Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
PLoS Comput Biol ; 17(10): e1009482, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679099

RESUMO

MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains difficult, because only a fraction of the transcriptome generates MAPs. In this study, we investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons (MCCs), while excluding the MCC per se. CAMAP predictions were significantly more accurate when using original codon sequences than shuffled codon sequences which reflect amino acid usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, transcript expression level and CAMAP scores was particularly useful to increase MAP prediction accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon arrangement in the regulation of MAP presentation and support integration of both translational and post-translational events in predictive algorithms to ameliorate modeling of the immunopeptidome.


Assuntos
Códon , Biologia Computacional/métodos , Antígenos de Histocompatibilidade Classe I , Redes Neurais de Computação , Algoritmos , Sequência de Aminoácidos , Códon/química , Códon/genética , Códon/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos
2.
Oncogene ; 40(45): 6309-6320, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34584217

RESUMO

A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.


Assuntos
Códon/genética , Neoplasias/genética , RNA de Transferência/metabolismo , Códon/química , Humanos , Mutação , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Mutat Res ; 823: 111761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34461460

RESUMO

Understanding the origins of mutations in tumor suppressor genes and oncogenes associated with cancers in different tissues is critical to the development of potential prevention strategies. Analysis of >10,000 nonsense mutations in 63 tumor suppressor genes based on the ratio of the number of nonsense mutations per codon type is reported for each gene. The ratio for C•G→T•A nonsense mutations at Arg CGA codons to the number of CGA codons in all cancers is 23 (3088 total nonsense mutations for 134 CGA codons in the 63 suppressor genes). The ratio for this codon, which is attributed to hydrolytic deamination of 5-methylcytosine at CpG sites based on the sequence context, is 6-fold higher than the next highest ratio that involves a C•G→T•A transition at Trp TGG codons. C•G→A•T transversions at Glu, Ser, Tyr, Gly and Cys codons account for 25 % of the total nonsense mutations but the mutation per codon ratio for these codons is 1.0. Analysis of the bases 5' of the mutated CGA codons in the 63 tumor suppressor genes in all cancers shows a preference of 5'-G > C ∼ T ∼ A, which is not indicative of a role for enzymatic deamination by deaminases. Overall C•G→T•A mutations account for 61 % of all of the nonsense mutations in the collection of tumor suppressor genes. It is demonstrated that the ratio of C•G→T•A deamination-associated nonsense mutations at CGA codons (hydrolytic deamination) to the number of frame shift insertion/deletion mutations (i.e., replication based) for 5 major tumor suppressors genes are very similar in 3 different tissues that undergo a wide range of stem cell divisions. Therefore, the frequency of deamination mutations parallels the number of stem cell replications. This may reflect the generation of more solvent accessible single-stranded DNA regions during polymerization that are kinetically more prone to deamination.


Assuntos
Códon sem Sentido , Códon/química , Genes Supressores de Tumor , Neoplasias/genética , Códon/metabolismo , Bases de Dados Factuais , Regulação Neoplásica da Expressão Gênica , Humanos , Taxa de Mutação , Neoplasias/patologia
4.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597770

RESUMO

The family of giant viruses is still expanding, and evidence of a translational machinery is emerging in the virosphere. The Klosneuvirinae group of giant viruses was first reconstructed from in silico studies, and then a unique member was isolated, Bodo saltans virus. Here we describe the isolation of a new member in this group using coculture with the free-living amoeba Vermamoeba vermiformis This giant virus, called Yasminevirus, has a 2.1-Mb linear double-stranded DNA genome encoding 1,541 candidate proteins, with a GC content estimated at 40.2%. Yasminevirus possesses a nearly complete translational machinery, with a set of 70 tRNAs associated with 45 codons and recognizing 20 amino acids (aa), 20 aminoacyl-tRNA synthetases (aaRSs) recognizing 20 aa, as well as several translation factors and elongation factors. At the genome scale, evolutionary analyses placed this virus in the Klosneuvirinae group of giant viruses. Rhizome analysis demonstrated that the genome of Yasminevirus is mosaic, with ∼34% of genes having their closest homologues in other viruses, followed by ∼13.2% in Eukaryota, ∼7.2% in Bacteria, and less than 1% in Archaea Among giant virus sequences, Yasminevirus shared 87% of viral hits with Klosneuvirinae. This description of Yasminevirus sheds light on the Klosneuvirinae group in a captivating quest to understand the evolution and diversity of giant viruses.IMPORTANCE Yasminevirus is an icosahedral double-stranded DNA virus isolated from sewage water by amoeba coculture. Here its structure and replicative cycle in the amoeba Vermamoeba vermiformis are described and genomic and evolutionary studies are reported. This virus belongs to the Klosneuvirinae group of giant viruses, representing the second isolated and cultivated giant virus in this group, and is the first isolated using a coculture procedure. Extended translational machinery pointed to Yasminevirus among the quasiautonomous giant viruses with the most complete translational apparatus of the known virosphere.


Assuntos
DNA Viral/genética , Regulação Viral da Expressão Gênica , Genoma Viral , Vírus Gigantes/genética , Mimiviridae/genética , Vírion/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Composição de Bases , Mapeamento Cromossômico , Técnicas de Cocultura , Códon/química , Códon/metabolismo , DNA Viral/metabolismo , Tamanho do Genoma , Vírus Gigantes/classificação , Vírus Gigantes/metabolismo , Vírus Gigantes/ultraestrutura , Hartmannella/virologia , Mimiviridae/classificação , Mimiviridae/metabolismo , Mimiviridae/ultraestrutura , Fatores de Alongamento de Peptídeos/classificação , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Filogenia , Biossíntese de Proteínas , RNA de Transferência/classificação , RNA de Transferência/genética , RNA de Transferência/metabolismo , Análise de Sequência de DNA , Vírion/metabolismo , Vírion/ultraestrutura
16.
Curr Opin Chem Biol ; 46: 212-218, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30072241

RESUMO

In all translation systems, the genetic code assigns codons to amino acids as building blocks of polypeptides, defining their chemical, structural and physiological properties. The canonical genetic code, however, utilizes only 20 proteinogenic amino acids redundantly encoded in 61 codons. In order to expand the building block repertoire, this redundancy was reduced by tuning composition of the transfer RNA (tRNA) mixture in vitro. Depletion of particular tRNAs from the total tRNA mixture or its reconstitution with in vitro-transcribed tRNASNNs (S = C or G, N = U, C, A or G) divided a codon box to encode two amino acids, expanding the repertoire to 23. The expanded genetic codes may benefit analysis of cellular regulatory pathways and drug screening.


Assuntos
Aminoácidos/genética , Códon/genética , Código Genético , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Sequência de Bases , Códon/química , Códon/metabolismo , Humanos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , RNA de Transferência/genética
17.
RNA Biol ; 15(4-5): 500-507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28880718

RESUMO

The modification of adenosine to inosine at position 34 of tRNA anticodons has a profound impact upon codon-anticodon recognition. In bacteria, I34 is thought to exist only in tRNAArg, while in eukaryotes the modification is present in eight different tRNAs. In eukaryotes, the widespread use of I34 strongly influenced the evolution of genomes in terms of tRNA gene abundance and codon usage. In humans, codon usage indicates that I34 modified tRNAs are preferred for the translation of highly repetitive coding sequences, suggesting that I34 is an important modification for the synthesis of proteins of highly skewed amino acid composition. Here we extend the analysis of distribution of codons that are recognized by I34 containing tRNAs to all phyla known to use this modification. We find that the preference for codons recognized by such tRNAs in genes with highly biased codon compositions is universal among eukaryotes, and we report that, unexpectedly, some bacterial phyla show a similar preference. We demonstrate that the genomes of these bacterial species contain previously undescribed tRNA genes that are potential substrates for deamination at position 34.


Assuntos
Códon/química , Cianobactérias/genética , Eucariotos/genética , Firmicutes/genética , Código Genético , Inosina/metabolismo , RNA de Transferência de Arginina/genética , Adenosina/genética , Adenosina/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Anticódon/química , Anticódon/metabolismo , Evolução Biológica , Códon/metabolismo , Cianobactérias/metabolismo , Eucariotos/metabolismo , Firmicutes/metabolismo , Humanos , Inosina/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência de Arginina/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA