Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Nature ; 618(7966): 808-817, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344645

RESUMO

Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration1. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi2,3, we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue4, we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.


Assuntos
Cabelo , Melanócitos , Transdução de Sinais , Animais , Camundongos , Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Receptores de Hialuronatos/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Nevo/metabolismo , Nevo/patologia , Osteopontina/metabolismo , Células-Tronco/citologia
2.
Biomed Pharmacother ; 141: 111793, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34098216

RESUMO

Liposomal honokiol isolated from the genus Magnolia has been found to have antiangiogenic, anti-inflammatory and antitumor properties. However, there has no report on its role in hair growth. Hair follicles are life-long cycled organelles that go through from anagen, catagen and telogen stages and are regulated by diverse signaling pathways, including Wnt/ß-catenin, Notch, Epidermal growth factor (EGF) and Sonic hegehog (SHH). Wnt signals are essential for the initiation of hair follicle placode development and a new potential target of hair loss treatment. This study was designed to investigate the effect of liposomal honokiol (Lip-honokiol) on inducing hair anagen. We identified the hair grew out in advance in the shaving area of C57BL/6N mice after the treatment of liposomal honokiol (Lip-honokiol) by daily abdominal injection. We first demonstrated that Lip-Honokiol activated the Wnt3a/ß-catenin pathway and downregulated the transforming growth factor-ß1 (TGF-ß1) to promote hair growth in mice via immunohistochemistry and immunofluorescence staining. These findings suggest that Lip-honokiol activated the Wnt/ß-catenin pathway and accelerated the transfer from the telogen to anagen stage and finally promoted the hair growth.


Assuntos
Compostos de Bifenilo/administração & dosagem , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Lignanas/administração & dosagem , Fator de Crescimento Transformador beta1/biossíntese , Proteína Wnt3A/biossíntese , beta Catenina/biossíntese , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Feminino , Cabelo/citologia , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Folículo Piloso/citologia , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores
4.
Nature ; 582(7812): 399-404, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494013

RESUMO

The skin is a multilayered organ, equipped with appendages (that is, follicles and glands), that is critical for regulating body temperature and the retention of bodily fluids, guarding against external stresses and mediating the sensation of touch and pain1,2. Reconstructing appendage-bearing skin in cultures and in bioengineered grafts is a biomedical challenge that has yet to be met3-9. Here we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use stepwise modulation of the transforming growth factor ß (TGFß) and fibroblast growth factor (FGF) signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During an incubation period of 4-5 months, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis and pigmented hair follicles that are equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking the neural circuitry associated with human touch. Single-cell RNA sequencing and direct comparison to fetal specimens suggest that the skin organoids are equivalent to the facial skin of human fetuses in the second trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted onto nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate that our skin organoids will provide a foundation for future studies of human skin development, disease modelling and reconstructive surgery.


Assuntos
Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Pele/citologia , Animais , Ectoderma/citologia , Feminino , Cabelo/transplante , Cor de Cabelo , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/inervação , Folículo Piloso/transplante , Cabeça , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Organoides/crescimento & desenvolvimento , Organoides/inervação , Organoides/transplante , RNA-Seq , Análise de Célula Única , Pele/crescimento & desenvolvimento , Pele/inervação , Transplante de Pele
5.
Cells ; 9(6)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481584

RESUMO

Conventional therapeutic applications of mesenchymal stromal cells (MSCs) focus on cell replacement and differentiation; however, increasing evidence suggests that most of their therapeutic effects are carried out by their various secretions. This study investigated the application of conditioned medium (CM) from human umbilical cord blood-derived MSCs (hUCB-MSCs) to improve hair growth and developed a method to reliably produce this optimized CM. Primed MSC-derived CM (P-CM) with combinations of TGF-ß1 and LiCl was optimized by comparing its effects on the cell viability of dermal papilla cells (DPCs). P-CM significantly increased the viability of DPCs compared to CM. The secretion of vascular endothelial growth factor (VEGF) in DPCs was regulated by the macrophage migration inhibitory factor (MIF) in the P-CM secreted by MSCs. These findings suggest that P-CM can improve the efficacy in hair growth via a paracrine mechanism and that MIF in P-CM exerts hair growth-promoting effects via a VEGF-related ß-catenin and p-GSK-3ß [SER9] signaling pathway. Furthermore, clinical trials have shown that 5% P-CM improved androgenetic alopecia through producing an increased hair density, thickness, and growth rate, suggesting that this topical agent may be a novel and effective treatment option for patients with androgenetic alopecia.


Assuntos
Meios de Cultivo Condicionados/química , Sangue Fetal/citologia , Cabelo/crescimento & desenvolvimento , Fatores Inibidores da Migração de Macrófagos/farmacologia , Células-Tronco Mesenquimais/citologia , Adulto , Alopecia/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Cabelo/citologia , Cabelo/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Cloreto de Lítio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Modelos Biológicos , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem , beta Catenina/metabolismo
6.
Int J Mol Med ; 45(2): 556-568, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31894311

RESUMO

Alopecia is a common and distressing condition, and developing new therapeutic agents to prevent hair loss is important. Human umbilical cord blood­derived mesenchymal stem cells (hUCB­MSCs) have been studied intensively in regenerative medicine. However, the therapeutic potential of these cells against hair loss and hair organ damage remains unclear, and the effects of hUCB­MSC transplantation on hair loss require evaluation. The current study aimed to investigate the effects of hUCB­MSCs on hair regression in vivo and restoration of anagen conduction on hair growth in vitro. The effects of hUCB­MSCs were explored in mouse catagen induction models using a topical treatment of 0.1% dexamethasone to induce hair regression. Dexamethasone was also used to simulate a stress environment in vitro. The results demonstrated that hUCB­MSCs significantly prevented hair regression induced by dexamethasone topical stimulation in vivo. Additionally, hUCB­MSCs significantly increased the proliferation of human dermal papilla cells (hDPCs) and HaCaT cells, which are key constituent cells of the hair follicle. Stimulation of vascular endothelial growth factor secretion and decreased expression of DKK­1 by hUCB­MSCs were also observed in hDPCs. Restoration of cell viability by hUCB­MSCs suggested that these cells exerted a protective effect on glucocorticoid stress­associated hair loss. In addition, anti­apoptotic effects and regulation of the autophagic flux recovery were observed in HaCaT cells. The results of the present study indicated that hUCB­MSCs may have the capacity to protect hair follicular dermal papilla cells and keratinocytes, thus preventing hair loss. Additionally, the protective effects of hUCB­MSCs may be resistant to dysregulation of autophagy under harmful stress.


Assuntos
Anti-Inflamatórios/efeitos adversos , Dexametasona/efeitos adversos , Folículo Piloso/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Feminino , Sangue Fetal/citologia , Cabelo/citologia , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Cabelo/ultraestrutura , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/ultraestrutura , Humanos , Camundongos Endogâmicos C57BL
7.
Micron ; 119: 109-116, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30711746

RESUMO

There have been many studies about the formation, storage, transport and degradation of melanosomes in epidermal melanocytes but studies of melanocytes and melanosomes in fetal hair follicles (HFs) have been limited and ambiguous. The goal of this study was to investigate the distribution of melanocytes and the degradation of melanosomes in fetal HFs. After obtaining approval and informed consent for the study, a scalp specimen from a 5 month gestational age fetus was obtained and was divided into two parts. One part was subjected to immunohistochemical staining with the melanocyte-specific marker HMB-45 and was then observed by light microscopy to detect the distribution of melanocytes in HFs. The other part underwent conventional processing for transmission electron microcopy (TEM). Subsequently, the morphology of melanosomes in HF melanocytes and their degradation in cortical keratinocytes were observed. Immunohistochemically, scattered round melanocytes lacking dendrites were mainly observed along the outer root sheath of the lower part of the HF. A few fusiform or tri-dendritic melanocytes were located at the bottom of the hair bulbs. Significantly melanized melanocytes with multiple dendrites were concentrated in the pigmented area in the center of the hair bulbs, only above the dermal papilla. Analysis by TEM revealed melanocytes containing melanosomes at all stages of development. Autophagosomes containing stage mature IV melanosomes were observed in some melanocytes. Many phagolysosomes containing numerous melanosomes were observed in the cortical keratinocytes. Some phagolysosomes were concentrically surrounded by 3-5 layers of endoplasmic reticulum. Melanosomes that had been degraded or were being degraded in phagolysosomes in keratinocytes had lost their integrity and had become an ill-defined melanosomal dust that were arranged irregularly. Partial melanin particles were released into the cytosol. Melanocytes in different regions of fetal HFs had different morphologies and were at various stages of differentiation. Fetal HF melanocytes contained not only melanosomes at different developmental stages, but autophagosomes were seen occasionally. Melanosomes were degraded into irregular pigment particles in the phagolysosomes of cortical keratinocytes. These results provide important clues to elucidate the mechanism of melanosome biodegradation.


Assuntos
Folículo Piloso/citologia , Cabelo/citologia , Melanócitos/citologia , Melanócitos/metabolismo , Melanossomas/metabolismo , Biópsia , Biotransformação , Humanos , Imuno-Histoquímica , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Melanócitos/ultraestrutura , Microscopia , Microscopia Eletrônica de Varredura , Couro Cabeludo
8.
J Dermatol Sci ; 92(1): 18-29, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30146106

RESUMO

BACKGROUND: Previous studies demonstrated that adipose-derived stem cells (ASCs) can promote hair growth, but unmet needs exist for enhancing ASC hair inductivity. OBJECTIVE: Therefore, we introduced three trichogenic factors platelet-derived growth factor-A, SOX2, and ß-catenin to ASCs (tfASCs) and evaluated whether tfASCs have similar characteristics as dermal papilla (DP) cells. METHOD: Global gene expression was examined using NGS analysis. Telogen-to-anagen induction, vibrissae hair follicle organ culture and patch assay were used. RESULTS: tfASC cell size is smaller than that of ASCs, and they exhibit short doubling time. tfASCs also resist aging and can be expanded until passage 12. Cell proportion in S and G2/M increases in tfASCs, and tfASCs express high mRNA levels of cell cycle related genes. The mRNA expression of DP markers was notably higher in tfASCs. Moreover, NGS analysis revealed that the global gene expression of tfASCs is similar to that of DP cells. The injection of tfASCs accelerated the telogen-to-anagen transition and conditioned medium of tfASCs increased the anagen phase of vibrissal hair follicles. Finally, we found that the injection of 3D-cultured tfASCs at p 9 generated new hair follicles in nude mice. CONCLUSION: Collectively, these results indicate that 1) tfASCs have similar characteristics as DP cells, 2) tfASCs have enhanced hair-regenerative potential compared with ASCs, and 3) tfASCs even at late passage can make new hair follicles in a hair reconstitution assay. Because DP cells are difficult to isolate/expand and ASCs have low hair inductivity, tfASCs and tfASC-CM are clinically good candidates for hair regeneration.


Assuntos
Diferenciação Celular , Cabelo/citologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/metabolismo , Gordura Subcutânea/citologia , beta Catenina/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Tamanho Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Cabelo/crescimento & desenvolvimento , Cabelo/transplante , Humanos , Camundongos Endogâmicos C3H , Camundongos Nus , Fenótipo , Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Transcrição SOXB1/genética , Transplante de Células-Tronco , Transfecção , beta Catenina/genética
9.
J Cell Physiol ; 233(11): 9015-9030, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29923313

RESUMO

Human hair dermal papilla (DP) cells are specialized mesenchymal cells that play a pivotal role in hair regeneration and hair cycle activation. The current study aimed to first develop three-dimensional (3D) DP spheroids (DPS) with or without a silk-gelatin (SG) microenvironment, which showed enhanced DP-specific gene expression, resulting in enhanced extracellular matrix (ECM) production compared with a monolayer culture. We tested the feasibility of using this DPS model for drug screening by using minoxidil, which is a standard drug for androgenic alopecia. Minoxidil-treated DPS showed enhanced expression of growth factors and ECM proteins. Further, an attempt has been made to establish an in vitro 3D organoid model consisting of DPS encapsulated by SG hydrogel and hair follicle (HF) keratinocytes and stem cells. This HF organoid model showed the importance of structural features, cell-cell interaction, and hypoxia akin to in vivo HF. The study helped to elucidate the molecular mechanisms to stimulate cell proliferation, cell viability, and elevated expression of HF markers as well as epithelial-mesenchymal crosstalks, demonstrating high relevance to human HF biology. This simple in vitro DP organoid model system has the potential to provide significant insights into the underlying mechanisms of HF morphogenesis, distinct molecular signals relevant to different stages of the hair cycle, and hence can be used for controlled evaluation of the efficacy of new drug molecules.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Cabelo/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Organoides/crescimento & desenvolvimento , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Derme/citologia , Derme/crescimento & desenvolvimento , Transição Epitelial-Mesenquimal/genética , Feminino , Cabelo/citologia , Folículo Piloso/citologia , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Organoides/citologia , Regeneração/genética
10.
J Cell Biol ; 217(6): 2185-2204, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29602800

RESUMO

The microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets. By directly ligating miRNAs to their targeted mRNA regions, we identify numerous miR-200 targets involved in the regulation of focal adhesion, actin cytoskeleton, cell cycle, and Hippo/Yap signaling. The two subfamilies bind to largely distinct target sites, but many genes are coordinately regulated by both subfamilies. Using inducible and knockout mouse models, we show that the miR-200 family regulates cell adhesion and orientation in the hair germ, contributing to precise cell fate specification and hair morphogenesis. Our findings demonstrate that combinatorial targeting of many genes is critical for miRNA function and provide new insights into miR-200's functions.


Assuntos
Cabelo/citologia , Cabelo/crescimento & desenvolvimento , MicroRNAs/metabolismo , Morfogênese , Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Animais , Sequência de Bases , Adesão Celular , Ciclo Celular , Linhagem da Célula , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Adesões Focais/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Camundongos Knockout , MicroRNAs/genética , Fenótipo , Transporte Proteico , Transdução de Sinais , Pele/metabolismo
11.
Pigment Cell Melanoma Res ; 31(5): 630-635, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29488689

RESUMO

Various changes appear in hair by aging, and graying is the most remarkable one. Changes in melanocytes have been well studied as the cause; however, little is known about the change in melanosomes which have a role of carrying melanin pigments into hair shafts. Using pigmented hairs of Japanese females from their age of 4-75, I isolated melanosomes and observed them. As a result, I found a significant change in the morphology of hair melanosomes with age. They were ellipsoidal on the whole and there was no age dependence in the major axis, while the minor axis significantly increased and its frequency distribution broadened with age. The anticipated volume of the melanosome of the oldest person hairs was about twice larger than that of child hairs. This enlargement of melanosome seems to be a cause of the age-related color change in pigmented hairs from brown to black.


Assuntos
Envelhecimento , Cabelo/ultraestrutura , Melaninas/metabolismo , Melanossomas/ultraestrutura , Pigmentação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Cabelo/citologia , Cabelo/metabolismo , Humanos , Melanossomas/metabolismo , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Adulto Jovem
12.
Int J Mol Sci ; 19(1)2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29315221

RESUMO

Since their invention in 2006, induced Pluripotent Stem (iPS) cells remain a great promise for regenerative medicine circumventing the ethical issues linked to Embryonic Stem (ES) cell research. iPS cells can be generated in a patient-specific manner as an unlimited source of various cell types for in vitro drug screening, developmental biology studies and regenerative use. Having the capacity of differentiating into the cells of all three primary germ layers, iPS cells have high potential to form teratoma tumors. This remains their main disadvantage and hazard which, until resolved, prevents utilization of iPS cells in clinic. Here, we present an approach for increasing iPS cells safety by introducing genetic modification-exogenous suicide gene Herpes Simplex Virus Thymidine Kinase (HSV-TK). Its expression results in specific vulnerability of genetically modified cells to prodrug-ganciclovir (GCV). We show that HSV-TK expressing cells can be eradicated both in vitro and in vivo with high specificity and efficiency with low doses of GCV. Described strategy increases iPS cells safety for future clinical applications by generating "emergency exit" switch allowing eradication of transplanted cells in case of their malfunction.


Assuntos
Simplexvirus/genética , Timidina Quinase/metabolismo , Proteínas Virais/metabolismo , Animais , Apoptose , Reprogramação Celular , Feminino , Ganciclovir/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes Transgênicos Suicidas/genética , Cabelo/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/patologia , Neoplasias/terapia , Simplexvirus/enzimologia , Teratoma/patologia , Timidina Quinase/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Virais/genética
13.
Curr HIV/AIDS Rep ; 15(1): 49-59, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29380227

RESUMO

PURPOSE OF REVIEW: In this review, we present new developments in antiretroviral adherence, focusing on pharmacological measures and real-time adherence monitoring. In addition, new strategies on how to incorporate these new measures into research and clinical care are proposed. RECENT FINDINGS: Antiretroviral drug concentrations in hair and dried blood spots are two novel pharmacological measures of cumulative drug adherence and exposure that have been recently evaluated in HIV treatment and pre-exposure prophylaxis. Real-time adherence monitoring using electronic devices has also proven highly informative, feasible, and well accepted, offering the possibility for an immediate intervention when non-adherence is detected. Both approaches offer considerable advantages over traditional adherence measures in predicting efficacy. New methods to objectively monitor adherence in real-time and over long time periods have been developed. Further research is required to better understand how these measures can optimize adherence and, ultimately, improve clinical outcomes in HIV treatment and prevention.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Adesão à Medicação/psicologia , Profilaxia Pré-Exposição/métodos , HIV/efeitos dos fármacos , Cabelo/citologia , Humanos
14.
Curr Stem Cell Res Ther ; 12(7): 535-543, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28875863

RESUMO

BACKGROUND: Adipose-derived stem cells (ADSCs) are mesenchymal stem cells (MSCs) within the stromal vascular fraction of subcutaneous adipose tissue. ADSCs secrete growth factors and other proteins, and have been used to regenerate skin with satisfactory results. OBJECTIVE: This review focuses on the effect of ADSCs and their secretory factors on the stimulation of hair growth in vitro, ex vivo and in vivo. RESULTS: The conditioned media of ADSCs (ADSC-CM) increases the proliferation rate of human follicular cells. ADSCs-derived proteins improve hair growth and protect human dermal papilla cells against cytotoxic injury caused by androgen and reactive oxygen species. Moreover, ADSC-CM induces the anagen phase and promotes hair growth in mice, and enhances the elongation of hair shafts in ex vivo human hair organ cultures. CONCLUSION: ADSC-CM promotes hair growth in vitro, ex vivo, and in vivo. Given that ADSCs are one of the most accessible sources of MSCs, ADSC-derived proteins may be feasible clinical therapeutic agents for the treatment of hair loss.


Assuntos
Tecido Adiposo/citologia , Alopecia/terapia , Meios de Cultivo Condicionados/farmacologia , Cabelo/citologia , Cabelo/fisiologia , Células-Tronco Mesenquimais/citologia , Regeneração , Tecido Adiposo/metabolismo , Animais , Citocinas/farmacologia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo
16.
Curr Stem Cell Res Ther ; 12(7): 524-530, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28474542

RESUMO

BACKGROUND: The primary roles of mesenchymal stem cells (MSCs) are to maintain the stem cell niche, facilitate recovery after injury, and ensure healthy aging and the homeostasis of organ and tissues. MSCs have recently emerged as a new therapeutic option for hair loss. OBJECTIVE: Since adipose-derived stem cells (ADSCs) are the most accessible sources of MSCs, ADSCbased hair regeneration is investigated. Besides replacing degenerated cells in affected organs, ADSCs exhibit their beneficial effects through the paracrine actions of various cytokines and growth factors. RESULTS: Several laboratory experiments and animal studies have shown that ADSC-related proteins can stimulate hair growth. In addition, we introduce our clinical pilot studies using conditioned media of ADSCs for pattern hair loss in men and women. CONCLUSION: We believe that conditioned media of ADSCs represents a promising alternative therapeutic strategy for hair loss. We also discuss practical therapeutic challenges and the direction of future research.


Assuntos
Tecido Adiposo/citologia , Alopecia/terapia , Meios de Cultivo Condicionados/farmacologia , Cabelo/citologia , Cabelo/fisiologia , Células-Tronco Mesenquimais/citologia , Regeneração , Adulto , Idoso , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Pessoa de Meia-Idade , Projetos Piloto , Adulto Jovem
17.
Curr Stem Cell Res Ther ; 12(7): 531-534, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28530535

RESUMO

BACKGROUND: Adipose-derived stem cells secrete various cytokines that promote hair growth. OBJECTIVE: To describe our experience of hair regeneration therapy using adipose-derived stem cellconditioned medium. RESULTS: We performed the hair regeneration therapy in numerous Japanese patients and reported good results. We described characteristics of the commercialized conditioned medium, treatment methods, and future directions. CONCLUSION: Treatment using adipose-derived stem cell-conditioned medium is highly effective and may represent a new therapy for alopecia.


Assuntos
Tecido Adiposo/citologia , Alopecia/terapia , Meios de Cultivo Condicionados/farmacologia , Cabelo/citologia , Cabelo/fisiologia , Células-Tronco Mesenquimais/citologia , Regeneração , Animais , Humanos , Transplante de Células-Tronco Mesenquimais
18.
Oncotarget ; 7(32): 51640-51650, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27438150

RESUMO

The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway.


Assuntos
Antracenos/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Regeneração/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião não Mamífero , Cabelo/citologia , Células Ciliadas Auditivas/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Larva , Peixe-Zebra/embriologia
19.
Methods Mol Biol ; 1453: 85-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27431249

RESUMO

Isolated dermal cells possess the capacity to induce hair growth. The cells cannot be expanded while they retain the capacity for hair induction, and lose their potential immediately after cultivation. Sphere-forming multipotent cells derived from the dermis (skin-derived precursors [SKPs]) possess hair-inducing activity. These observations provide two possibilities for the determination of the capacity for hair induction: capacity is dependent on either identity as a dermal cell or on the process of sphere formation. We developed a method that demonstrates cultivated mesenchymal cells derived from dermis and lung tissue possess in vivo hair-inducing capacity via sphere formation.


Assuntos
Diferenciação Celular , Cabelo/citologia , Cabelo/fisiologia , Células-Tronco Mesenquimais/citologia , Regeneração , Animais , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Gravidez
20.
Mol Genet Genomics ; 291(4): 1639-46, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27130465

RESUMO

Although thymosin beta 4 (Tß4) is known to play a role in hair growth, its mechanism of action is unclear. We examined the levels of key genes in a Tß4 epidermal-specific over-expressing mouse model and Tß4 global knockout mouse model to explore how Tß4 affects hair growth. By depilation and histological examination of the skin, we confirmed the effect of Tß4 on hair growth, the number of hair shafts and hair follicle (HF) structure. The mRNA and protein expression of several genes involved in hair growth were detected by real-time PCR and western blotting, respectively. Changes in the expression of ß-catenin and Lef-1, the two key molecules in the Wnt signaling pathway, were similar to the changes observed in Tß4 expression. We also found that compared to the control mice, the mRNA and protein expression of MMP-2 and VEGF were increased in the Tß4 over-expressing mice, while the level of E-cadherin (E-cad) remained the same. Further, in the Tß4 global knockout mice, the mRNA and protein levels of MMP-2 and VEGF decreased dramatically and the level of E-cad was stable. Based on the above results, we believe that Tß4 may regulate the levels of VEGF and MMP-2 via the Wnt/ß-catenin/Lef-1 signaling pathway to influence the growth of blood vessels around HFs and to activate cell migration. Tß4 may have potential for the treatment of hair growth problems in adults, and its effects should be further confirmed in future studies.


Assuntos
Folículo Piloso/citologia , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Timosina/genética , Timosina/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Movimento Celular , Células Cultivadas , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Cabelo/citologia , Folículo Piloso/irrigação sanguínea , Folículo Piloso/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA