes related to diagnosis and prognosis of central nervous system tumors). All patients underwent complete or substantial tumor excision without adjuvant chemoradiotherapy. Post-operative follow-up information over intervals of 6 months to 8 years was available for five patients. All patients were free of recurrence. Conclusions: MVNT is an indolent tumor, mostly affecting adults, which supports classifying MVNT as WHO grade 1. There is no tumor recurrence even in the patients treated with subtotal surgical excision. MVNTs may be considered for observation or non-surgical treatments if they are asymptomatic.


Assuntos
Neoplasias Encefálicas , Cérebro , Adulto , Feminino , Humanos , Masculino , Neoplasias Encefálicas/patologia , Cérebro/metabolismo , Cérebro/patologia , Neurônios/metabolismo , Convulsões , Lobo Temporal/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
5.
Life Sci ; 308: 120958, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108767

RESUMO

Neurodegenerative diseases are one of the major complications of type 1 diabetes mellitus (T1DM). The effect of insulin monotherapy on controlling blood glucose and neurodegeneration associated with diabetes is unsatisfactory. It is revealed that oxidative stress is a key element in T1DM. Therefore, N-acetylcysteine (NAC) was used together with insulin to investigate the therapeutic effect on neuronal damage in T1DM in this study. A total of 40 beagles were randomly divided into 5 groups (control group, DM group, insulin monotherapy group, NAC combined with insulin group, and NAC monotherapy group) to explore the effects of NAC on alleviating the oxidative damage in cerebrum. Our results showed that the contents of H2O2, 8-OHdg and MDA were apparently increased in DM group, while DNA and lipid oxidative damage was alleviated by the treatment of NAC and insulin. Histopathology revealed the sparse of neurofibrils and vacuolar degeneration in DM group. Additionally, compared with the control group, the mRNA expression levels of HO-1, nqo1, GCLC and GSTM1 were significantly decreased in DM group, while the opposite trend could be shown under NAC combined with insulin treatment. Meanwhile, the tight junction proteins of ZO-1, occludin and Claudin-1 were up-regulated with the treatment of NAC combined with insulin. Additionally, NAC further alleviated oxidative damage by enhancing the activity of GSH, Trx and TrxR and reducing the activity of catalase, GSSG and Grx to maintain redox homeostasis. These results demonstrated that NAC combined with insulin exerted protective effects against T1DM-induced cerebral injury via maintaining cerebral redox homeostasis.


Assuntos
Cérebro , Diabetes Mellitus Tipo 1 , Acetilcisteína/uso terapêutico , Animais , Antioxidantes/farmacologia , Glicemia , Catalase/metabolismo , Cérebro/metabolismo , Claudina-1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cães , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Homeostase , Peróxido de Hidrogênio/farmacologia , Insulina/metabolismo , Lipídeos/farmacologia , Ocludina/metabolismo , Oxirredução , Estresse Oxidativo , RNA Mensageiro/metabolismo
6.
Environ Toxicol ; 37(8): 2033-2043, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35446475

RESUMO

Deltamethrin (DLM) is a widely used and highly effective insecticide. DLM exposure is harmful to animal and human. Quail, as a bird model, has been widely used in the field of toxicology. However, there is little information available in the literature about quail cerebrum damage caused by DLM. Here, we investigated the effect of DLM on quail cerebrum neurons. Four groups of healthy quails were assigned (10 quails in each group), respectively given 0, 15, 30, and 45 mg/kg DLM by gavage for 12 weeks. Through the measurements of quail cerebrum, it was found that DLM exposure induced obvious histological changes, oxidative stress, and neurons apoptosis. To further explore the possible molecular mechanisms, we performed real-time quantitative PCR to detect the expression of endoplasmic reticulum (ER) stress-related mRNA such as glucose regulated protein 78 kD, activating transcription factor 6, inositol requiring enzyme, and protein kinase RNA (PKR)-like ER kinase. In addition, we detected ATP content in quail cerebrum to evaluate the functional status of mitochondria. The study showed that DLM exposure significantly increased the expression of ER stress-related mRNA and decreased ATP content in quail cerebrum tissues. These results suggest that chronic exposure to DLM induces apoptosis of quail cerebrum neurons via promoting ER stress and mitochondrial dysfunction. Furthermore, our results provide a novel explanation for DLM-induced apoptosis of avian cerebrum neurons.


Assuntos
Cérebro , Estresse do Retículo Endoplasmático , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Cérebro/metabolismo , Mitocôndrias/metabolismo , Neurônios , Nitrilas , Piretrinas , Codorniz/metabolismo , RNA Mensageiro/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-34752896

RESUMO

The present study aimed to explore the toxic effects of excessive dietary Mn in livers and cerebrums of Jianzhou Da'er goat (Capra hircus). Three-month old goats were assigned into three groups: control group, fed on basal diet; Mn I group, fed on the basal diet mixed with MnCl2 (2.5 g/kg); Mn II group, fed on the basal diet mixed with MnCl2 (5 g/kg). Compared with the control group, the activities of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and the concentrations of interferon-γ (IFN-γ) in Mn I and Mn II groups were significantly increased, but the concentrations of IgG in Mn I and Mn II groups were significantly decreased (p < 0.05). The activities of superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and the concentrations of glutathione (GSH) in Mn I and Mn II groups were significantly decreased, whereas the concentrations of malondialdehyde (MDA) in Mn I and Mn II groups were significantly increased in livers and cerebrums (p < 0.05). Moreover, the hepatocytes necrosed, inflammatory cells infiltrated, chromatin concentrated, mitochondrial cristae reduced in Mn I and Mn II groups. The nerve cells necrosed, blood vessels congested, inflammatory cells infiltrated, mitochondrial electron density and mitochondrial cristae decreased, and vacuolization increased in Mn I and Mn II groups. Furthermore, the mRNA expressions of tumor necrosis factor alpha (TNF-α), tumor necrosis factor receptor type 1 (TNFR1), fas-associated protein via a death domain (FADD), Bcl2-associated X (Bax), cysteinyl aspartate specific proteinase 3, 8, 9 (Caspase-3, 8, 9) in Mn I and Mn II groups were significantly increased (p < 0.05), but the mRNA expressions of B-cell lymphoma-2 (Bcl-2) in Mn I and Mn II groups were significantly decreased (p < 0.05) in livers. The mRNA expressions of Bcl-2, Bax, Caspase-3, 9, 7, 12 in Mn I and Mn II groups were significantly increased (p < 0.05), however, the ratio of Bcl-2/Bax in Mn I and Mn II groups was significantly decreased (p < 0.05) in cerebrums. In summary, our results provided new insights for better understanding the mechanisms of Mn toxicity in Capra hircus.


Assuntos
Apoptose/efeitos dos fármacos , Cérebro/efeitos dos fármacos , Cloretos/toxicidade , Cabras , Fígado/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Cérebro/metabolismo , Dieta , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Compostos de Manganês , Microscopia Eletrônica de Transmissão , Transcriptoma
8.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065959

RESUMO

Brain tissue may be especially sensitive to electromagnetic phenomena provoking signs of neural stress in cerebral activity. Fifty-four adult female Sprague-Dawley rats underwent ELISA and immunohistochemistry testing of four relevant anatomical areas of the cerebrum to measure biomarkers indicating induction of heat shock protein 70 (HSP-70), glucocorticoid receptors (GCR) or glial fibrillary acidic protein (GFAP) after single or repeated exposure to 2.45 GHz radiation in the experimental set-up. Neither radiation regime caused tissue heating, so thermal effects can be ruled out. A progressive decrease in GCR and HSP-70 was observed after acute or repeated irradiation in the somatosensory cortex, hypothalamus and hippocampus. In the limbic cortex; however, values for both biomarkers were significantly higher after repeated exposure to irradiation when compared to control animals. GFAP values in brain tissue after irradiation were not significantly different or were even lower than those of nonirradiated animals in all brain regions studied. Our results suggest that repeated exposure to 2.45 GHz elicited GCR/HSP-70 dysregulation in the brain, triggering a state of stress that could decrease tissue anti-inflammatory action without favoring glial proliferation and make the nervous system more vulnerable.


Assuntos
Cérebro/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Biomarcadores/metabolismo , Cérebro/efeitos da radiação , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Hipotálamo/metabolismo , Hipotálamo/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/efeitos da radiação
9.
Elife ; 102021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096502

RESUMO

Traditionally, research unraveling seasonal neuroplasticity in songbirds has focused on the male song control system and testosterone. We longitudinally monitored the song behavior and neuroplasticity in male and female starlings during multiple photoperiods using Diffusion Tensor and Fixel-Based techniques. These exploratory data-driven whole-brain methods resulted in a population-based tractogram confirming microstructural sexual dimorphisms in the song control system. Furthermore, male brains showed hemispheric asymmetries in the pallium, whereas females had higher interhemispheric connectivity, which could not be attributed to brain size differences. Only females with large brains sing but differ from males in their song behavior by showing involvement of the hippocampus. Both sexes experienced multisensory neuroplasticity in the song control, auditory and visual system, and cerebellum, mainly during the photosensitive period. This period with low gonadal hormone levels might represent a 'sensitive window' during which different sensory and motor systems in the cerebrum and cerebellum can be seasonally re-shaped in both sexes.


Assuntos
Cerebelo/fisiologia , Cérebro/fisiologia , Plasticidade Neuronal , Estorninhos/fisiologia , Vocalização Animal , Animais , Percepção Auditiva , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Cérebro/diagnóstico por imagem , Cérebro/metabolismo , Imagem de Tensor de Difusão , Estradiol/sangue , Feminino , Masculino , Atividade Motora , Fotoperíodo , Estações do Ano , Caracteres Sexuais , Estorninhos/sangue , Testosterona/sangue , Percepção Visual
10.
Sci Rep ; 11(1): 10211, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986346

RESUMO

Direct and real-time monitoring of cerebral metabolism exploiting the drastic increase in sensitivity of hyperpolarized 13C-labeled metabolites holds the potential to report on neural activity via in-cell metabolic indicators. Here, we followed the metabolic consequences of curbing action potential generation and ATP-synthase in rat cerebrum slices, induced by tetrodotoxin and oligomycin, respectively. The results suggest that pyruvate dehydrogenase (PDH) activity in the cerebrum is 4.4-fold higher when neuronal firing is unperturbed. The PDH activity was 7.4-fold reduced in the presence of oligomycin, and served as a pharmacological control for testing the ability to determine changes to PDH activity in viable cerebrum slices. These findings may open a path towards utilization of PDH activity, observed by magnetic resonance of hyperpolarized 13C-labeled pyruvate, as a reporter of neural activity.


Assuntos
Cérebro/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Cérebro/fisiologia , Feminino , Espectroscopia de Ressonância Magnética/métodos , Oligomicinas/farmacologia , Oxirredução , Oxirredutases/metabolismo , Ácido Pirúvico/metabolismo , Ratos , Ratos Sprague-Dawley , Tetrodotoxina/farmacologia
11.
Neurotoxicology ; 82: 167-176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33352273

RESUMO

Silver nanoparticles (AgNPs) are widely applied in various aspects of life. However, recent studies reported their potential toxicity both on environment and human health. The present study aimed to unravel the underlying molecular mechanisms involved in AgNPs-induced brain toxicity. Moreover, chemopreventive effect of tranilast, an analogue of tryptophan metabolite and a mast cell membrane stabilizer was evaluated. Thirty Sprague Dawley rats were enrolled equally into Normal control group, AgNPs-intoxicated group (50 mg/kg, 3 times/week) and tranilast (300 mg/kg, 3 times/week)+AgNPs group. AgNPs administration triggered brain oxidative stress as depicted by reduced Nrf-2 expression, decreased TAC and GSH as well as upregulated brain lipid peroxidation. The apparent brain oxidative damage was accompanied by elevated levels of inflammatory cytokines (IL-1ß, IL-6 and TNF-α). Moreover, brain levels of TLR4, NLRP3 and caspase-1 were up-regulated. Additionally, histological study indicated marked cellular injury in cerebrum and cerebellum specimens. This was concomitant with elevated serum CK activity and CK-BB level. On the other hand, tanilast administration remarkably alleviated AgNPs-induced brain toxicity. The present study shed the light on implication of TLR4/NLRP3 axis and NrF2 in AgNPs-induced brain toxicity. In addition, it explored the potential protective effect of tranilast on AgNPs-induced brain injury via antioxidant and anti-inflammatory efficacies.


Assuntos
Cérebro/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fármacos Neuroprotetores/farmacologia , Compostos de Prata/toxicidade , Receptor 4 Toll-Like/metabolismo , ortoaminobenzoatos/farmacologia , Animais , Caspase 1/metabolismo , Cérebro/metabolismo , Cérebro/patologia , Creatina Quinase/sangue , Creatina Quinase Forma BB/sangue , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
12.
J Med Genet ; 58(7): 484-494, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32820034

RESUMO

Background Cerebral folate deficiency (CFD) syndrome is characterised by a low concentration of 5-methyltetrahydrofolate in cerebrospinal fluid, while folate levels in plasma and red blood cells are in the low normal range. Mutations in several folate pathway genes, including FOLR1 (folate receptor alpha, FRα), DHFR (dihydrofolate reductase) and PCFT (proton coupled folate transporter) have been previously identified in patients with CFD. Methods In an effort to identify causal mutations for CFD, we performed whole exome sequencing analysis on eight CFD trios and identified eight de novo mutations in seven trios. Results Notably, we found a de novo stop gain mutation in the capicua (CIC) gene. Using 48 sporadic CFD samples as a validation cohort, we identified three additional rare variants in CIC that are putatively deleterious mutations. Functional analysis indicates that CIC binds to an octameric sequence in the promoter regions of folate transport genes: FOLR1, PCFT and reduced folate carrier (Slc19A1; RFC1). The CIC nonsense variant (p.R353X) downregulated FOLR1 expression in HeLa cells as well as in the induced pluripotent stem cell (iPSCs) derived from the original CFD proband. Folate binding assay demonstrated that the p.R353X variant decreased cellular binding of folic acid in cells. Conclusion This study indicates that CIC loss of function variants can contribute to the genetic aetiology of CFD through regulating FOLR1 expression. Our study described the first mutations in a non-folate pathway gene that can contribute to the aetiology of CFD.


Assuntos
Cérebro/metabolismo , Receptor 1 de Folato/genética , Deficiência de Ácido Fólico/líquido cefalorraquidiano , Mutação com Perda de Função , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Proteínas Repressoras/genética , Tetra-Hidrofolatos/líquido cefalorraquidiano , Células Cultivadas , Regulação para Baixo , Feminino , Receptor 1 de Folato/deficiência , Deficiência de Ácido Fólico/genética , Células HEK293 , Humanos , Masculino , Doenças do Sistema Nervoso/genética , Distrofias Neuroaxonais , Linhagem , Análise de Sequência de DNA
13.
Cell Rep ; 33(10): 108447, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296651

RESUMO

The contribution and mechanism of cerebrovascular pathology in Alzheimer's disease (AD) pathogenesis are still unclear. Here, we show that venular and capillary cerebral endothelial cells (ECs) are selectively vulnerable to necroptosis in AD. We identify reduced cerebromicrovascular expression of murine N-acetyltransferase 1 (mNat1) in two AD mouse models and hNat2, the human ortholog of mNat1 and a genetic risk factor for type-2 diabetes and insulin resistance, in human AD. mNat1 deficiency in Nat1-/- mice and two AD mouse models promotes blood-brain barrier (BBB) damage and endothelial necroptosis. Decreased mNat1 expression induces lysosomal degradation of A20, an important regulator of necroptosis, and LRP1ß, a key component of LRP1 complex that exports Aß in cerebral ECs. Selective restoration of cerebral EC expression of mNAT1 delivered by adeno-associated virus (AAV) rescues cerebromicrovascular levels of A20 and LRP1ß, inhibits endothelial necroptosis and activation, ameliorates mitochondrial fragmentation, reduces Aß deposits, and improves cognitive function in the AD mouse model.


Assuntos
Doença de Alzheimer/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Isoenzimas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Arilamina N-Acetiltransferase/genética , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cérebro/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Isoenzimas/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose/fisiologia , Fragmentos de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo
14.
J Alzheimers Dis ; 78(4): 1453-1471, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33164937

RESUMO

BACKGROUND: Multiple studies report a strong correlation between traffic-generated air pollution-exposure and detrimental outcomes in the central nervous system (CNS), including Alzheimer's disease (AD). Incidence of AD is rapidly increasing and, worldwide, many live in regions where pollutants exceed regulatory standards. Thus, it is imperative to identify environmental pollutants that contribute to AD, and the mechanisms involved. OBJECTIVE: We investigated the effects of mixed gasoline and diesel engine emissions (MVE) on the expression of factors involved in progression of AD in the hippocampus and cerebrum in a young versus aged mouse model. METHODS: Young (2 months old) and aged (18 months old) male C57BL/6 mice were exposed to either MVE (300µg/m3 PM) or filtered air (FA) for 6 h/d, 7 d/wk, for 50 d. Immunofluorescence and RT-qPCR were used to quantify oxidative stress (8-OHdG) and expression of amyloid-ß protein precursor (AßPP), ß secretase (BACE1), amyloid-ß (Aß), aryl hydrocarbon receptor (AhR), cytochrome P450 (CYP) 1B1, angiotensin-converting enzyme (ACE1), and angiotensin II type 1 (AT1) receptor in the cerebrum and hippocampus, in addition to cerebral microvascular tight junction (TJ) protein expression. RESULTS: We observed age-related increases in oxidative stress, AhR, CYP1B1, Aß, BACE1, and AT1 receptor in the CA1 region of the hippocampus, and elevation of cerebral AßPP, AhR, and CYP1B1 mRNA, associated with decreased cerebral microvascular TJ protein claudin-5. MVE-exposure resulted in further promotion of oxidative stress, and significant increases in AhR, CYP1B1, BACE1, ACE1, and Aß, compared to the young and aged FA-exposed mice. CONCLUSION: Such findings suggest that MVE-exposure exacerbates the expression of factors in the CNS associated with AD pathogenesis in aged populations.


Assuntos
Doença de Alzheimer/genética , Estresse Oxidativo/genética , Emissões de Veículos , 8-Hidroxi-2'-Desoxiguanosina/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Cérebro/metabolismo , Citocromo P-450 CYP1B1/genética , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/genética , Receptor Tipo 1 de Angiotensina/genética , Receptores de Hidrocarboneto Arílico/genética , Proteínas de Junções Íntimas/genética , Poluição Relacionada com o Tráfego , Transcriptoma/genética
15.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872405

RESUMO

Oxidative stress is a key contributor to the pathogenesis of stroke-reperfusion injury. Neuroinflammatory peptides released after ischemic stroke mediate reperfusion injury. Previous studies, including ours, have shown that lipocalin-2 (LCN2) is secreted in response to cerebral ischemia to promote reperfusion injury. Genetic deletion of LCN2 significantly reduces brain injury after stroke, suggesting that LCN2 is a mediator of reperfusion injury and a potential therapeutic target. Immunotherapy has the potential to harness neuroinflammatory responses and provides neuroprotection against stroke. Here we report that LCN2 was induced on the inner surface of cerebral endothelial cells, neutrophils, and astrocytes that gatekeep the blood-brain barrier (BBB) after stroke. LCN2 monoclonal antibody (mAb) specifically targeted LCN2 in vitro and in vivo, attenuating the induction of LCN2 and pro-inflammatory mediators (iNOS, IL-6, CCL2, and CCL9) after stroke. Administration of LCN2 mAb at 4 h after stroke significantly reduced neurological deficits, cerebral infarction, edema, BBB leakage, and infiltration of neutrophils. The binding epitope of LCN2 mAb was mapped to the ß3 and ß4 strands, which are responsible for maintaining the integrity of LCN2 cup-shaped structure. These data indicate that LCN2 can be pharmacologically targeted using a specific mAb to reduce reperfusion injury after stroke.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Lipocalina-2/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacologia , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Cérebro/metabolismo , Modelos Animais de Doenças , Mapeamento de Epitopos , Lipocalina-2/antagonistas & inibidores , Lipocalina-2/química , Masculino , Camundongos , Neutrófilos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo
16.
J Biochem Mol Toxicol ; 34(7): e22495, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32227690

RESUMO

The fluoroquinolones absorb light in the 320 to 330 nm ultraviolet A (UV-A) wavelength and produce reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide; thus, the photodynamic generation of ROS may be the basis of phototoxicity of quinolones in human beings and animals. This study aimed to evaluate the damaging effects of UV-A radiation at different periods of exposure on rats' brains administered with ciprofloxacin. Ciprofloxacin administration in UV-A exposed animals exaggerated the brain-oxidative stress biomarkers and decreased the locomotor activity. Exposure of rats to UV-A for 60 minutes induced a significant increase of malondialdehyde (MDA), myeloperoxidase (MPO), and a decrease in the values of superoxide dismutase (SOD), glutathione (GSH) compared to a normal one; these changes were UV-A exposure time-dependent. However, the administration of vitamin C to the UV-60-treated group decreased the values of MDA, MPO, and shifted the values of SOD, GSH toward the normal values. Vitamin C, probably due to its strong antioxidant properties, could improve and partially counteract the toxic effect of UV-A on oxidative stress parameters and prevent the damage in rat's brain tissues.


Assuntos
Antibacterianos/administração & dosagem , Antioxidantes/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Ciprofloxacina/administração & dosagem , Dermatite Fototóxica/tratamento farmacológico , Dermatite Fototóxica/etiologia , Raios Ultravioleta/efeitos adversos , Animais , Ácido Ascórbico/administração & dosagem , Comportamento Animal/efeitos da radiação , Cérebro/efeitos dos fármacos , Cérebro/metabolismo , Cérebro/efeitos da radiação , Dermatite Fototóxica/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Glutationa/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/efeitos da radiação , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Peroxidase/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Superóxido Dismutase/metabolismo
17.
JAMA Psychiatry ; 77(7): 745-754, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186681

RESUMO

Importance: Three-dimensional cerebral organoids generated from patient-derived induced pluripotent stem cells (iPSCs) may be used to interrogate cellular-molecular underpinnings of schizophrenia. Objective: To determine transcriptomic profiles and functional characteristics of cerebral organoids from patients with schizophrenia using gene expression studies, complemented with investigations of mitochondrial function through measurement of real-time oxygen consumption rate, and functional studies of neuronal firing with microelectrode arrays. Design, Setting, and Participants: This case-control study was conducted at Massachusetts General Hospital between 2017 and 2019. Transcriptomic profiling of iPSC-derived cerebral organoids from 8 patients with schizophrenia and 8 healthy control individuals was undertaken to identify cellular pathways that are aberrant in schizophrenia. Induced pluripotent stem cells and cerebral organoids were generated from patients who had been diagnosed as having schizophrenia and from heathy control individuals. Main Outcomes and Measures: Transcriptomic analysis of iPSC-derived cerebral organoids from patients with schizophrenia show differences in expression of genes involved in synaptic biology and neurodevelopment and are enriched for genes implicated in schizophrenia genome-wide association studies (GWAS). Results: The study included iPSC lines generated from 11 male and 5 female white participants, with a mean age of 38.8 years. RNA sequencing data from iPSC-derived cerebral organoids in schizophrenia showed differential expression of genes involved in synapses, in nervous system development, and in antigen processing. The differentially expressed genes were enriched for genes implicated in schizophrenia, with 23% of GWAS genes showing differential expression in schizophrenia and control organoids: 10 GWAS genes were upregulated in schizophrenia organoids while 15 GWAS genes were downregulated. Analysis of the gene expression profiles suggested dysregulation of genes involved in mitochondrial function and those involved in modulation of excitatory and inhibitory pathways. Studies of mitochondrial respiration showed lower basal consumption rate, adenosine triphosphate production, proton leak, and nonmitochondrial oxygen consumption in schizophrenia cerebral organoids, without any differences in the extracellular acidification rate. Microelectrode array studies of cerebral organoids showed no differences in baseline electrical activity in schizophrenia but revealed a diminished response to stimulation and depolarization. Conclusions and Relevance: Investigations of patient-derived cerebral organoids in schizophrenia revealed gene expression patterns suggesting dysregulation of a number of pathways in schizophrenia, delineated differences in mitochondrial function, and showed deficits in response to stimulation and depolarization in schizophrenia.


Assuntos
Cérebro , Fenômenos Eletrofisiológicos , Perfilação da Expressão Gênica , Mitocôndrias/metabolismo , Organoides , Esquizofrenia/genética , Adulto , Estudos de Casos e Controles , Cérebro/metabolismo , Cérebro/fisiopatologia , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Microeletrodos , Organoides/metabolismo , Organoides/fisiopatologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Análise de Sequência de RNA
18.
Mol Neurobiol ; 57(4): 1986-2001, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31903524

RESUMO

Apolipoprotein E4 (APOE4) is the major genetic risk factor for sporadic Alzheimer's disease (AD), which is characterized by amyloid ß (Aß) plaques and tau tangles. Though the role of APOE4 in Aß pathogenesis has been mechanistically defined in rodent models, much less is known regarding the relationship of APOE4 to tau pathogenesis. Recent studies have indicated a possible correlation between APOE isoform-dependent alterations in tau pathology and neurodegeneration. To explore whether neuronal expression of APOE4 triggers tauopathy, here we delivered adeno-associated viruses (AAV) expressing human APOE4 in two different models of tauopathy-rTg4510 and PS19 lines. Intracerebroventricular delivery of AAV-APOE4 in neonatal rTg4510 and PS19 mice resulted in increased APOE4 protein in neurons but did not result in altered phosphorylated tau burden, pretangle tau pathology, or silver-positive tangle pathology. Biochemical analysis of synaptic proteins did not reveal substantial alterations. Our results indicate that over-expression of APOE4 in neurons, using an AAV-mediated approache, is not sufficient to accelerate or otherwise alter the inherent tau pathology that occurs in mice overexpressing mutant human tau.


Assuntos
Apolipoproteína E4/metabolismo , Cérebro/metabolismo , Dependovirus/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Animais Recém-Nascidos , Contagem de Células , Cérebro/patologia , Modelos Animais de Doenças , Epitopos/metabolismo , Gliose/complicações , Gliose/patologia , Hipocampo/patologia , Humanos , Camundongos Transgênicos , Fosforilação , Sinapses/metabolismo , Tauopatias/complicações
19.
Genes (Basel) ; 12(1)2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396418

RESUMO

Mitochondrial encephalomyopathies comprise a group of heterogeneous disorders resulting from impaired oxidative phosphorylation (OxPhos). Among a variety of symptoms progressive external ophthalmoplegia (PEO) seems to be the most common. The aim of this study is to present clinical and genetic characteristics of Polish patients with PEO. Clinical, electrophysiological, neuroradiological, and morphological data of 84 patients were analyzed. Genetic studies of mitochondrial DNA (mtDNA) were performed in all patients. Among nuclear DNA (nDNA) genes POLG was sequenced in 41 patients, TWNK (C10orf2) in 13 patients, and RNASEH1 in 2 patients. Total of 27 patients were included in the chronic progressive external ophthalmoplegia (CPEO) group, 24 in the CPEO+ group. Twenty-six patients had mitochondrial encephalomyopathy (ME), six patients Kearns-Sayre syndrome (KSS), and one patient sensory ataxic neuropathy, dysarthria, ophthalmoparesis (SANDO) syndrome. Genetic analysis of nDNA genes revealed the presence of pathogenic or possibly pathogenic variants in the POLG gene in nine patients, the TWNK gene in five patients and the RNASEH1 gene in two patients. Detailed patients' history and careful assessment of family history are essential in the diagnostic work-up. Genetic studies of both mtDNA and nDNA are necessary for the final diagnosis of progressive external ophthalmoplegia and for genetic counseling.


Assuntos
DNA Helicases/genética , DNA Polimerase gama/genética , Síndrome de Kearns-Sayre/genética , Doenças Mitocondriais/genética , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Ribonuclease H/genética , Adolescente , Adulto , Idoso , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Cerebelo/patologia , Cérebro/diagnóstico por imagem , Cérebro/metabolismo , Cérebro/patologia , Criança , DNA Helicases/metabolismo , DNA Polimerase gama/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Diagnóstico Diferencial , Feminino , Expressão Gênica , Humanos , Síndrome de Kearns-Sayre/diagnóstico por imagem , Síndrome de Kearns-Sayre/metabolismo , Síndrome de Kearns-Sayre/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Encefalomiopatias Mitocondriais/diagnóstico por imagem , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Oftalmoplegia Externa Progressiva Crônica/diagnóstico por imagem , Oftalmoplegia Externa Progressiva Crônica/metabolismo , Oftalmoplegia Externa Progressiva Crônica/patologia , Linhagem , Polônia , Polimorfismo Genético , Ribonuclease H/metabolismo , Deleção de Sequência
20.
J Shoulder Elbow Surg ; 29(1): 79-85, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31405715

RESUMO

BACKGROUND: The beach chair position is commonly used when performing shoulder arthroplasty. However, this position has been associated with hypotension, potentially leading to cerebral hypoperfusion, which may cause neurologic injury. In addition, shoulder arthroplasty cases are associated with longer operative times, posing a potentially greater risk of cerebral hypoperfusion. We aim to evaluate the risk of cerebral desaturation events (CDEs) during the course of total shoulder arthroplasty. METHODS: Twenty-six patients undergoing shoulder arthroplasties were monitored for changes in cerebral perfusion. Seven specific time-points during the procedure were labeled for comparison of events: baseline, beach chair, incision, humeral broaching, glenoid reaming, glenoid component implantation, and humeral component implantation. Cerebral oxygen perfusion was measured using near-infrared spectroscopy. A CDE was described as a decrease of oxygen saturation greater than 20%. RESULTS: Nineteeen of 25 subjects experienced a CDE. 42% of these patients experienced CDEs during semi-beach chair positioning. Patients experienced the largest oxygen saturation drop during semi-beach chair positioning. Transition from baseline to semi-beach chair was the only event to have a statistically significant decrease in cerebral perfusion (8%, P < .05). There was a statistically significant percentage change in mean oxygen saturation in the semi-beach chair interval (10%, P < .01) and the semi-beach chair to incision interval (7%, P < .01). CONCLUSIONS: Most patients experienced an intraoperative CDE, with greatest incidence during semi-beach chair positioning. The largest decline in cerebral oxygen saturation occurred during semi-beach chair positioning. Implant implantation was not associated with decrease in cerebral oximetry.


Assuntos
Artroplastia do Ombro , Cérebro/metabolismo , Oxigênio/metabolismo , Posicionamento do Paciente , Idoso , Circulação Cerebrovascular , Feminino , Humanos , Hipotensão/etiologia , Hipotensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Oximetria , Posicionamento do Paciente/efeitos adversos , Estudos Prospectivos , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA