Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Ophthalmol ; 107(12): 1936-1942, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36126102

RESUMO

BACKGROUND/AIMS: Congenital cataract is the leading cause of visual disability and blindness in childhood. ßB1-crystallin (CRYBB1) comprises about 1/10th of crystallin structural proteins, forming heteromers to maintain lens transparency. We previously reported a CRYBB1 mutation (c.347T>C, p.L116P) affecting 16 patients in a congenital nuclear cataract family. In this study, we investigate the underlying pathogenic mechanism of ßB1-L116P. METHODS: Protein isolation, size-exclusion chromatography, spectroscopy, Uncle stability screens and molecular dynamics simulations were used to assess ßA3- and ßB1-crystallin thermal stability, structural properties and heteromer formation. RESULTS: Cells that overexpressed ßB1-L116P tended to form aggregates and precipitations under heat-shock stress. Thermal denaturation and time-dependent turbidity experiments showed that thermal stability was significantly impaired. Moreover, protein instability appeared to increase with elevated concentrations detected by the Uncle system. Additionally, ßA3 had a relative protective effect on ßB1-L116P after heteromers were formed, although ßA3 was relatively unstable and was usually protected by basic ß-crystallins. Molecular dynamic simulations revealed that L116P mutation altered the hydrophobic residues at the surface around the mutant site, providing solvents more access to the internal and hydrophobic parts of the protein. CONCLUSIONS: Decreased ßB1-crystallin thermal stability in the presence of the cataract-related L116P mutation contributes significantly to congenital cataract formation. Moreover, its formation of heteromers with ßA3 protects against the low thermal stability of ßB1-L116P.


Assuntos
Catarata , Cristalinas , Cristalino , Cadeia B de beta-Cristalina , Humanos , Cadeia B de beta-Cristalina/genética , Cadeia B de beta-Cristalina/química , Cadeia B de beta-Cristalina/metabolismo , Cadeia A de beta-Cristalina/genética , Catarata/genética , Cristalino/metabolismo
2.
Eur J Ophthalmol ; 32(1): 193-199, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33827296

RESUMO

PURPOSE: To demonstrate the underlying genetic defect that contribute to inherited cataract in a northern Chinese pedigree. METHODS: The study recruited a family pedigree with a diagnosis of bilateral coronary cataract with blue punctate opacities. Fourteen family members and 100 healthy volunteers were enrolled. DNA sample of the proband in this family were analyzed by high-throughput sequencing, which was then demonstrated by Sanger sequencing in the remained people in the family and 100 controls. The functional effect of mutant genes was investigated via bioinformatics analysis, including Polymorphism Phenotyping version2 (PolyPhen-2), Protein Variation Effect Analyzer (PROVEAN v1.1.3) Scale-Invariant Feature Transform (SIFT), and Mutation Taster. RESULTS: In this three-generation family, a novel heterozygous mutation was found in the kinase domain of CRYBA1 gene (c.340C > T, p.R114C), which was only detected in patients in the family with inherited cataract and were not detected in the remained people in the family nor in normal people. The pathogenic effect of the mutation was verified via bioinformatics analysis. CONCLUSION: Our study presented the molecular experiments to confirm that a novel missense mutation of c.340 C > T located in exon 4 of CRYBA1 gene results in a bilateral coronary cataract with blue punctate opacities, which enriches the mutation spectrum of CRYBA1 gene in inherited cataract and deepens the understanding of the pathogenesis of inherited cataract.


Assuntos
Catarata , Mutação de Sentido Incorreto , Cadeia A de beta-Cristalina , Catarata/genética , China , Análise Mutacional de DNA , Humanos , Linhagem , Cadeia A de beta-Cristalina/genética
3.
Commun Biol ; 4(1): 850, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239035

RESUMO

The retinal pigmented epithelium (RPE) is a monolayer of multifunctional cells located at the back of the eye. High membrane turnover and polarization, including formation of actin-based apical microvilli, are essential for RPE function and retinal health. Herein, we demonstrate an important role for ßA3/A1-crystallin in RPE. ßA3/A1-crystallin deficiency leads to clathrin-mediated epidermal growth factor receptor (EGFR) endocytosis abnormalities and actin network disruption at the apical side that result in RPE polarity disruption and degeneration. We found that ßA3/A1-crystallin binds to phosphatidylinositol transfer protein (PITPß) and that ßA3/A1-crystallin deficiency diminishes phosphatidylinositol 4,5-biphosphate (PI(4,5)P2), thus probably decreasing ezrin phosphorylation, EGFR activation, internalization, and degradation. We propose that ßA3/A1-crystallin acquired its RPE function before evolving as a structural element in the lens, and that in the RPE, it modulates the PI(4,5)P2 pool through PITPß/PLC signaling axis, coordinates EGFR activation, regulates ezrin phosphorylation and ultimately the cell polarity.


Assuntos
Polaridade Celular/fisiologia , Endocitose , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Cadeia A de beta-Cristalina/metabolismo , Animais , Polaridade Celular/genética , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Camundongos Knockout , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosforilação , Ligação Proteica , Epitélio Pigmentado da Retina/citologia , Cadeia A de beta-Cristalina/genética
4.
Med Mol Morphol ; 54(3): 216-226, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33458799

RESUMO

The incidence rate of post-cataract surgery posterior capsule opacification (PCO) and lens turbidity is about 20% in 5 years. Soemmering's ring, which is a type of PCO also called a regenerated lens with similar tissue structure to that of a human lens, is an important proxy for elucidating the mechanism of lens regeneration and maintenance of transparency. The authors created new human immortalized crystalline lens epithelial cells (iHLEC-NY1s) with excellent differentiation potential, and as a result of culturing the cells by static and rotation-floating methods, succeeded in producing a three-dimensional cell structure model (3D-iHLEC-NY1s) which is similar to Soemmering's ring in tissue structure and expression characteristics of αA-crystalline, ßB2-crystalline, vimentin proteins. 3D-iHLEC-NY1s is expected to be a proxy in vitro experimental model of Soemmering's ring to enable evaluation of drug effects on suppression of cell aggregate formation and transparency. By further improving the culture conditions, we aim to control the cell sequence and elucidate the mechanism underlying the maintenance of lens transparency.


Assuntos
Opacificação da Cápsula/patologia , Linhagem Celular Transformada , Células Epiteliais/citologia , Cristalino/citologia , Idoso , Diferenciação Celular , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Feminino , Humanos , Cristalino/metabolismo , Modelos Biológicos , Vimentina , Cadeia A de beta-Cristalina , Cadeia B de beta-Cristalina
6.
Autophagy ; 16(6): 1130-1142, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31462148

RESUMO

Persistent fetal vasculature (PFV) is a human disease that results from failure of the fetal vasculature to regress normally. The regulatory mechanisms responsible for fetal vascular regression remain obscure, as does the underlying cause of regression failure. However, there are a few animal models that mimic the clinical manifestations of human PFV, which can be used to study different aspects of the disease. One such model is the Nuc1 rat model that arose from a spontaneous mutation in the Cryba1 (crystallin, beta 1) gene and exhibits complete failure of the hyaloid vasculature to regress. Our studies with the Nuc1 rat indicate that macroautophagy/autophagy, a process in eukaryotic cells for degrading dysfunctional components to ensure cellular homeostasis, is severely impaired in Nuc1 ocular astrocytes. Further, we show that CRYBA1 interacts with EGFR (epidermal growth factor receptor) and that loss of this interaction in Nuc1 astrocytes increases EGFR levels. Moreover, our data also show a reduction in EGFR degradation in Nuc1 astrocytes compared to control cells that leads to over-activation of the mechanistic target of rapamycin kinase complex 1 (MTORC1) pathway. The impaired EGFR-MTORC1-autophagy signaling in Nuc1 astrocytes triggers abnormal proliferation and migration. The abnormally migrating astrocytes ensheath the hyaloid artery, contributing to the pathogenesis of PFV in Nuc1, by adversely affecting the vascular remodeling processes essential to regression of the fetal vasculature. Herein, we demonstrate in vivo that gefitinib (EGFR inhibitor) can rescue the PFV phenotype in Nuc1 and may serve as a novel therapy for PFV disease by modulating the EGFR-MTORC1-autophagy pathway. ABBREVIATIONS: ACTB: actin, beta; CCND3: cyclin 3; CDK6: cyclin-dependent kinase 6; CHQ: chloroquine; COL4A1: collagen, type IV, alpha 1; CRYBA1: crystallin, beta A1; DAPI: 4'6-diamino-2-phenylindole; EGFR: epidermal growth factor receptor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary growth factor; KDR: kinase insert domain protein receptor; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MKI67: antigen identified by monoclonal antibody Ki 67; MTORC1: mechanistic target of rapamycin kinase complex 1; PARP: poly (ADP-ribose) polymerase family; PCNA: proliferating cell nuclear antigen; PFV: persistent fetal vasculature; PHPV: persistent hyperplastic primary vitreous; RPE: retinal pigmented epithelium; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase, polypeptide 1; SQSTM1/p62: sequestome 1; TUBB: tubulin, beta; VCL: vinculin; VEGFA: vascular endothelial growth factor A; WT: wild type.


Assuntos
Astrócitos/metabolismo , Autofagia/genética , Receptores ErbB/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Vítreo Primário Hiperplásico Persistente/metabolismo , Cadeia A de beta-Cristalina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Olho/metabolismo , Gefitinibe/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Microscopia Imunoeletrônica , Morfolinas/farmacologia , Vítreo Primário Hiperplásico Persistente/genética , Vítreo Primário Hiperplásico Persistente/patologia , Vítreo Primário Hiperplásico Persistente/terapia , Ratos , Transdução de Sinais/genética , Sirolimo/farmacologia , Cadeia A de beta-Cristalina/genética
7.
Invest Ophthalmol Vis Sci ; 60(1): 234-244, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30646012

RESUMO

Purpose: Crystallin gene expression during lens fiber cell differentiation is tightly spatially and temporally regulated. A significant fraction of mammalian genes is transcribed from adjacent promoters in opposite directions ("bidirectional" promoters). It is not known whether two proximal genes located on the same allele are simultaneously transcribed. Methods: Mouse lens transcriptome was analyzed for paired genes whose transcriptional start sites are separated by less than 5 kbp to identify coexpressed bidirectional promoter gene pairs. To probe these transcriptional mechanisms, nascent transcription of Cryba4, Crybb1, and Crybb3 genes from gene-rich part of chromosome 5 was visualized by RNA fluorescent in situ hybridizations (RNA FISH) in individual lens fiber cell nuclei. Results: Genome-wide lens transcriptome analysis by RNA-seq revealed that the Cryba4-Crybb1 pair has the highest Pearson correlation coefficient between their steady-state mRNA levels. Analysis of Cryba4 and Crybb1 nascent transcription revealed frequent simultaneous expression of both genes from the same allele. Nascent Crybb3 transcript visualization in "early" but not "late" differentiating lens fibers show nuclear accumulation of the spliced Crybb3 transcripts that was not affected in abnormal lens fiber cell nuclei depleted of chromatin remodeling enzyme Snf2h (Smarca5). Conclusions: The current study shows for the first time that two highly expressed lens crystallin genes, Cryba4 and Crybb1, can be simultaneously transcribed from adjacent bidirectional promoters and do not show nuclear accumulation. In contrast, spliced Crybb3 mRNAs transiently accumulate in early lens fiber cell nuclei. The gene pairs coexpressed during lens development showed significant enrichment in human "cataract" phenotype.


Assuntos
Cristalinas/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Núcleo do Cristalino/embriologia , RNA Mensageiro/genética , Fatores de Transcrição/fisiologia , Cadeia A de beta-Cristalina/genética , Cadeia B de beta-Cristalina/genética , Animais , Diferenciação Celular , Feminino , Hibridização in Situ Fluorescente , Camundongos
8.
Gene ; 692: 113-118, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30659945

RESUMO

The transcription factor v-maf avain musculoaponeurotic fibrosarcoma oncogene homolog (MAF) plays an important role in lens development. It contains a unique extended homology region (EHR) in the DNA binding domain. MAF mutations are associated with phenotypically distinct forms of congenital cataract and show different effects on the transactivation of target genes. Mutations in the MAF EHR region were rarely reported and their corresponding phenotype and impact on target genes' transactivation were not evaluated. A three- generation Chinese family with congenital cataract was recruited. The patients in the family present non-syndromic congenital nuclear and lamellar opacities. A novel MAF mutation (c.812 T > A, p.Val271Glu) was identified by targeted next-generation sequencing. The mutation is in highly conserved EHR region of MAF and co-segregates with the cataract in the family. It is predicted to be pathogenic by multiple algorithms and is absent in a control population. Dual luciferase activity assay shows the mutation significantly impair the transcriptional activity of four crystallin genes (CRYAA, CRYBA4, CRYBA1, and CRYGA) and two non-crystallin genes (HMOX1 and KDELR2). Herein, we report a novel missense mutation in the MAF EHR region of the DNA binding domain in a family with congenital cataract. The mutation is associated with non-syndromic bilateral nuclear cataract and impacts the transactivation of cataract associated genes involved in lens structure and stress response.


Assuntos
Catarata/genética , Cristalinas/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-maf/genética , Sítios de Ligação , Catarata/patologia , Catarata/terapia , Extração de Catarata , Feminino , Heme Oxigenase-1/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Domínios Proteicos , Proteínas Proto-Oncogênicas c-maf/metabolismo , Ativação Transcricional , Proteínas de Transporte Vesicular/genética , Cadeia A de beta-Cristalina/genética
9.
Oral Dis ; 25(1): 274-281, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29683234

RESUMO

OBJECTIVE: Masticatory muscle tendon-aponeurosis hyperplasia, which is associated with limited mouth opening, progresses very slowly from adolescence. The prevalence rates of this disease are higher among women than among men, suggesting oestrogen involvement. As parafunctional habits are frequently observed, mechanical stress is likely involved in the pathogenesis and advancement of this disease. To elucidate the pathological condition, we examined the effect of oestrogen on tenocyte function and the relationship between mechanical stress and crystallin beta A4 (Cryba4), using murine TT-D6 tenocytes. MATERIALS AND METHODS: Cell proliferation assays, RT-PCR, real-time RT-PCR, Western blot analysis and mechanical loading experiments were performed. RESULTS: The physiological dose of oestrogen increased the levels of scleraxis and tenomodulin in TT-D6 tenocytes. In contrast, forced expression of Cryba4 inhibited scleraxis expression in these cells. Surprisingly, oestrogen significantly promoted cell differentiation in the Cryba4-overexpressing TT-D6 tenocytes. Moreover, tensile force induced Cryba4 expression in these tendon cells. CONCLUSION: Oestrogen and Cryba4 may be associated with the progression of masticatory muscle tendon-aponeurosis hyperplasia.


Assuntos
Aponeurose/patologia , Estrogênios/fisiologia , Músculos da Mastigação/patologia , Tendões/patologia , Cadeia A de beta-Cristalina/genética , Animais , Células Cultivadas , Humanos , Hiperplasia , Camundongos , Estresse Mecânico
10.
Invest Ophthalmol Vis Sci ; 59(4): AMD104-AMD113, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30098172

RESUMO

Purpose: The RPE cells have a major role in the development of dry age-related macular degeneration (AMD). We present novel evidence that ßA3/A1-crystallin, encoded by the Cryba1 gene, a protein known to be important for lysosomal clearance in the RPE, also has a role in epithelial-to-mesenchymal transition (EMT) of RPE cells. Methods: RPE from dry AMD globes, genetically engineered mice lacking Cryba1 globally or specifically in the RPE, spontaneous mutant rats (Nuc1) with a loss-of-function mutation in Cryba1, and the melanoma OCM3 cell line were used. Spatial localization of proteins was demonstrated with immunofluorescence, gene expression levels were determined by quantitative PCR (qPCR), and protein levels by Western blotting. Cell movement was evaluated using wound healing and cell migration assays. Co-immunoprecipitation was used to identify binding partners of ßA3/A1-crystallin. Results: ßA3/A1-crystallin is upregulated in polarized RPE cells compared to undifferentiated cells. Loss of ßA3/A1-crystallin in murine and human RPE cells resulted in upregulation of Snail and vimentin, downregulation of E-cadherin, and increased cell migration. ßA3/A1-crystallin binds to cortactin, and loss of ßA3/A1-crystallin resulted in increased P-cortactinY421. The RPE from AMD samples had increased Snail and vimentin, and decreased E-cadherin, compared to age-matched controls. Conclusions: We introduced a novel concept of dry AMD initiation induced by lysosomal clearance defects in the RPE and subsequent attempts by RPE cells to avoid the resulting stress by undergoing EMT. We demonstrate that ßA3/A1-crystallin is a potential therapeutic target for AMD through rejuvenation of lysosomal dysfunction and potentially, reversal of EMT.


Assuntos
Cristalinas/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Atrofia Geográfica/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Cadeia A de beta-Cristalina/fisiologia , Animais , Western Blotting , Movimento Celular/fisiologia , Humanos , Imuno-Histoquímica , Camundongos Knockout , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição da Família Snail/genética , Transfecção , Vimentina/genética , Cicatrização/fisiologia
11.
Biochem J ; 474(14): 2475-2487, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28592682

RESUMO

Over time, the long-lived proteins that are present throughout the human body deteriorate. Typically, they become racemized, truncated, and covalently cross-linked. One reaction responsible for age-related protein cross-linking in the lens was elucidated recently and shown to involve spontaneous formation of dehydroalanine (DHA) intermediates from phosphoserine. Cys residues are another potential source of DHA, and evidence for this was found in many lens crystallins. In the human lens, some sites were more prone to forming non-disulfide covalent cross-links than others. Foremost among them was Cys5 in ßA4 crystallin. The reason for this enhanced reactivity was investigated using peptides. Oxidation of Cys to cystine was a prerequisite for DHA formation, and DHA production was accelerated markedly by the presence of a Lys, one residue separated from Cys5. Modeling and direct investigation of the N-terminal sequence of ßA4 crystallin, as well as a variety of homologous peptides, showed that the epsilon amino group of Lys can promote DHA production by nucleophilic attack on the alpha proton of cystine. Once a DHA residue was generated, it could form intermolecular cross-links with Lys and Cys. In the lens, the most abundant cross-link involved Cys5 of ßA4 crystallin attached via a thioether bond to glutathione. These findings illustrate the potential of Cys and disulfide bonds to act as precursors for irreversible covalent cross-links and the role of nearby amino acids in creating 'hotpsots' for the spontaneous processes responsible for protein degradation in aged tissues.


Assuntos
Cisteína/química , Proteínas do Olho/química , Cristalino/química , Fatores Etários , Alanina/análogos & derivados , Alanina/química , Bases de Dados de Proteínas , Dissulfetos/química , Humanos , Modelos Moleculares , Oligopeptídeos/química , Proteólise , Espectrometria de Massas em Tandem , Cadeia A de beta-Cristalina/química
12.
Eur J Hum Genet ; 25(6): 711-718, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28272538

RESUMO

Congenital cataract is a rare but severe paediatric visual impediment, often caused by variants in one of several crystallin genes that produce the bulk of structural proteins in the lens. Here we describe a pedigree with autosomal dominant isolated congenital cataract and linkage to the crystallin gene cluster on chromosome 22. No rare single nucleotide variants or short indels were identified by exome sequencing, yet copy number variant analysis revealed a duplication spanning both CRYBB1 and CRYBA4. While the CRYBA4 duplication was complete, the CRYBB1 duplication was not, with the duplicated CRYBB1 product predicted to create a gain of function allele. This association suggests a new genetic mechanism for the development of isolated congenital cataract.


Assuntos
Catarata/genética , Oftalmopatias Hereditárias/genética , Duplicação Gênica , Cadeia A de beta-Cristalina/genética , Cadeia B de beta-Cristalina/genética , Adolescente , Adulto , Idoso , Catarata/patologia , Criança , Pré-Escolar , Cromossomos Humanos Par 22/genética , Variações do Número de Cópias de DNA , Oftalmopatias Hereditárias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único
13.
Aging Cell ; 16(2): 349-359, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28083894

RESUMO

The dry (nonneovascular) form of age-related macular degeneration (AMD), a leading cause of blindness in the elderly, has few, if any, treatment options at present. It is characterized by early accumulation of cellular waste products in the retinal pigmented epithelium (RPE); rejuvenating impaired lysosome function in RPE is a well-justified target for treatment. It is now clear that amino acids and vacuolar-type H+ -ATPase (V-ATPase) regulate the mechanistic target of rapamycin, complex 1 (mTORC1) signaling in lysosomes. Here, we provide evidence for the first time that the amino acid transporter SLC36A4/proton-dependent amino acid transporter (PAT4) regulates the amino acid pool in the lysosomes of RPE. In Cryba1 (gene encoding ßA3/A1-crystallin) KO (knockout) mice, where PAT4 and amino acid levels are increased in the RPE, the transcription factors EB (TFEB) and E3 (TFE3) are retained in the cytoplasm, even after 24 h of fasting. Consequently, genes in the coordinated lysosomal expression and regulation (CLEAR) network are not activated, and lysosomal function remains low. As these mice age, expression of RPE65 and lecithin retinol acyltransferase (LRAT), two vital visual cycle proteins, decreases in the RPE. A defective visual cycle would possibly slow down the regeneration of new photoreceptor outer segments (POS). Further, photoreceptor degeneration also becomes obvious during aging, reminiscent of human dry AMD disease. Electron microscopy shows basal laminar deposits in Bruch's membrane, a hallmark of development of AMD. For dry AMD patients, targeting PAT4/V-ATPase in the lysosomes of RPE cells may be an effective means of preventing or delaying disease progression.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Células Epiteliais/metabolismo , Complexos Multiproteicos/metabolismo , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Envelhecimento/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cristalinas/metabolismo , Citosol/metabolismo , Células Epiteliais/ultraestrutura , Redes Reguladoras de Genes , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Fosforilação , Ligação Proteica , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Vias Visuais/metabolismo , Cadeia A de beta-Cristalina
14.
Biochem J ; 473(14): 2087-96, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208166

RESUMO

The high solubility and lifelong stability of crystallins are crucial to the maintenance of lens transparency and optical properties. Numerous crystallin mutations have been linked to congenital cataract, which is one of the leading causes of newborn blindness. Besides cataract, several crystallin mutations have also been linked to syndromes such as congenital microcornea-cataract syndrome (CMCC). However, the molecular mechanism of CMCC caused by crystallin mutations remains elusive. In the present study, we investigated the mechanism of CMCC caused by the X253R mutation in ßB1-crystallin. The exogenously expressed X253R proteins were prone to form p62-negative aggregates in HeLa cells, strongly inhibited cell proliferation and induced cell apoptosis. The intracellular X253R aggregates could be successfully redissolved by lanosterol but not cholesterol. The extra 26 residues at the C-terminus of ßB1-crystallin introduced by the X253R mutation had little impact on ßB1-crystallin structure and stability, but increased ßB1-crystallin hydrophobicity and decreased its solubility. Interestingly, the X253R mutant fully abolished the aggregatory propensity of ßB1- and ßA3/ßB1-crystallins at high temperatures, suggesting that X253R was an aggregation-inhibition mutation of ß-crystallin homomers and heteromers in dilute solutions. Our results suggest that an increase in hydrophobicity and a decrease in solubility might be responsible for cataractogenesis induced by the X253R mutation, while the cytotoxic effect of X253R aggregates might contribute to the defects in ocular development. Our results also highlight that, at least in some cases, the aggregatory propensity in dilute solutions could not fully mimic the behaviours of mutated proteins in the crowded cytoplasm of the cells.


Assuntos
Catarata/genética , Catarata/metabolismo , Doenças da Córnea/genética , Doenças da Córnea/metabolismo , Agregação Patológica de Proteínas/metabolismo , Cadeia B de beta-Cristalina/química , Cadeia B de beta-Cristalina/metabolismo , Dicroísmo Circular , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação/genética , Agregação Patológica de Proteínas/genética , Cadeia A de beta-Cristalina/química , Cadeia A de beta-Cristalina/genética , Cadeia A de beta-Cristalina/metabolismo , Cadeia B de beta-Cristalina/genética
15.
Acta Med Iran ; 54(12): 778-783, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28120589

RESUMO

Autosomal dominant congenital cataract (ADCC) is the most common form of inherited cataracts and accounts for one-third of congenital cataracts. Heterozygous null mutations in the crystallin genes are the major cause of the ADCC. This study aims to detect the mutational spectrum of four crystallin genes, CRYBA1/A3, CRYBB1, CRYBB2 and CRYGD in an Iranian family. Genomic DNA was isolated from whole blood cells from theproband and other family members. The coding regions and flanking intronicsequences of crystalline genes were analyzed by Sanger sequencing in aproband with ADCC. The identified mutation was further evaluated in available family members. To predict the potential protein partners of CRYBA1/A3, we also used an in-silico analysis. A de novo heterozygous deletion (c.272-274delGAG, p.G91del) in exon 4 of CRYBA1/A3 gene, leading to a deletion of Glycine at codon 91 was found. This genetic variation did not change the reading frame of CRYBA1 protein. In conclusion, we identified a de novo in-frame 3-bp deletion in the proband with an autosomal dominant congenital cataract, but not in her parents, in an Iranian family. This mutation has occurred de novo on a paternal gamete during spermatogenesis. The in-silico results predicted the interaction of CRYBA1 protein with the other CRY as well as proteins responsible for eye cell signaling.


Assuntos
Catarata/genética , Genes Dominantes/genética , Linhagem , Deleção de Sequência/genética , Cadeia A de beta-Cristalina/genética , Adulto , Povo Asiático/genética , Sequência de Bases , Catarata/sangue , Criança , Códon/genética , Análise Mutacional de DNA , Feminino , Variação Genética , Glicina/genética , Humanos , Irã (Geográfico) , Masculino , Dados de Sequência Molecular , Mutação , Pais , Análise de Sequência de DNA/métodos , Cadeia A de beta-Cristalina/sangue , Cadeia B de beta-Cristalina/sangue , Cadeia B de beta-Cristalina/genética , gama-Cristalinas/sangue , gama-Cristalinas/genética
16.
Adv Exp Med Biol ; 854: 779-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427489

RESUMO

We have previously demonstrated that ßA3/A1-crystallin, a member of the ß/γ-crystallin superfamily, is expressed in the astrocytes and retinal pigment epithelial (RPE) cells of the eye. In order to understand the physiological functions of ßA3/A1-crystallin in RPE cells, we generated conditional knockout (cKO) mice where Cryba1, the gene encoding ßA3/A1-crystallin, is deleted specifically from the RPE using the Cre-loxP system. By utilizing the cKO model, we have shown that this protein is required by RPE cells for proper lysosomal degradation of photoreceptor outer segments (OS) that have been internalized in phagosomes and also for the proper functioning of the autophagy process. We also reported that ßA3/A1-crystallin is trafficked to lysosomes, where it regulates endolysosomal acidification by modulating the activity of the lysosomal V-ATPase complex. Our results show that the V-ATPase activity in cKO RPE is significantly lower than WT RPE. Since, V-ATPase is important for regulating lysosomal pH, we noticed that endolysosomal pH was higher in the cKO cells compared to the WT cells. Increased lysosomal pH in cKO RPE is also associated with reduced Cathepsin D activity. Cathepsin D is a major lysosomal aspartic protease involved in the degradation of the OS and hence we believe that reduced proteolytic activity contributes to impaired degradation of OS in the cKO RPE. Reduced lysosomal activity in the cKO RPE also contributes to the incomplete degradation of the autophagosomes. Our results also suggest that ßA3/A1-crystallin regulates V-ATPase activity by binding to the V0 subunit of the V-ATPase complex. Taken together, these results suggest a novel mechanism by which ßA3/A1-crystallin regulates lysosomal function by modulating the activity of V-ATPase.


Assuntos
Cristalinas/metabolismo , Células Epiteliais/metabolismo , Epitélio Pigmentado da Retina/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Catepsina D/metabolismo , Cristalinas/genética , Concentração de Íons de Hidrogênio , Immunoblotting , Lisossomos/metabolismo , Camundongos Knockout , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Cadeia A de beta-Cristalina
17.
Prog Retin Eye Res ; 44: 62-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25461968

RESUMO

Crystallins, the highly abundant proteins of the ocular lens, are essential determinants of the transparency and refractivity required for lens function. Initially thought to be lens-specific and to have evolved as lens proteins, it is now clear that crystallins were recruited to the lens from proteins that existed before lenses evolved. Crystallins are expressed outside of the lens and most have been shown to have cellular functions distinct from their roles as structural elements in the lens. For one major crystallin group, the ß/γ-crystallin superfamily, no such functions have yet been established. We have explored possible functions for the polypeptides (ßA3-and ßA1-crystallins) encoded by Cryba1, one of the 6 ß-crystallin genes, using a spontaneous rat mutant and genetically engineered mouse models. ßA3-and ßA1-crystallins are expressed in retinal astrocytes and retinal pigment epithelial (RPE) cells. In both cell types, these proteins appear to be required for the proper acidification of the lysosomes. In RPE cells, elevated pH in the lysosomes is shown to impair the critical processes of phagocytosis and autophagy, leading to accumulation of undigested cargo in (auto) phagolysosomes. We postulate that this accumulation may cause pathological changes in the cells resembling some of those characteristic of age-related macular degeneration (AMD). Our studies suggest an important regulatory function of ßA3/A1-crystallin in astrocytes. We provide evidence that the cellular function of ßA3/A1-crystallin involves its interaction with V-ATPase, the proton pump responsible for acidification of the endolysosomal system.


Assuntos
Lisossomos/fisiologia , Retina/fisiologia , Cadeia A de beta-Cristalina/fisiologia , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Ratos , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia
18.
Aging Cell ; 13(6): 1091-4, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25257511

RESUMO

Although chronic inflammation is believed to contribute to the pathology of age-related macular degeneration (AMD), knowledge regarding the events that elicit the change from para-inflammation to chronic inflammation in the pathogenesis of AMD is lacking. We propose here that lipocalin-2 (LCN2), a mammalian innate immunity protein that is trafficked to the lysosomes, may contribute to this process. It accumulates significantly with age in retinal pigment epithelial (RPE) cells of Cryba1 conditional knockout (cKO) mice, but not in control mice. We have recently shown that these mice, which lack ßA3/A1-crystallin specifically in RPE, have defective lysosomal clearance. The age-related increase in LCN2 in the cKO mice is accompanied by increases in chemokine (C-C motif) ligand 2 (CCL2), reactive gliosis, and immune cell infiltration. LCN2 may contribute to induction of a chronic inflammatory response in this mouse model with AMD-like pathology.


Assuntos
Proteínas de Fase Aguda/metabolismo , Cristalinas/metabolismo , Lipocalinas/metabolismo , Degeneração Macular/metabolismo , Proteínas Oncogênicas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fatores Etários , Animais , Doença Crônica , Cristalinas/genética , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipocalina-2 , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Epitélio Pigmentado da Retina/patologia , Cadeia A de beta-Cristalina
19.
Mol Cell Biochem ; 396(1-2): 137-45, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25064449

RESUMO

Three mutations in the highly conserved DNA-binding region of c-MAF (R288P, K297R, and R299S) are associated with phenotypically distinct forms of autosomal dominant congenital cataract. However, the molecular mechanisms underlying this phenotypic diversity remain unclear. In this work, we have investigated the hypothesis that differential transactivation of MAF target genes could be one factor determining the phenotypic differences. Promoter constructs were generated for four human crystallin genes with conserved half-site MAF responsive elements (MARE). MAF expression constructs were constructed with the wildtype MAF sequence and with each of the three known mutations, i.e., R288P (associated with pulverulent cataract), K297R (associated with cerulean cataract), and R299S (associated with the most severe phenotype, congenital cataract, and microcornea syndrome). Transactivation was measured using luciferase reporter assays following cotransfection in HEK cells. Responsiveness to wildtype c-MAF was established for each of the four crystallin promoter constructs. The same constructs were then investigated using c-MAF mutants corresponding to each of the three mutations. A differential response was noted for each of the tested crystallin genes. The mutation R288P significantly reduced the expression of the CRYGA and CRYBA1 constructs but had no significant effect on the other two constructs. K297R did not lead to a significant reduction in expression of any of the four constructs, although there was a tendency toward reduced expression especially for the CRYGA construct. R299S, which is associated with the most severe phenotype, congenital cataract, and microcornea syndrome, was associated with the most severe overall effect on the transactivation of the four crystallin expression constructs. Our findings suggest that differential effects of mutations on the transactivation potential of c-MAF could be a molecular correlate of the striking genotype-phenotype correlations seen in cataract forms caused by mutations in the MAF gene.


Assuntos
Catarata/genética , Cristalinas/genética , Mutação , Proteínas Proto-Oncogênicas c-maf/genética , Sequência de Aminoácidos , Sequência de Bases , Catarata/congênito , Oftalmopatias Hereditárias/genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Elementos de Resposta , Cadeia A de beta-Cristalina/genética
20.
Curr Mol Med ; 13(6): 968-78, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23745585

RESUMO

It is well established that the tumor suppressor p53 plays major roles in regulating apoptosis and cell cycle progression. In addition, recent studies have demonstrated that p53 is actively involved in regulating cell differentiation in muscle, the circulatory system and various carcinoma tissues. We have recently shown that p53 also controls lens differentiation. Regarding the mechanism, we reveal that p53 directly regulates c-Maf and Prox1, two important transcription factors to control cell differentiation in the ocular lens. In the present study, we present further evidence to show that p53 can regulate lens differentiation by controlling expression of the differentiation genes coding for the lens crystallins. First, the αA and ßA3/A1 gene promoters or introns all contain putative p53 binding sites. Second, gel mobility shifting assays revealed that the p53 protein in nuclear extracts from lens epithelial cells directly binds to the p53 binding sites found in these crystallin gene promoters or introns. Third, exogenous wild type p53 induces dose-dependent expression of the luciferase reporter gene driven by different crystallin gene promoters and the exogenous dominant negative mutant p53 causes dose-dependent inhibition of the same crystallin genes. Fourth, ChIP assays revealed that p53 binds to crystallin gene promoters in vivo. Finally, in the p53 knockout mouse lenses, expression levels of various crystallins were found down-regulated in comparison with those from the wild type mouse lenses. Together, our results reveal that p53 directly regulates expression of different sets of genes to control lens differentiation.


Assuntos
Diferenciação Celular/genética , Cristalinas/genética , Cristalino/citologia , Cristalino/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cadeia A de alfa-Cristalina/genética , Animais , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Cristalinas/metabolismo , Regulação para Baixo/genética , Células Epiteliais/metabolismo , Genes Reporter , Humanos , Íntrons/genética , Cristalino/embriologia , Luciferases/metabolismo , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas/genética , Cadeia A de alfa-Cristalina/metabolismo , Cadeia A de beta-Cristalina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA