Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1768: 147590, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310936

RESUMO

Depression, rapid eye movement (REM) sleep behavior disorder, and altered olfaction are often present in Parkinson's disease. Our previous studies demonstrated the role of the olfactory bulb (OB) in causing REM sleep disturbances in depression. Furthermore, adenosine A2A receptors (A2AR) which are richly expressed in the OB, play an important role in the regulation of REM sleep. Caffeine, an adenosine A1 receptors and A2AR antagonist, and other A2AR antagonists were reported to improve olfactory function and restore age-related olfactory deficits. Therefore, we hypothesized that the A2AR neurons in the OB may regulate olfaction or odor-guided behaviors in mice. In the present study, we employed chemogenetics to specifically activate or inhibit neuronal activity. Then, buried food test and olfactory habituation/dishabituation test were performed to measure the changes in the mice's olfactory ability. We demonstrated that activation of OB neurons or OB A2AR neurons shortened the latency of buried food test and enhanced olfactory habituation to the same odors and dishabituation to different odors; inhibition of these neurons showed the opposite effects. Photostimulation of ChR2-expressing OB A2AR neuron terminals evoked inward current in the olfactory tubercle (OT) and the piriform cortex (Pir), which was blocked by glutamate receptor antagonists 2-amino-5-phosphonopentanoic acid and 6-cyano-7nitroquinoxaline-2,3-dione. Collectively, these results suggest that the OB mediates olfaction via A2AR neurons in mice. Moreover, the excitatory glutamatergic release from OB neurons to the OT and the Pir were found responsible for the olfaction-mediated effects of OB A2AR neurons.


Assuntos
Receptor A2A de Adenosina/metabolismo , Olfato/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Odorantes , Bulbo Olfatório/metabolismo , Córtex Olfatório/metabolismo , Percepção Olfatória/fisiologia , Córtex Piriforme/metabolismo , Receptor A2A de Adenosina/fisiologia
2.
Int J Mol Sci ; 21(19)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008128

RESUMO

Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Córtex Olfatório/metabolismo , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Linhagem da Célula/genética , Sistema Nervoso Central/metabolismo , Técnicas de Cocultura , Humanos , Camundongos , Fator de Crescimento Neural/genética , Neuroglia/citologia , Neuroglia/metabolismo , Neuroglia/transplante , Neurônios/transplante , Córtex Olfatório/citologia , Córtex Olfatório/transplante , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/transplante , Células-Tronco/metabolismo
3.
FEBS Open Bio ; 10(5): 912-926, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237058

RESUMO

Odor adaptation allows the olfactory system to regulate sensitivity to different stimulus intensities, which is essential for preventing saturation of the cell-transducing machinery and maintaining high sensitivity to persistent and repetitive odor stimuli. Although many studies have investigated the structure and mechanisms of the mammalian olfactory system that responds to chemical sensation, few studies have considered differences in neuronal activation that depend on the manner in which the olfactory system is exposed to odorants, or examined activity patterns of olfactory-related regions in the brain under different odor exposure conditions. To address these questions, we designed three different odor exposure conditions that mimicked diverse odor environments and analyzed c-Fos-expressing cells (c-Fos+ cells) in the odor columns of the olfactory bulb (OB). We then measured differences in the proportions of c-Fos-expressing cell types depending on the odor exposure condition. Surprisingly, under the specific odor condition in which the olfactory system was repeatedly exposed to the odorant for 1 min at 5-min intervals, one of the lateral odor columns and the ipsilateral hemisphere of the olfactory tubercle had more c-Fos+ cells than the other three odor columns and the contralateral hemisphere of the olfactory tubercle. However, this interhemispheric asymmetry of c-Fos expression was not observed in the anterior piriform cortex. To confirm whether the anterior olfactory nucleus pars externa (AONpE), which connects the left and right OB, contributes to this asymmetry, AONpE-lesioned mice were analyzed under the specific odor exposure condition. Asymmetric c-Fos expression was not observed in the OB or the olfactory tubercle. These data indicate that the c-Fos expression patterns of the olfactory-related regions in the brain are influenced by the odor exposure condition and that asymmetric c-Fos expression in these regions was observed under a specific odor exposure condition due to synaptic linkage via the AONpE.


Assuntos
Tubérculo Olfatório/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Olfato/genética , Animais , Encéfalo/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Odorantes , Bulbo Olfatório/metabolismo , Córtex Olfatório/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Percepção Olfatória/genética , Percepção Olfatória/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Olfato/fisiologia
4.
Acta Neuropathol Commun ; 7(1): 56, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987677

RESUMO

Parkinson's disease is characterized by a proteinopathy that includes aggregates of α-synuclein. A recent hypothesis proposes a prion-like spreading mechanism for this α-synucleinopathy. Early neuropathological deposits occur, among others, in the anterior olfactory nucleus (AON). This study investigates the anterograde and/or retrograde transmissibility of exogenous α-synuclein inoculated in the right AON of the A53T model of Parkinson's disease and wild-type mice as well as neuronal and glial involvement. Seven experimental groups were established: wild-type injected with tracers; A53T mice injected with either α-synuclein or saline 2 months beforehand; wild-type injected with either α-synuclein or saline 2 months beforehand; and wild-type injected with either α-synuclein or saline 4 months beforehand. Weight and behavioral changes were analyzed. Immunohistochemistry against α-synuclein, NeuN, Iba-1 and GFAP was performed. Volume and marker distributions in the olfactory bulb (OB), AON and piriform cortex were analyzed using unbiased stereology. The behavioral analyses reveal higher levels of hyperactivity in transgenic as compared to wild-type mice. Tract-tracing experiments show that the main contralateral afferent projections to the dorsal AON come from the AON and secondarily from the OB. In saline-injected transgenic animals, α-synuclein expression in the OB and the AON is higher in the left hemisphere than in the right hemisphere, which could be due to basal interhemispheric differences. α-synuclein injection could provoke a significant increase in the left hemisphere of the transgenic mice's OB, compared to saline-injected animals. Neuronal loss was observed in saline-injected transgenic mice relative to the saline-injected wild-type group. There were no overall differences in neuron number following injection of α-synuclein into either wild-type or transgenic mice, however some neuron loss was apparent in specific regions of α-synuclein injected wild-types. Microglia labeling appeared to be correlated with surgery-induced inflammation. Astroglial labeling was higher in transgenic animals, which could be due to endogenous α-synucleinopathy. This study suggests α-synucleinopathy induction, via retrograde and contralateral projections, within the olfactory system of transgenic animals.


Assuntos
Córtex Olfatório/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Encefalite/complicações , Encefalite/metabolismo , Masculino , Camundongos Transgênicos , Microglia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Córtex Olfatório/patologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia
5.
Brain Res ; 1701: 189-195, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30244018

RESUMO

Eating a new food is a unique event that guides future food choices. A key element for these choices is the perception of flavor (odor-taste associations), a multisensory process dependent upon taste and smell. The two primary cortical areas for taste and smell, gustatory cortex and piriform cortex, are thought to be crucial regions for processing and responding to odor-taste mixtures. To determine how previous experience impacts the primary chemosensory cortices, we compared the expression of the immediate early gene, c-Fos, between rats presented with a taste, an odor, or an odor-taste mixture for the first-time with rats that had many days of prior experience. Compared to rats with prior experience, we found that first-time sampling of all three chemosensory stimuli led to significantly greater c-Fos expression in gustatory cortex. In piriform cortex, only the novel chemosensory stimuli containing odors showed greater c-Fos expression. These results indicate that prior experience with taste, odor, or odor-taste stimuli habituates responses in the primary chemosensory cortices and adds further evidence supporting gustatory cortex as a fundamental node for the integration of gustatory and olfactory signals.


Assuntos
Córtex Cerebral/metabolismo , Córtex Piriforme/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Percepção Gustatória/fisiologia , Animais , Mapeamento Encefálico/métodos , Feminino , Neurônios/metabolismo , Neurônios/fisiologia , Odorantes , Córtex Olfatório/metabolismo , Percepção Olfatória/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Olfato/fisiologia , Paladar/fisiologia
6.
Gen Physiol Biophys ; 37(3): 275-283, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29938674

RESUMO

Accumulating evidence confirms that the exposure of neonatal rats to maternal separation can significantly alter individual processes of postnatal neurogenesis in the olfactory neurogenic region - the subventricular zone (SVZ) and the rostral migratory stream (RMS). To establish the stressful influence of MS on postnatal neurogenesis we have investigated whether altered olfactory environment caused by short-term MS induces expression of Fos protein in the SVZ/RMS and in the olfactory cortical area - anterior olfactory nucleus (AON) of neonatal rats. Pups were separated from mothers for 2 hours at the postnatal days 7, 14 and 21. Immunohistochemically labeled Fos protein was assessed. Our results revealed that single exposure to MS is a stressful event that selectively and in age-dependent manner stimulates cellular activity in the SVZ and AON. A few Fos+ cells were found in the SVZ of P21 control animals and MS significantly increased their number. This suggests that some SVZ cells are included in the circuitry, which is activated by MS and that these cells have complete equipment for the Fos signal transduction. MS significantly increased the number of Fos+ cells in the AON in all age stages examined suggesting that its effect is mediated by olfaction.


Assuntos
Regulação da Expressão Gênica , Ventrículos Laterais/metabolismo , Privação Materna , Neurogênese , Córtex Olfatório/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Ventrículos Laterais/citologia , Córtex Olfatório/citologia , Ratos , Ratos Wistar
7.
Chem Senses ; 41(5): 415-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26936231

RESUMO

Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals.


Assuntos
Córtex Olfatório/patologia , Animais , Calbindina 2/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Feminino , Imuno-Histoquímica , Microscopia Confocal , Neuroglia/metabolismo , Neuroglia/patologia , Córtex Olfatório/metabolismo , Parvalbuminas/metabolismo , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia , Somatostatina/metabolismo , Suínos , Peptídeo Intestinal Vasoativo/metabolismo
8.
PLoS One ; 10(9): e0138541, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407299

RESUMO

Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory cortices are complex: they differ from each other and each is formed from a variable mosaic of neurons. The results suggest that the olfactory cortices are not merely a remnant architype of the primordial forebrain but varied and independent regions.


Assuntos
Biomarcadores/metabolismo , Neocórtex/metabolismo , Córtex Olfatório/metabolismo , Animais , Biomarcadores/análise , Mapeamento Encefálico , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/embriologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Córtex Olfatório/embriologia , Córtex Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/fisiologia , Gravidez , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Proteínas Repressoras/metabolismo , Distribuição Tecidual , Proteínas Supressoras de Tumor/metabolismo
9.
Oncotarget ; 6(21): 18293-313, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26286955

RESUMO

Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1ß. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Encéfalo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Corrida/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Giro Denteado/fisiologia , Hipoglicemiantes/farmacologia , Immunoblotting , Masculino , Camundongos Endogâmicos C57BL , Músculos/efeitos dos fármacos , Músculos/enzimologia , Plasticidade Neuronal/fisiologia , Córtex Olfatório/efeitos dos fármacos , Córtex Olfatório/metabolismo , Córtex Olfatório/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transcriptoma/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA